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1 Introduction

1.1 Background

Kesko is a leading player in the Finnish retail sector, operating across gro-
cery, building and technical trade, and automotive markets. Within its
automotive division, K-Auto imports and sells premium new cars and offers
a substantial selection of multi-brand used cars across Finland. In recent
years, the used car segment has become increasingly vital to the automotive
industry, with nearly 600,000 used passenger cars sold in 2024—significantly
outpacing new car sales of around 75,000 (Tiedotuskeskus| (2024)).

This strong demand highlights the importance of effective inventory man-
agement. Dealerships must maintain a well-balanced stock of vehicles to
avoid missing sales opportunities or investing in cars that take longer to
sell. However, many purchasing decisions are still driven by intuition and
personal experience rather than data-driven approaches. This can lead to
mismatches between inventory and demand, inefficiencies in operations, and
lost revenue.

To address these challenges, this project explores how a data-driven model
can optimize inventory composition in the used car market. By analyz-
ing historical sales data and vehicle attributes, the model aims to improve
the match between supply and customer demand, reduce excess inventory,
and support more informed purchasing decisions. This optimization is very
complex in the used car market due to the nature of vehicles with differ-
ent make (manufacturer), model, age, mileage and condition. These com-
plexities make predictive modeling and optimization both challenging and
valuable.

1.2 Objectives

The goal of this project is to develop a data-driven inventory optimization
model that enhances the performance of K-Auto’s used car operations. The
model is intended to support purchasing managers by providing clear, ac-
tionable recommendations for which vehicles to acquire or avoid, based on
market data and expected returns.

The specific objectives of the project are:

e Optimizing Inventory Composition: Build a recommendation
model that identifies the ideal mix of used vehicles for a rolling three-
month planning horizon, updated monthly.

e Maximizing Return on Capital Employed (ROCE): Prioritize
vehicle acquisitions based on their potential to generate high returns,
improving capital efficiency.
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¢ Enhancing Decision-Making for Purchases: Deliver interpretable,
data-driven justifications for including or excluding specific vehicles in
the inventory, incorporating historical sales performance and demand
signals.

By focusing on these goals, the project aims to deliver a robust, practical
tool for K-Auto that improves inventory planning accuracy, reduces holding
costs, and strengthens the overall responsiveness of the business to evolving
market conditions.
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2 Literature Review

The used car market in Europe has become increasingly complex and com-
petitive, shaped by shifting consumer preferences, macroeconomic uncer-
tainty, and fluctuating supply-demand dynamics (eCarsTrade (2023)). In
this rapidly evolving environment, reliance on traditional decision-making
— often grounded in internal expertise, heuristics, or instinct — is prov-
ing inadequate for sustaining profitability and operational efficiency. As
highlighted by |[Ellencweig et al.| (2023) in a McKinsey & Company analysis,
many stakeholders across the automotive value chain—including dealerships,
OEMs, and finance providers—have yet to fully capitalize on the potential
of data-driven decision-making. One notable area where analytics is gener-
ating substantial value is vehicle allocation. Large dealership networks are
now leveraging real-time pricing and demand signals to reallocate inventory
across regions, optimizing margins by factoring in regional price differentials,
local demand variability, and inventory holding periods.

Parallel to these developments, the study of inventory optimization has sig-
nificantly evolved due to greater supply chain complexity and the prolifer-
ation of operational data. In the automotive industry, inventory is both
diverse and strategically vital, as it directly influences time-to-market and
overall competitiveness. Inefficient stock management ties up significant fi-
nancial resources and incurs substantial costs, highlighting the importance
of optimizing inventory to maintain profitability, operational efficiency and
competitive advantage (Saliji (2021)). An inventory model primarily aims
to determine the optimal quantity of goods to order and the appropriate
timing for those orders, with traditional approaches typically based on de-
terministic demand models (Babiloni and Guijarro| (2020)), Stopkova et al.
(2019)), [Tamjidzad and Mirmohammadi (2017)), [Tamjidzad and Mirmoham-
madi (2015, (Choi| (2014))). The applicability of such models in real-world
scenarios—particularly in the used car market—has become increasingly
limited due to numerous constraints and growing uncertainty in demand
patterns Maitra| (2024). This stochastic and unpredictable business environ-
ment underscores the need for more flexible approaches that can effectively
incorporate randomness and variability in key decision-making components.

To contextualize the two broad categories of inventory optimization models,
it is essential to distinguish between deterministic and stochastic approaches.
Deterministic models operate under the assumption of full knowledge of key
parameters, such as demand and lead time. In contrast, stochastic models
explicitly account for the inherent uncertainties in these variables (Zipkin,
2000). As [Turgay| (2023) highlights, the stochastic approach is increasingly
favored in modern supply chains due to its ability to incorporate variability
in demand and supply conditions. These models aim to determine opti-
mal ordering policies by managing uncertainty and making probabilistically
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informed decisions.

The origins of stochastic inventory theory can be traced back to the seminal
work of |Arrow et al. (1951)), who emphasized the role of demand uncertainty,
shortage costs, and the importance of contingency planning. Foundational
models such as the (s,.S) inventory policy and the newsvendor model have
long been used to address uncertainty in both single- and multi-period con-
texts (Porteus, 1990). However, these classic models often assume static
conditions or single-period decisions, which limit their applicability to dy-
namic, real-world inventory systems. In practice, inventory management
frequently involves repeated and adaptive decision-making over time.

To address these limitations, multistage stochastic programming emerges as
a more robust framework, enabling decision-makers to revise plans at multi-
ple stages based on newly observed information (Kayacik et al |2024). This
feature makes multistage models particularly well-suited to problems such
as used vehicle allocation, where decisions are made on a rolling basis over
a planning horizon. For example, in the case examined in this study, inven-
tory and allocation policies must be updated monthly over a three-month
horizon in response to evolving market data and operational constraints.

However, the flexibility of multistage models comes at the cost of increased
computational complexity. As the number of stages and scenarios grows,
traditional solution methods often become intractable. This challenge is
especially evident in problems requiring trade-offs between immediate re-
source utilization and future uncertainty, a context directly relevant to this
study. To address these challenges, Stochastic Dual Dynamic Programming
(SDDP) has emerged as a prominent algorithmic solution. As described by
Fullner and Rebennack (2021), SDDP is designed to efficiently approximate
optimal policies in large-scale multistage problems by decomposing them
into smaller, tractable subproblems and iteratively refining value function
approximations via backward and forward passes (Pereira and Pinto, 1991}
Downward et al. 2020).

SDDP operates within the broader framework of stochastic programming,
typically modeling uncertainty through a scenario tree that branches at each
stage to represent discrete realizations of future events (Fillner and Reben-
nackl, 2021). Since its introduction in 1991, SDDP has gained widespread
attention for both its theoretical rigor and practical utility. Today, it is con-
sidered one of the state-of-the-art methods for solving complex multistage
stochastic problems and has been successfully applied in various domains, in-
cluding inventory management (Bandarra and Guigues, 2021; Dowson et al.|
2020; |Guigues, |2017; \Guigues et al., 2023). These recent applications demon-
strate the practical relevance of SDDP in settings characterized by uncer-
tainty and sequential decision-making. Consequently, adopting SDDP and
related stochastic optimization techniques offers a compelling strategy for
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managing used vehicle inventories in real-world environments.

Based on the literature, data-driven approaches grounded in stochastic op-
timization and dynamic programming are well-positioned to address the
specific challenges of used vehicle inventory management. Traditional de-
terministic methods, which often rely on static assumptions or expert heuris-
tics, struggle to capture the uncertainty and heterogeneity inherent in the
used car market. In contrast, multistage stochastic models—particularly
when implemented using advanced algorithms like SDDP—offer the respon-
siveness, scalability, and adaptability needed for rolling horizon inventory
planning. These insights provide a solid theoretical foundation for this
study, which aims to develop a customized decision-support tool for K-
Auto. By building on these methodologies and incorporating vehicle-specific
attributes, market dynamics, and capital constraints, the project aims to
bridge the gap between theoretical advances and practical implementation,
ultimately enabling data-informed purchasing strategies in the used car mar-
ket.
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3 Data & Methods

The primary objective of this work is to use historical car sales data to
forecast future sales for vehicles and use the forecasted sales to optimize the
car dealership used car purchases. The end goal is to improve the purchasing
strategy in a way that maximizes the profit and aligns the inventory with
consumer preferences. In the following sections, the data and methodology
for demand estimation and optimization is presented.

3.1 Data

An extensive dataset of business-to-consumer (B2C) car sales is used, con-
sisting of sales from different vendors across Finland. The dataset covers
the period from 2018 to 2025 and contains approximately 2.1 million en-
tries. Each entry corresponds to an individual vehicle sale and includes 53
attributes describing various aspects of vehicle and sale details.

The dataset includes information on a diverse set of vehicle types, such as
passenger cars, motorcycles, trucks and caravans. The attributes themselves
cover wide range of categories, such as the asking price, vehicle specifications,
and sales metadata such as date of sale, time in the inventory, and dealership
information.

3.2 Preprocessing of data

The raw dataset is too complex and detailed to be used directly in forecasting
or decision-making. Therefore, the data is categorized into larger categories,
which we will refer to as elements. Each element represents a set of vehicles
that share similar characteristics and are likely to serve the same type of
customer need. However, the categorization can not be too broad as the
purchasing managers need clear and actionable guidance on the optimal car
inventory. In order to find the most meaningful features while keeping the
element division actionable, purchasing managers and domain experts were
interviewed. This collaboration ensured the elements would reflect both
technical and commercial relevance. The elements contain so-called element
features, which describe the features used for element division. In addition,
each element feature can be divided into smaller categories, referred to as
feature classes. Next, the data cleaning and element division are explained
step-by-step.

Firstly, the data consists of a wide variety of vehicles. However, this work is
only limited to analyzing the sales of passenger cars. Therefore, every other
vehicle type is excluded from the dataset. The experts recognized that the
most important and actionable features to know would be the make, model,
model year, fuel type, engine size, and mileage. This will be used as the
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basis for deciding the used element features.

The vehicle make (i.e., the manufacturer) is included as one of the element
features. However, the dataset contains a large number of different manu-
facturers. Including all of them would result in an unmanageable number
of categories, so we limit the makes used as feature classes. Specifically, we
include either the top 30 best-selling makes or all makes with over 5,000
units sold — whichever results in fewer categories. In our dataset, the top 30
makes all exceeded the 5,000-unit threshold, so we use these 30 as our make
classes. All other makes are excluded from further analysis.

We add the car model as an element feature. Similarly to the make, not
every model can be chosen as a feature class. We choose to only include a
limited number of the best-selling models for each make. We only consider
models that have sold over 50 units, and then choose at most the top 10
best-selling models. This means the number of considered models is at most
30-10 = 300, but can be less if some models have models that have not sold
over the 50 unit limit.

Fuel type is another key factor in car sales and is therefore included as an el-
ement feature. While fuel type is already a categorical variable, the dataset
includes several less common types. To reduce complexity, we would want to
only analyze the most common categories: gasoline, diesel, hybrid, and elec-
tric. However, based on expert insight, electric vehicles differ significantly
in relevant features from combustion engine vehicles. Therefore, we exclude
electric cars from our analysis. Thus, the feature classes for fuel type are
gasoline, diesel, and hybrid.

The engine size is an important factor to consider when purchasing used
cars and is thus chosen as an element feature. The feature classes are con-
structed by rounding the engine size, which is given in cubic centimetres, to
decilitres with 2 significant figures. This type of feature class construction is
warranted as the available engine sizes vary between car models. Therefore,
unnecessary feature classes, too big or too small, are not added.

Additionally, we want to filter and divide the elements in terms of mileage
and model year. We are mostly focused on used cars. Therefore, we only
analyze the sales of cars with model year 2024 or before. However, we don’t
want too old cars, so we only include those that are at most 10 years old.
For the mileage, we only consider cars with less than 200000 km mileage.
Overall, we only consider fairly new and low-driven used cars. We would
want to add the model year and mileage also as element features, meaning,
these features would be divided into categories and then the sale of each of
those categories would be done separately. However, due to computational
complexity constraints of our model, discussed more in Section these
features were not included as element features.
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After the discussed element division and data filtering, we are left with
around 800000 sales, which are transformed to represent some specific el-
ement. The element features now used are make, model, fuel type (B, D,
or H), and engine size (in decilitres). These features now describe the most
important features considered in buying a used car, keeping the descriptors
broad but still actionable. After converting the sales data to this element
format, the future sales of an element can be forecasted with its historical
sales.
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4 Model

We decided to approach the problem with the stochastic dual dynamic pro-
gramming (SDDP) technique, which is well suited for multistage stochastic
optimization problems where an agent has to make decisions over time un-
der uncertainty. In our case, as we have only the past sales data available,
we have to generate the stochasticity and uncertainty ourselves to generate
a suitable input for the SDDP model.

First, we need to estimate future sales from the data. From the expert
interviews and the initial data exploration we gathered that the car sales
are seasonal, so we decided to approach the estimation with a seasonal time
series model. As we saw in[3.2] we have split the data into multiple different
elements, and we will thus apply the time series model for each element
separately. This process will be discussed in Section [4.1]in more detail.

Secondly, the SDDP model requires us to have different states representing
different scenarios for all time periods, all of which have their own likelihoods
and transition probabilities between the stages. This is done with a Monte
Carlo simulation that uses the time series forecasting results. Different states
and transition probabilities are then obtained from the simulation results by
clustering. This approach is discussed in

Finally, we can give the SDDP model the likelihoods for each state and the
transition probabilities for each state between time periods, which the model

will use to solve the optimization problem. The details of the SDDP model
will be discussed in 4.3.2

Like many optimization problems, those addressed with the SDDP can be
combined with an objective function and a set of constraints. Our initial
task was to maximize the return on capital employed (ROCE), which we
encountered to be a challenge since we do not know the purchasing price of
cars. Thus, we estimate a fixed profit of 15 % for each car, and the objective
of the SDDP is to maximize total profits.

4.1 Element forecast

When a decision maker wants to maximize their profits from a product,
they would ideally like to be aware of the demand that faces that product.
Demand for a product is the quantity sold as a function of its price. However,
estimating demand is a challenging task, as it requires the decision maker
to know how many units of the product they are going to sell at different
price points. This requires knowing or estimating price elasticities for the
customers.

Due to the complexity of demand estimation, the optimization model will
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be founded instead on sales forecasting. This approach involves estimating
the quantity of different types of cars sold, while assuming that they are
sold at the market price. As a result, our solution can be the optimal only
under the perfect competition assumption. Any market power that allows
the decision maker to make sales above the competitive price would mean
that the solution for the profit maximization problem would have to be
reached some other way. However, the perfect market assumption will not
be far off the truth, as the used car market typically involves a large number
of sellers and buyers, which limits the ability for individual sellers to set
higher prices.

It is worth noting that there are several different approaches for predicting
future sales. Often this problem can be tackled with time series forecasting.
However, it has been shown that other techniques can be very efficient and
precise in making predictions, e.g., using Long Short-Term Memory (LSTM)
method (Ensafi et al.l 2022) or XGBoost-based models (Ji et al., 2019)) can
be quite effective in handling nonlinearities. In order to keep the initial
model and the validation phase a bit simpler, we decided to go with the
time series route.

In Subsection M.1.1] we will discuss the chosen time series model and in
Subsection [L.1.2] we will validate the chosen model.

4.1.1 Forecasting model

After initial data exploration and the expert discussions, it became clear that
there is seasonality in the data. Additionally, the results from Augmented
Dickey-Fuller tests (ADF), both on aggregated and sampled elements, indi-
cated that we cannot reject the null hypothesis of a unit root, suggesting
non-stationarity in the data. Therefore, to make any successful forecasting
models we have to difference the data.

In Figure (I} we have four different Autocorrelation Function (ACF) plots
for one of the sampled elements in the data. Each value on the x-axis
indicates the number of lags between the time series data point and its lagged
version. The y-axis shows the autocorrelation coefficient, which measures
the correlation between the time series and its lagged values at each lag.

On the left (A), there is the original non-stationary series. The decaying
nature of the different lags on the x-axis indicate that there is some persisting
trend with the data. In (B) we have taken the first difference, and in (C)
we have taken the 12 month seasonal difference, i.e., for each value in the
time series we reduce the value from a year ago. For (B) we still see some
large spikes throughout the lags, and for (C) there seems to be some sort of
trend, especially in the smaller lags. Finally, by combining both, we seem
to get a lot more stationary time series, which makes it more suitable for
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Figure 1: Autocorrelation plots for a sampled element (BMW_3-SARJA_H_20.0)

modeling and forecasting with time series techniques.

The same form of the time series data seems to apply for other sampled
elements as well. Therefore, it would make sense to use a time series model
that takes into account both the first difference and the seasonal difference.
A reasonable choice seems to be then the Seasonal Autoregressive Integrated
Moving Average (SARIMA) model. The SARIMA model allows us to make

predictions using data that has non-stationary and periodic variation.

A SARIMA model can be denoted as
SARIMA (p,d, q)(P, D, Q)s (1)

where p is the number of autoregressive (AR) terms, d is the number of
differences, ¢ is the number of moving average (MA) terms, while (P, D, Q)
indicate the same respectively for the seasonal part of the model, e.g., P is
the number of seasonal AR terms. The parameter s indicates the number
of observations per year, for our monthly data this is 12.

The choice of parameters depends on the data. For predicting however, by
choosing too many coefficients you run the risk of overfitting your model
with the training data. After running tests over multiple sets of samples, we
found that having a first difference and one seasonal difference in addition
to one non-seasonal AR term yielded reasonable results. Additional terms
were often statistically insignificant. In the SARIMA notation this means

SARIMA(1,1,0)(0,1,0)12 (2)
The mathematical expression for the chosen model is therefore
(1-¢1B)(1 - B)(1-B?)Y, = ¢ (3)

where Y; is the observed time series at time ¢, B is the lag operator (BY; =
Yi—1), ¢1 is the non-seasonal AR coefficient, and ¢; is the white noise error
term at time ¢.
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4.1.2 Model validation

Figures [2] and [3] illustrate how the SARIMA model makes predictions for
an eight element sample. In the Figure the model predicts the next
period’s sales, while in the Figure [3] the model predicts the sales three
months from the given point. In both Figures, the blue and green lines
show the actual sales, the red line depicts the predictions from the model
and the gray area around the predictions is the 95 % confidence interval.
The confidence interval is always non-negative, as there cannot be a negative
number of sales.

Sales for sample element 1 Sales for sample element 2 Sales for sample element 3 sales for sample element 4

s 5% I P 95% I o 5% I
— man RMSE: 27.276 — Tain RMSE: 6.958 RMSE: 6.595 604 — Tain
— st — Test — st

— predictions — Predictions, » 50 { — predictions

sal
Sales
Sal
sal

° ©» 20 EEE] o 20 w0 60 0 o 20 £ & a0 o 20 W ) 50
Month Month Honth Month

Sales for sample element 5 Sales for sample element 6 Sales for sample element 7 Sales for sample element 8

5% I 5% 1 25

RMSE: 17.280 — Tain RMSE: 11.973 w0l — RMSE: 9.435

:\
Sales
sl

8

sal

[ 2 W ) 50 [ o 2 % 4 50 6 D 20 3 4 % 6 7 & [ 20 W ) 50
Month Month Honth

Figure 2: Sales forecasting (t+1) for sampled elements

From the figures, we observe that the prediction model behaves well around
the test data, and that the confidence intervals almost always include the
actual sales values, suggesting reasonably accurate predictions. However,
having elements with fewer sales increases the relative size of the confidence
intervals. This can be seen in the case of element 8 in the bottom right
corner of Figure [3] where the wider confidence interval represents greater
uncertainty in the forecast.
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Figure 3: Sales forecasting (t+3) for sampled elements

Furthermore, we see that there is an expected decrease in performance be-
tween the two figures, as the model is having a harder time predicting further
into the future. However, from the samples we have gathered we can quali-
tatively say that the model is making predictions to the right direction. The
current predictive power of the SARIMA model should not stand in the way
of testing the SDDP approach, although better predictions at the element
level will inevitably lead to better solutions after optimizing with the SDDP.

For the first iteration of the model we decided to go with a simple SARIMA
model. However, we acknowledge that there exists more accurate ways to
pick the parameters and other ways to improve the prediction power of the
model. These potential future improvements and other ways to approach
this problem will be discussed in Section [6.3}

4.2 State division

After having a working time series model ready to forecast future sales, we
turn to the Monte Carlo simulation phase. From fitting the SARIMA model,
we get a set of residuals, €, for each observation t in the time series data.
From these residuals, we then can formulate a distribution, from which we
can pull out random residuals to make predictions. Thus, the prediction for
the sales for an element for the next period can be just calculated using the
AR coefficient of the SARIMA model and the previous time series value,
while €; gives us some noise for the predictions. Extending this procedure
to all elements allows us to forecast scenarios of possible sales trajectories
for the whole set of elements.

In the first forecasting stage, we run N Monte Carlo simulations for each
element, generating N scenarios of future sales. Each scenario consists of
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predicted sales values across all elements in the dataset. Then, we cluster the
scenarios from the first stage to give us K states. For this we use K-means
clustering, so that each scenario belongs to the cluster with the nearest
mean. Also, the clustering approach helps us to get transition probabilities
as we can very easily get the probability of ending up in one of the clusters
by summing up all the elements in that particular cluster and then dividing
by N.

We then repeat the same for the second stage, with the exception that we
make N predictions at each of the cluster centers obtained in the previous
stage. Therefore, in the second stage we make N x K predictions. We
proceed again by clustering and calculating the transition probabilities just
like in the first stage.

Unfortunately, the chosen time series approach has its limitations as it is not
completely memoryless. This is not an issue with the first and second stages
as the transition probabilities can be obtained straightforwardly. However,
in the final third stage the issue is that we do not how stochastic process
has reached any of the states in the second stage, and therefore obtaining
the transition probabilities for the final stage becomes a challenge.

We decided to use deterministic multivariate forecast using SARIMA to
acquire the clusters for the second stage, from which we were able simulate
the clusters of states and transition probabilities for the last stage. However,
this is an approximation of the stochastic process and a limitation that we
encountered when using the time series approach. The SDDP model works
well with the time series approach when we have only two time periods but
after that it becomes a bit harder. On the contrary, we assume that this
approximation should not affect the accuracy of the model too much.

After dividing the simulations to states and calculating the transition prob-
abilities, we can move over to using the SDDP model itself.

4.3 Optimization
4.3.1 Problem definition

In this project, the goal is to determine the number of purchased units of
each car type over a rolling three-month horizon, updated monthly. The
decisions must account for sales uncertainty, varying car margins, and fu-
ture availability. Unlike one-shot decisions made in a static environment,
our challenge involves sequential decision-making under uncertainty, where
the outcomes of earlier choices directly influence future decisions. This dy-
namic and uncertain nature of the problem motivates the use of a multistage
stochastic decision problem formulation.

Traditional models such as assortment optimization treat inventory deci-
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sions as static or single-period problems. These models may optimize for a
single snapshot of time, assuming known demand distributions or ignoring
the feedback between periods. While effective for short-term or determin-
istic decisions, they lack the flexibility needed for rolling planning under
uncertainty.

On the other hand, a multistage model allows decisions to evolve over
time, incorporating new information as it becomes available. At each stage
(monthly decision point), the model accounts for:

e Inventory levels carried over from previous stages
e Realized sales outcomes
e Updated probabilistic knowledge of future uncertainties

This results in a dynamic model that adapts decisions based on the observed
system state, unlike static models that commit to decisions upfront without
adjustments.

4.3.2 Optimization model

The inventory planning task involves choosing the optimal number of used
cars to buy, store, and sell each month over a rolling three-month horizon.
The uncertain element is the number of future sales of each element. Given
the purchasing cost, inventory holding cost, and selling price, this problem
naturally fits a multistage decision framework. The SDDP-related method-
ological concepts outlined in this section are based on [SDDP.jl Developers
(2024))

In multistage stochastic optimization problems, an agent makes decisions
that affect the state of the system over time. Each decision point is referred
to as a stage. At each stage, the modelled agent chooses an action, called a
control variable, which impacts the state of the system — that is, the current
level of vehicle inventory.

Control variables are denoted by u. In our context, they include the number
of sold and purchased cars at each stage. Though the number of sold cars
is referred to as a control variable, in practice the key decision is made on
the bought cars variable. We denote the control variables as:

o u™: the number of vehicles purchased at time ¢,

e 4$°!: the number of vehicles sold at time t.

Similarly, the state of the system is tracked from stage to stage by state
variables, denoted x. These capture the number of vehicles in inventory.
The incoming value of a state variable at a stage is denoted by x, while the



Data-Driven Optimization of Used Car Inventory 18

outgoing state is z’. In our case:

r; = inventory at the beginning of stage t, x} = z; + u}fuy — el

At any node i, the transition between stages is governed by a transition
function:
x/ == E(xu ’LL,W),

which determines the next state ' based on the current state x, the cho-
sen controls u, and the realized demand. Stagewise realizations of random
variables are denoted by w. The relation between control variables and the
effect of the transition function on the incoming and outgoing state variables
is presented in Figure [4

The control variables are chosen via a decision rule:
u=m;(z,w),
subject to a set of constraints U(z,w), including:
e Cannot sell more vehicles than available,

e Cannot sell more vehicles than the realized sales,

e Cannot buy more vehicles than the maximum allowed by supply con-
straints,

e Total inventory must not exceed maximum capacity cpax-

Q; —\’u\)d\)
X u = mi(x, w) x
R -

x'=Ti(x,u, w)

!

Cf(xa u, (U)

Figure 4: A simplified transition diagram for state, control, and random variables

Each stage is connected to others via a policy graph. In the Markovian
case, the graph includes multiple nodes per stage, each with probabilistic
transitions to nodes in the next stage. An example of this is visualised in
Figure[5] where we have 3 stages, each with 2 states. The probabilities of the
transitions between the states are defined by the transition matrix. In our
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oy
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Figure 5: An illustration of a simplified Markovian policy graph with two states
and 3 stages

case, the only uncertain element of the model is included via the transition
matrix, meaning that the random variable w

The optimal decision is solved by the SDDP algorithm. For a convex prob-
lem, the SDDP algorithm operates in two phases:

e Forward pass: Sequentially samples demand scenarios from the ini-
tial to final stage. Solves subproblems using current approximations
of the cost-to-go function.

e Backward pass: Improves the cost-to-go approximation by adding
cuts using Kelley’s algorithm (Kelley|, [1960). This yields a better lower
bound for the cost function.

4.3.3 Mathematical Formulation

Let N denote the number of vehicle types. For each vehicle type i €
{1,...,N} and time t, we define:

x; : Inventory level (state variable),

u?uy : Vehicles purchased (control variable),

sell
i

wj : Sales realization (random variable).

: Vehicles sold (control variable),

The objective of the model is to maximize the generated profit across all
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stages. Thus, the general formulation of the model can be presented as:

N
sell = sell buy buy inv ./
. max Z (pi w;o = U — G xl>
ul usell x! n
(3 Lt A =1
st af=x; + u?uy — ! (inventory update)
uw$! < w; (cannot exceed demand)
wfl < 2 (cannot sell more than in stock)
b .
u," < s (supply constraint)
T
Z 7 < Cmax (total inventory constraint)
i=1
u?uy, wl e 7., (non-negative integers)
where pzs»e” and p?uy represent the selling and purchase price of each car type,
c;™ represents the inventory cost, cpq. represents the maximum storage

capacity, and w; represents the demand for element i.

4.3.4 Model Dimensions and Complexity

e Number of decision variables: 2N per stage (buy/sell per vehicle
type)
e Number of state variables: N per stage

e Number of constraints: 4N + 1 per stage

The complexity of the model grows linearly with the number of stages and
vehicle types. However, the Markov transition matrix introduces exponen-
tial growth in the number of possible paths. This makes the SDDP algorithm
particularly suitable, as it approximates the value function through sampled
scenarios and cutting planes.

Implementation

This model is implemented using SDDP. j1, a Julia package for solving mul-
tistage stochastic optimization problems using dual dynamic programming.
The Markovian policy graph structure allows for stage-specific demand dis-
tributions, enhancing realism in the vehicle inventory context.
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5 Results and model validation

In this section we discuss the results of the inventory optimization model.
We compare the recommendations for bought vehicles of our inventory op-
timization model. Furthermore, we include two heuristic models in the
comparison, to validate the performance of our model against a potential
real-life simplistic strategy.

We ran our model with 5 different setups. These contained different param-
eters for the inventory cost. Furthermore, we included two additional runs:
one with a continuous set of decision variables and another with a dynami-
cally constrained maximum purchased vehicles. The aim of the continuous
run was to examine the performance for a potentially less computationally
expensive setup. For the dynamic model, the objective was to guide the
model towards feasible values while allowing the model to overbuy if it sees
a potentially profitable situation. The setups are summarized below:

e Integer model: Highest inventory cost (1200 €/car)
e Integer model: High inventory cost (900 € /car)
e Integer model: Medium inventory cost (600 €/car)
e Integer model: Low inventory cost (500 €/car)

e Integer model: Dynamic maximum (calculated by
max(10, 1.5 - maximum monthly historical sales)

e Continuous model: Medium inventory cost (600 €/car)

The optimal buying strategy was evaluated by extracting the optimal policy
at the node for time 7. The model was solved in Triton, using the Gurobi
solver set to use the Dual Simplex method. The maximum number of it-
erations was restrained to 7000 iterations, to keep the solution times and
computational resource usage at acceptable limits. Each solution terminated
at the maximum amount of iterations. Thus, the solution is not necessarily
a global optimum but instead a ”good-enough” approximation.

For the comparison, we construct two alternative strategies based on a sim-
ple heuristic. These strategies purchase the 50 most sold car elements in
proportion to their sold amount across the entire history. One of the heuris-
tic models is set to purchase the approximately the same number of units
as the SDDP model. This is the realistic variant, as we have a fixed inven-
tory capacity, which the SDDP models also adhere to. The second heuristic
model is set to use the same amount of approximate capital. Thus, it can
buy as many units as possible, even though it might result in a solution
higher than the maximum inventory capacity. These models will be referred
to as
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e Heuristic model: same units

e Heuristic model: same capital

5.1 SDDP and heuristic model Comparison

To compare the performance of the SDDP and heuristic models, we purchase
the number of each element at time T. We then evaluate the cumulative
profit for each strategy using historical sales data. Furthermore, we compare
the ROCE and number of vehicles purchased, as well as discuss some reasons
behind the differences in performance.

The SDDP model, with the dynamic maximum number of purchased vehi-
cles, achieves the highest cumulative potential profit over a 3-month horizon
(Fig. @, outperforming all the other models by over 1.2 M€. In a one
month period, the heuristic strategy outperforms the SDDP models. This
is expected as the turnover of these cars is higher and likely more constant.
However, the SDDP models all outperform the heuristic model with the
same units across the entire time period. The performance of each of these
runs is similar for all variants, converging to a value around approximately
12 M€.

Gumulative Potential Profit (ME)

14

12 _ . —

1: // =
ey

6 " f
4 / e
2 ,
0
T T+1 T+2 T+3
== Dynamic == Heuristic, same units == Heuristic, same capital Continuous ©=500 =600 — c=800 — c=1200

Figure 6: The cumulative potential profit of the purchased vehicles for the 6 SDDP
and 2 heuristic models across 3 time stages. The best performing SDDP model and
the heuristic models have been highlighted

The same phenomenon is seen when comparing the ROCE, where the heuris-
tic models see a high ROCE in the first month, however the dynamic and
other SDDP models see a notable improvement across the longer time pe-
riod (Fig. . The ROCE is similar for both heuristic strategies, while the
dynamic maximum SDDP model once again outperforms the other SDDP
models across the time period. The ROCE for all strategies converges to
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approximately 17.6% at the end of the time period. This is because we
have set the profit margin for a purchased car to 15%. Thus, as most of
the purchased cars are likely sold at the end of the time period, the ROCE
converges to the ratio 0.15/0.85, which is the ratio between the profit and
the cost.

Estimated ROCE
18%

16%

14%

12%

10%

8%

6%

4%

2% +

0%

T T+1 T+2 T+3

== Dynamic == Heuristic, same units === Heuristic, same capital Continuous €=500 — ¢=600 — c=900 — c=1200

Figure 7: The estimated ROCE of the purchased vehicles for the 6 SDDP and 2
heuristic models across 3 time stages. The best performing SDDP model and the
heuristic models have been highlighted

The same capital heuristic model performs similarly to a majority of the
SDDP models, only clearly outperformed by the dynamic maximum variant.
However, When comparing the number of vehicles purchased, it is clear
that the same capital heuristic is unfeasible when examining the inventory
capacity (Fig. . The same capital heuristic model purchases over 1000
vehicles more than the strategy that purchases the second-most cars.

Total vehicles purchased

3500

3178
3000

2500

2000 1788

1713 1727 1704 1713 1692 1684
1500 ~
1000 ~
500 -
0 - . L . .
Dynamic Heuristic, Heuristic, Continuous c=500 ¢ =600 c=900 c=1200

same units ~ same capital

Figure 8: The number of purchased vehicles at time T for all 6 SDDP and 2 heuristic
models

The dynamic maximum model has a clear focus on buying vehicles with
the largest possible spread between the purchase and selling price. On the
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Figure 9: A comparison of the bought vehicles for the dynamic maximum SDDP
and same vehicles heuristic models. The colored bars and line plot relate to the left
axis, and the dashed line representing the profit margin to the right axis.

other hand, the simple heuristic typically captures a smaller spread between
sales and purchase price (Fig. E[) Furthermore, the dynamic model clearly
adheres to a Min/Max type of strategy, where it overbuys vehicles with a
high spread and a large potential number of sales. On the other hand, it
purchases no units of the top 5 sold car elements, which the simple heuristic
buys the most of. Simplistically stated, the key driver between the differ-
ences in cumulative profit and ROCE is that the bought dynamic model
attempts to maximize the total profit buy purchasing a lot of cars with a
high profit margin, while ensuring these cars will most likely be sold. On the
other hand, the simpler heuristic model is indifferent to the spread between
purchase and sales price, instead prioritizing sales volume.
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6 Discussion and future research

6.1 Model validity and limitations

The model consists of three parts: the element division, the state division,
and the SDDP model. The validity of the results is dependent on the validity
of all these intermediate stages. Each of the modeling choices made are
justified based on the problem requirements. However, the limitations of
the project simplify the complex dynamics involved in the used car trade,
which affects the validity of the results.

The element division was done accordingly to expert opinion. The require-
ments were to create an actionable element division, which is as precise as
possible. Therefore, broad descriptions of the vehicles were not feasible.
The previous sales data is analyzed with regard to these elements, and the
future sales prediction is used as an estimator for the demand. However,
with increasingly precise element division, the demand estimation becomes
more inaccurate. The customers typically have some requirements for the
vehicle they wish to purchase, such as the number of seats or the body
type, such as an SUV. Describing the elements with broad categories, such
as SUV, 2-8 years old and automatic transmission, would more accurately
estimate the customer demands. However, as this definition is so broad that
it provides little value for the purchasing managers, the elements need to be
defined more accurately. The current element division is make, model, fuel
type, and engine displacement. This more accurate element division does
not take into account the overlap for the element demands, and can then
produce results with too little variety. On the other hand, due to the al-
ready complex nature of our model, the total number of elements needed to
be limited. Therefore, the suggested element division by purchasing experts
could not be fully implemented, meaning that even more precise element
division could have produced more insight for the purchasing managers.

The chosen approach of the multistage decision problem required the sale
of the elements to be in discrete states. This state division, discussed in
Section was done by simulating possible scenarios using element-wise
sales forecasting, and then clustering these scenarios into finite states. As
was already discussed in Section the chosen approach to use SARIMA
for sales forecasting is not necessarily the optimal way, as other models may
perform better if nonlinear dependencies are present in the data. Also, the
memoryless nature of the time series model forced us to make an approxi-
mation in the third stage of the state division, as was discussed in To
avoid the approximation, one would have to use some other approach for
the sales forecasting. Moreover, some simplifications were made to keep the
initial forecasting model straightforward. For instance, we used a single set
of SARIMA parameters across all different elements, even though a different
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set of parameters might have been more suited for some individual elements.

As discussed earlier, the element division is a necessary step to make the
model actionable. However, once the data is split into narrowly defined
elements, the number of historical data points per element becomes very
limited. This also affects the reliability of the forecast and the estimated
transition probabilities in the Markov model, which can ultimately affect
the optimization outcome. On the other hand, the model operates on a
fairly limited number of features. Key attributes such as color, mileage,
transmission type, drivetrain, vehicle history, and condition are not included.
While this reduction is partly due to data availability and partly due to the
desire for computational simplicity, it reduces the descriptive power of the
model. As a result, the model cannot fully account for the complexity
of customer preferences or the nuances involved in vehicle valuation and
demand.

As discussed in Section [£.3.2] the multistage decision problem approach is
valid based on the given project objectives. The decisions are made for a
three-month planning horizon with 1-month intervals. The individual cars
can only sell an integer amount, and the sold amounts can be combined
into states describing the realized sales of a stage. Additionally, the tran-
sition from state to state between stages can be presented as a Markovian
transition matrix. Then, SDDP modeling is used to solve the formulated
problem. The validity of the claim that the transition between stages can
be described by a Markov process can be questioned. In a Markov process,
the probability of transitioning into the next state is only dependent on the
current state and does not consider the previous states. However, in the real
world, the demand for vehicles might not be best described this way. It is
reasonable to assume that the current state of sold vehicles alone does not
fully capture the probability of sales in the next period. The state transition
matrices can be dependent on the overall economic situation, which could
be estimated from previous state transitions. The model also gives an esti-
mate of the number of units bought of some element. However, the supply
of cars to be bought is also an unknown variable. The model results give the
number of units one should buy of each element. However, if the number of
units to be bought is not available, the results become suboptimal.

In the problem setup, we also analyze the type of cars to buy for the next
period, such that we would buy all the cars immediately in to the inventory.
However, the solution from this might not reflect the real-life situation where
you could buy additional cars to the inventory once you have sold some units.
This means the total number of cars bought in one month is higher than
the inventory capacity. It is possible that the optimal solution would be one
where the dealership buys cars with a lower profit margin but a very high
turnover rate. However, due to the problem setup, dynamic allocation is
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not possible.

Additionally, the model only gives recommendations on elements to be
bought if we assume a static profit margin in the average selling price.
However, the decision for the dealership to buy a used car is dependent
on many factors not described by the element division features, such as the
actual asking price and the car’s condition. Therefore, purchasing managers
are still needed as decision-makers to analyze the profitability of potential
procurements.

6.2 Project achievements

Despite the limitations of our approach, this project offers a valid basis for
the inventory management process, which can be improved upon in later
implementations. Our model shows a proof of concept that data-driven
inventory management is feasible with the existing data. Our approach is
constructed in a modular way, meaning parts of the process can be modified
easily. Therefore, this project offers a basis that can be improved upon
or modified for a different purpose while keeping the overall structure the
same. The constructed approach also matches fairly well with the objectives
presented in Section [I.2] and the limitations arise from the available data
and the complex nature of the task.

6.3 Future research

The provided model offers a basis for future developments. The modular
structure of the approach means every part of the approach can be easily
changed or improved without changing the overall structure.

The element division can be improved upon with more detailed discussion
with experts and deeper data analysis. Currently, the element division is
static, as every car type is divided similarly. However, a more dynamic
division can be implemented, meaning, more element categories can be in-
troduced or removed depending on the model. For example, the demand
for a truck can be dependent on whether it has a towing hitch. Therefore,
this should be one of the element division features. However, this does not
provide any value if the car is a convertible sports car. Additionally, with
dynamic element features, features can be added or removed based on their
usefulness, which keeps the total number of elements negligible. Therefore,
dynamic element division could provide additional value for the purchasing
managers without increasing the computational complexity too much.

The current forecast of the element sales is done with a SARIMA model.
This is due to the need to easily provide justifications for buying some
element. However, this time series approach is limited to only considering
past sales. With a more sophisticated method, the forecasting model could
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take into account the more complex nature of the demand. For example, the
XGBoost model, which is a supervised machine learning model that can be
used for various tasks, such as regression. The model is able to handle large
datasets and would also be able to handle external factors such as economic
situation, internet search trends, and other possibly affecting factors.

The SARIMA model itself could also be improved and tuned. First, the
chosen parameters may not be the optimal combination. For the first it-
eration we emphasized simplicity, which could mean that in some cases we
did not utilize the full predictive power of the SARIMA. Secondly, since we
are attempting to forecast the sales of multiple different car elements at the
same time, choosing one set of parameters is not necessarily the optimal
choice. Ideally, one would like to have optimized parameter choices for each
element separately.

Future implementation of the model could also optimize inventory composi-
tion based on what cars are currently available to be purchased. The current
implementation only gives what is optimal if every possible element is avail-
able for purchase. However, if some elements have a limited supply and the
optimal amount can not be purchased, the solution becomes suboptimal. To
guarantee optimality, a constraint for the purchased elements needs to be
introduced. However, this type of data was not available for us during this
project.

Additionally, sensitivity analysis should be done before this process is imple-
mented. Due to the scope of this project, only simple validation of the meth-
ods could be executed. Sensitivity of the optimal solution should be tested,
how it behaves with slightly different beginning inventories, and how much
the optimal inventory changes with slightly different assumptions, prices,
and inventory costs, etc.

The multistage decision problem approach is not the only option, and other
possible approaches, such as assortment models, could also be used for the
optimization. After constructing alternative models, the optimal inventories
should be compared, and the best approach for the problem can then be
decided accordingly.
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7 Conclusions

This project presents a data-driven framework for optimizing the used car
inventory at K-Auto, addressing the core objectives of improving purchasing
decisions, maximizing ROCE, and enhancing overall inventory composition.
By leveraging SDDP, seasonal time series forecasting, and Monte Carlo simu-
lation, we constructed a modular optimization pipeline capable of generating
actionable purchase recommendations under sales uncertainty.

When comparing the performance of the SDDP model against the heuristic
strategies, the dynamic maximum variant of the SDDP model consistently
delivered the best overall results. It achieved the highest cumulative profit
over a three-month period, significantly outperforming both heuristic base-
lines by more than 1.2 million euros. While the heuristics showed stronger
short-term returns due to high-turnover vehicles, they lacked efficiency over
time. The SDDP model prioritized vehicles with higher profit margins and
managed inventory constraints better, making it both more profitable and
more feasible in a real-world setting.

Despite data limitations and the complexity of real-world used car opera-
tions, our model demonstrates the feasibility of applying advanced analytics
to support strategic inventory decisions. Key challenges such as element di-
vision granularity, the lack of true demand data, and simplified assumptions
regarding profit margins and supply availability limit the model’s precision.
Nevertheless, the modularity of our approach enables iterative improvements
and adaptation to real operational constraints.

The developed model lays a strong foundation for future enhancements, in-
cluding dynamic element definitions, more advanced forecasting techniques
(e.g., XGBoost), and the incorporation of supply constraints and economic
indicators. While the current results are indicative rather than prescriptive,
the project validates the potential of data-driven optimization in improving
operational efficiency and responsiveness to market conditions in the used
car business.

Ultimately, this project delivers a valuable proof of concept and a robust
baseline for K-Auto’s ongoing efforts toward smarter, more adaptive inven-
tory management.
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8 Self Assessment

8.1 Implementation of the project with regard to original
plan

The project implementation largely followed the structure and purpose of
the initial plan, but there were several notable deviations and adjustments
along the way. Our original proposal included a clear focus on refining
the inventory model for K-Auto through a structured process: identifying
key features, dividing elements meaningfully, and validating the model with
client data. In practice, time constraints, the complexity of the task, and
challenges with scheduling led to significant changes in scope and execution.

One of the key differences was the limitation in feature engineering and
element division. Initially, we intended to carry out a more detailed seg-
mentation of inventory elements based on variables such as car type, fuel,
and make. However, due to the capacity of the model and the ability to gen-
eralize the results, we had to scale back these ambitions. For example, many
modeling refinements were delayed because they depended on decisions made
during earlier stages, such as element division or feature aggregation.

Another deviation was in the validation and verification phase. Although
we planned to engage in an active feedback loop with K-Auto to fine-tune
our models, the time frame and complexity of the model limited this collab-
oration. Nevertheless, we remained in contact with both K-Auto and course
personnel to ensure that our model remained aligned with business logic.
In cases where initial models underperformed or lacked interpretability, we
adapted by trying alternative approaches and refining assumptions.

Despite some of these unanticipated challenges, our implementation still met
the core objectives of the original project plan.

8.2 In what regard was the project successful

The project was successful in demonstrating that a data-driven approach to
inventory optimization at K-Auto is both feasible and valuable. Even though
the final solution did not reach full deployment readiness, our work clearly
shows that existing data can be used to support more informed decisions
around used car inventory. The model, while basic in its current form, lays
a robust foundation that can be refined and extended in the future.

Our model consists of three main components: element division, sales fore-
casting, and optimization using SDDP. Each of these components can be
independently modified or replaced. For example, different methods can
be applied to define elements, forecast sales, or construct the optimization
model. This modular structure allows the model to adapt to varying busi-
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ness requirements, data availability, or methodological preferences.

Additionally, the project added value in terms of raising awareness of how
data can enhance operational efficiency. We demonstrated that, even with
limited time and resources, a data science process can offer tangible benefits.
Our analysis also reinforced the importance of setting practical constraints
and simplifying decision-making processes for end-users.

On the human side, the collaboration with K-Auto and the learning-by-doing
environment offered by the course gave us a strong understanding of real-
world project work. We developed skills in client communication, data wran-
gling, modeling under uncertainty, and team-based problem-solving—skills
that go beyond technical modeling and are highly relevant in professional
practice.

8.3 In what regard was the project not successful

Despite these achievements, there were several areas where the project fell
short, particularly regarding scheduling and workload management. The
project plan could not be followed strictly during the final phase, especially
after mid-April, when we began writing the report. At this point, some
technical elements were still in progress, which made coordination between
documentation and model completion more difficult. The initial delay at
the start of the course also contributed to a compressed timeline later on.

Moreover, the client collaboration, while useful, was not so active or contin-
uous. Limited meetings and feedback sessions reduced our ability to iterate
based on real business constraints or insights from K-Auto. As a result, the
model remained more theoretical in some aspects than we would have liked.

Another challenge was the uneven division of tasks within the team. Some
responsibilities, particularly around modeling and technical execution, ended
up falling on individual members, creating an imbalance in workload. Since
many steps of the project were sequential, this also meant that if one part
was delayed, the rest of the work could not proceed in parallel, which com-
pounded the delays. While everyone contributed meaningfully to the final
product, the lack of task parallelization and uneven workload distribution
limited our overall efficiency.

8.4 What could have been done better

There are several key lessons we take from this project in terms of process
improvement and project management. First, more regular and structured
internal meetings would have helped keep the project on track and improved
collaboration. Weekly check-ins could have ensured more accountability,
quicker problem resolution, and earlier feedback on ongoing work.
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Second, communication with the client could have been improved. While K-
Auto was responsive when approached, more proactive scheduling of meet-
ings would have created a more continuous feedback loop. This would have
allowed us to adapt to their needs more effectively and validate our assump-
tions earlier.

Third, the timeline could have been better structured. The initial month of
the course saw limited progress due to a lack of concrete deliverables, which
delayed our momentum. An earlier project kickoff, coupled with clearer
task division and progress tracking, would have enabled better use of the
available time. Similarly, the interim report came at a point when there
was not enough substantial content to reflect on, making it less effective.
Modifying the course’s schedule structure or aligning reporting deadlines
with the actual project pace would be helpful in the future.

Lastly, improving task division by assigning overlapping responsibilities or
collaborative pairs on key components would have reduced the dependency
on single individuals and created a more resilient workflow. Building in more
parallel workstreams would also mitigate the impact of delays in one part
of the project on the entire timeline.

In conclusion, while the project had its limitations, it provided a strong
learning experience and delivered real value to the client. With a few ad-
justments in project planning, communication, and team coordination, the
same framework could yield even more impactful results in future imple-
mentations.
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