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Symbols and Abbreviations

Symbols

mi Magnitude of earthquake i
mmin Minimum magnitude considered in the PSHA calculations
mobs

max Maximum observed magnitude
mmax (True) Maximum magnitude
mu Candidate value for mmax in the Bayesian formulation
Mw Moment magnitude
Nobs Number of earthquakes in the earthquake catalog
N Completeness corrected number of earthquakes
N≥min Number of earthquakes with magnitudes equal to or larger than mmin

µ̂ Sample mean
σ̂ Sample standard deviation
N (µ, σ) Normal distribution with mean µ and standard deviation σ
a, α Intercept in the Gutenberg-Richter law, α = a · ln(10)
b, β Slope in the Gutenberg-Richter law, β = b · ln(10)
Warea Spatially weighted magnitude average
WSSZ Weight distribution of magnitudes within a given seismic source zone
nSSZ Number of earthquakes in a given seismic source zone
exp{·} Exponential function
ln(·) Natural logarithm
F [mobs

max] CDF of the observed maximum magnitude
FM(m) CDF of earthquake magnitudes up to m in the Kijko formulation
L[mu] Likelihood function for mu

Pr(mmax < z) Probability that the (true) maximum magnitude is less than z

Abbreviations

NPP Nuclear Power Plant
EPRI Electric Power Research Institute
PSHA Probabilistic Seismic Hazard Analysis
PRA Probabilistic Risk Assessment
UH University of Helsinki
SSZ Seismic Source Zone
CEUS Central and Eastern United States
SCR Stable Continental Region
DN Domain
SD Superdomain
GR Gutenberg-Richter
CDF Cumulative Distribution Function
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1 Introduction

1.1 Background

Given the push for renewable energy sources around the world, nuclear energy has
been heralded by many as an important addition to the array of clean solutions.
However, a major challenge to nuclear acceptance comes from its potential risks.
Unlike other energy sources, nuclear energy incidents can push public sentiment
against it for years, which happened with the accidents at Chernobyl in 1986 and
Fukushima in 2011. This means that nuclear power plants are designed with ex-
tremely strict safety standards.

A major standard involves safety against seismic activity, giving rise to Seismic
Hazard and Risk Analysis as a key research field. At its core, Probabilistic Seis-
mic Hazard Analysis (PSHA) models the likelihood and consequences of earthquake
activity using recorded seismic data. PSHA is also a critical component of Prob-
abilistic Risk Analysis (PRA), which evaluates the overall risk to a nuclear power
plant by integrating multiple hazard and system failure scenarios.

At Fortum’s Loviisa nuclear power plant, PRA models have been updated annu-
ally for decades. However, Finland’s low seismic activity presents challenges for
accurate risk estimation. The scarcity of relevant seismic data further complicates
the modeling process, necessitating the adaptation of new methods to suit Loviisa’s
specific conditions.

This project aims to enhance Loviisa’s PSHA by addressing these limitations. We
focus on developing improved models by identifying more suitable methodologies
and refining existing approaches. A key element of this effort is the assessment of
the maximum possible earthquake magnitude (mmax), which is critical in defining
the upper bounds of seismic hazard. Since the underlying risk models do not impose
an inherent limit on how large mmax can be, a carefully justified and site-appropriate
estimation is essential. Accurate determination of mmax ensures that the risk as-
sessment accounts for the most extreme, yet practically plausible, seismic scenarios,
contributing to the overall resilience and safety of the nuclear facility.

1.2 Objectives

The primary objective of this project is to refine and adjust existing statistical mod-
els for estimating the maximum magnitudes of earthquakes of Loviisa’s PSHA. As
current models are generally not tailored for application in low-seismicity regions
such as Loviisa, targeted modifications are required to enhance their relevance and
reliability. In addition, the methodologies underlying these models are often not
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sufficiently detailed in the existing literature, necessitating the development of prac-
tical tools for their reconstruction, calibration, and validation.

To further support transparency and reproducibility, Fortum requested that the
project also document the use of the Bayesian method described in Section 4.1,
which had been employed in Fortum’s PSHA 2021 by an external consulting firm.
This supplementary task complements the model refinement effort by addressing
gaps in documentation and clarifying previous methodological choices.

Although the core focus of the project remains on the development of robust sta-
tistical models, particular attention is paid to the systematic documentation and
rigorous justification of the research process and outcomes. Given the inherent
complexity of the matter, it is anticipated that a fully definitive solution may not
be attainable. Therefore, a critical aspect of this study will be to elucidate the lim-
itations of various approaches, analyze the reasons behind their shortcomings, and
assess the strategies employed to address these challenges. By documenting unsuc-
cessful approaches alongside successful ones, this research aims to contribute to a
broader understanding of earthquake modeling in low-seismicity regions, providing
a foundation for future improvements.
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2 Literature Review

2.1 Probabilistic Seismic Hazard Analysis

This literature review critically examines the methods commonly applied in PSHA,
particularly focusing on their suitability and limitations within low-seismicity re-
gions like Finland. The scarcity of seismic activity in these low activity regions
make it challenging to get reliable datasets for reliable models. We focus especially
on model selection and on analyses of the prior usage of the chosen methods: the
Bayesian approach and Kijko’s method. We also aim to suggest alternative ap-
proaches to conducting PSHA based on the existing literature.

Probabilistic Seismic Hazard Analysis is important in evaluating earthquake risks
for nuclear power plants. Nuclear energy has a growing importance as part of the
global shift toward renewable and cleaner energy sources. As a part of this shift
the energy companies have even more responsibility in creating and maintaining the
safety and reliability of these facilities. Earthquakes remain a key concern due to
their potentially large consequences, and this is why PSHA is still getting a lot of
attention.

PSHA was first introduced in the literature in 1986 [1]. Cornell [1] modeled the
earthquake hazard using four elements: source characterization, recurrence rate,
maximum magnitude, and ground motion prediction. This conventional Cornell
source-based approach involves using all earthquake magnitudes and sources to get
the annual probability of exceeding a certain ground motion at a location of interest.
This method has been widely implemented and several alternative approaches have
been developed.

The application of PSHA to low-to-moderate seismicity regions posed new unique
problems. This led to development of many new approaches. For example Histori-
cal method [2] uses past earthquake data to estimate future hazard with alternative
modeling techniques, Frankel method [3] employs smoothed historical seismicity to
calculate probabilistic amplitudes, Kijko and Graham method [4] uses “deductive”
and “historic” procedures, and the direct Amplitude-Based approach [5] ground-
motion attenuation model to refine PSHA to be more accurate.

It has been shown that using PSHA in areas like Finland can be very challeng-
ing. Fülöp et al. [6] investigated how PSHA results change if some parameters were
changed for a model developed for low-seismicity areas. The study shows that pa-
rameters such as the b-value, seismicity rates, the largest possible magnitude (mmax),
and the median ground motion prediction equation significantly influence PSHA re-
sults in low seismicity areas. They also note that this result does not restrict itself
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to Finland but is applicable to the whole Europe. The result also applies to updat-
ing parameter values, and the current model that Fortum is using might experience
significant changes if the updated mmax values are implemented.

2.2 Estimation of Maximum Magnitude

As mentioned, PSHA has difficulties with robustness in regions of low-seismicity.
This arises mostly because the area lacks sufficient earthquake catalogs, meaning
there is not enough data to achieve significant results. Furthermore, it has been
shown that PSHA becomes somewhat sensitive to parameter changes when there is
not enough data backing the model. Thus, updating and refining the model param-
eters becomes very important. Furthermore, we aim to analyze the sensitivity of
these parameters to understand how methodological choices influence the results.

Many quantitative approaches have been developed to estimate the mmax from seis-
micity catalogs. As reviewed by Pisarenko & Robin [7], these methods usually rely
on statistical analysis of observed earthquake magnitudes. Pisarenko and Robin
reviewed different methods and compared them with each other. They looked at
Moment method, Bayesian method, extreme-value theory, order-statistics estima-
tors and Kijko method.

The moment method matches the sample mean of observed magnitudes to the same
moments of truncated Gutenberg-Richter law. This method works as a good base-
line but has a large sensitivity to large events when the catalog used is small. The
Bayesian method has a similar issue: if the dataset is small, the prior can dominate
the outcome, giving too much weight to prior beliefs and assumptions.[7]

Extreme value theory only looks at magnitudes above a certain threshold. Then,
these “peaks” are fitted with a generalized pareto distribution. This way an upper
limit or an upper quantile can be calculated. This method is also sensitive if there
is not enough data, but can be reliable if there is at least half a dozen data points.[7]

The Kijko method was introduced in 1998 by Kijko and Graham [8]. The method
fits a Gutenberg-Richter model to a combined catalog with different completeness
levels. This way, datasets collected with different accuracies can be combined. For
areas with sparse data, this method is useful as it can be used for incomplete cata-
logs. This suggests that the Kijko method is useful for Loviisa as well.

Overall, the estimation of maximum magnitudes is a difficult task for low-seismicity
areas. Thus, multiple methods should be combined and weighted to achieve the best
possible result. However, even with multiple methods there should be thorough sen-
sitivity analysis to assess the validity of the results.
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3 Data

3.1 Stable Continental Region Earthquake Catalog

The Stable Continental Region (SCR) Earthquake catalog for this project is a global
database of earthquakes from the historic era up to 2003. It includes two compo-
nents: the earthquake catalog itself and the catalog of crustal domains. The catalog
has also been declustered, meaning that dependent events, such as aftershocks, have
been removed, leaving only independent earthquakes in the dataset.

A core parameter of the catalog is the uniform moment magnitude (Mw), estimated
based on correlations with other size measures such as magnitude scales of instru-
mentally recorded earthquakes or shaking intensity measures for pre-instrumental
earthquakes. While the catalog was originally developed in 1994 (see [9]), it has
been expanded with earthquake data recorded from 1991 to 2003 which are utilized
in the updated ERPI study in 2012 [10].

3.1.1 Completeness Correction

To account for potential incompleteness of the catalog regarding sample size (Nobs)
of earthquakes with magnitude Mw ≥ 4.5, a process of completeness correction was
introduced in [9] to get the corrected sample size. The process estimates catalog
completeness periods for portions of the SCR. These periods were then utilized to
create a completeness-corrected equivalent earthquake count for each domain based
on the catalog completeness period for magnitudes equal to mobs

max. For example, if
the observed magnitude is smaller than mobs

max, the completeness period is shorter
than the period for mobs

max.

Given the periods covered in the catalog, and assuming earthquake occurrence rates
are stationary, the maximum likelihood estimate of the rate of earthquakes mi de-
pends on the observed number of earthquakes, Nobs(mi) in the completeness period
for mi divided by the length of the completeness period, TC(mi). The total num-
ber of earthquakes that would have been recorded in the completeness period for
mobs

max can then be estimated using the estimated rate of occurrence for magnitude
mi multiplied by TC(m

obs
max):

NCompleteness Corrected(mi) = NIn Period TC(mi) ×
TC(m

obs
max)

TC(mi)
(1)

The values of NCompleteness Corrected(mi) are summed up to get the completeness-
corrected sample size for each domain. We refer to this result with the simple
notation N .
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3.1.2 Division of Domains and Superdomains

As described in Chapter 5 of [9] and Chapter 5.2.1 of [10], the catalog has been
divided into a combination of domains and superdomains. SCR tectonic crusts
have been divided into 255 domains by Johnston et al. in [9] which were reviewed
and updated in terms of priors in the 2012 EPRI report [10]. These domains have
then been grouped together based on shared characteristics to form superdomains.
One of the key classifications used was whether the domain lies in an extended
crust or non-extended crust. Afterwards, properties like crustal age, stress state
were used to further divide the domains into specific superdomains. The result is a
set of superdomains for calculating the priors specific to certain regions. Figure 1
shows a list of earthquakes recorded in the SCR catalog according to their respective
superdomains.

Figure 1: Earthquakes by superdomain in the SCR catalog

3.2 University of Helsinki Earthquake Catalog

The catalog [11], developed by the University of Helsinki (UH) in 2023, is a declus-
tered update of the UH 2016 catalog [12], with declustering also carried out by
UH. It contains 22,123 seismic observations spanning the period from 1467 to 2021.
This updated catalog was assembled in a manner similar to the 2016 version, with
magnitudes homogenized and converted to moment magnitudes, which will be used
throughout this report. The processing methods are detailed in the 2016 study by
Korja et al. [12] and briefly summarized in the 2024 Master’s thesis by Vehmas
[13]. The maximum observed magnitude (mobs

max) in the entire catalog is 4.5, while
within the seismic source zones (SSZ) located within a 300 km radius of the Loviisa
Nuclear Power Plant (NPP), the maximum observed magnitude is 4.4.
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Vehmas also conducted completeness analysis for the catalog, resulting in two ver-
sions, with and without SSZ groups. In this context, a SSZ is a region where seismic
activity is assumed to be uniformly distributed based on geological and seismic prop-
erties. In this report, we will be using the completeness analysis data without SSZ
groups. The SSZs and earthquake observations used in [14] are shown in Figure 2.

Figure 2: SSZs and considered earthquake observations in Loviisa’s PSHA 2021 [14]
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4 Methodology

This project seeks to estimate the maximum magnitude (mmax) by evaluating and
refining two of the most widely applied approaches: the Bayesian method developed
in the 1994 EPRI study [9] and the method proposed by Kijko [8]. These methods
are assessed in the context of low-seismicity regions, with particular attention to
their applicability and limitations in Loviisa’s PSHA.

4.1 Bayesian Method

The Bayesian method is grounded in Bayes’ theorem [15]

p(θ|y) = p(θ)p(y|θ)
p(y)

, (2)

where p(θ|y) denotes the posterior distribution of the unknown parameter θ given
the observed data y, p(θ) is the prior distribution of θ, p(y|θ) is the likelihood func-
tion, and p(y) =

∫
p(θ)p(y|θ)dθ is the marginal distribution of the data. In essence,

Bayes’ theorem provides a mechanism for updating prior beliefs about a parameter
in light of new evidence. One of the main advantages of the Bayesian framework is
its capacity to incorporate existing knowledge, which is particularly valuable when
dealing with limited data—a common challenge in not just low-seismicity regions
but all around the world.

For estimating mmax, the Bayesian method was first introduced in the 1994 EPRI
study [9] by Johnston et al., who developed a probabilistic framework for Central and
Eastern United States (CEUS). The method involved constructing prior distribu-
tions based on analogies with seismically comparable regions, followed by updating
these priors using regional earthquake data for events of magnitude Mw ≥ 4.5.

Johnston et al. also proposed a set of globally applicable prior distributions, in-
tended to be updated with local data from regions outside the CEUS. However,
in the case of Loviisa, the scarcity of high-magnitude seismic events means that
the posterior distribution of mmax would be largely influenced, if not entirely dom-
inated, by the global prior. Since these global priors are based predominantly on
high-seismicity regions, their direct application may misrepresent the seismic char-
acteristics of Loviisa, thereby limiting the method’s relevance in this context.

To evaluate and address these challenges, we adopt a multi-step approach. First, we
replicate the original EPRI computations to reconstruct the prior distributions. We
then explore alternative data subsets for the development of priors that may better
reflect the characteristics of low-seismicity regions. Finally, we assess the potential
for updating these priors using available data from the vicinity of the Loviisa NPP.
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In response to Fortum’s request for greater methodological transparency, we also
provide a detailed account of how the Bayesian method was applied in Fortum’s
PSHA 2021.

4.1.1 Prior Distribution Computation

Based on the 1994 and 2012 EPRI studies [9, 10], the Bayesian prior distribution
for mmax is estimated using data from the SCR catalog. The sample mean (µ̂) and
sample standard deviation (σ̂) of mobs

max across selected superdomains are used to
parameterize a normal distribution for mobs

max. This distribution, in turn, informs
the prior for mmax. For instance, in regions characterized by non-extended crustal
types, the prior distribution is based on the mean and standard deviation of mobs

max

for SDs classified as non-extended.

However, because the observed maximum magnitudes tend to underestimate the
true maximum magnitude, this approach introduces bias. To address this, Johnston
et al. [9] propose a correction based on the cumulative distribution function (CDF)
of mobs

max, defined as

F [mobs
max] =

[
1− exp{−b ln(10)(mobs

max −mmin)}
1− exp{−b ln(10)(mu −mmin)}

]N
, for mmin ≤ mobs

max ≤ mu, (3)

where b ln(10) represents the slope of the Gutenberg-Richter law computed for the
selected subset of SDs, mmin is the minimum magnitude recorded in the SCR cat-
alog, mu is a candidate value for mmax, and N denotes the completeness-corrected
number of earthquakes. This formulation assumes that the size distribution of earth-
quakes within a source region follows a truncated exponential distribution bounded
between mmin and mu.

Solving Equation (3) for mu yields

mu = mmin −
1

b ln(10)
ln

(
1− 1− exp{−b ln(10)(mobs

max −mmin)}
F [mobs

max]
1/N

)
,

for mmin ≤ mobs
max ≤ mu.

(4)

Since mobs
max is assumed to be normally distributed, setting F [mobs

max] = 0.5, which
corresponds to the median, is equivalent to obtaining µ̂. This median is then bias-
corrected using (4) to estimate the mean of mu which gives the mean of the mmax

distribution. The standard deviation of the mmax prior is taken to be the same as
the original σ̂.
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Furthermore, the sample size N should be sufficiently large (preferably greater than
10) to ensure the bias-corrected estimate remains finite and statistically reliable. All
in all, as all required inputs for Equation (4) can be derived from the SCR catalog,
this method offers a self-contained framework for constructing the Bayesian prior
distribution for mmax.

4.1.2 Prior with Superdomains

Given the significant influence of the prior distribution in the Bayesian model, it is
essential to construct a prior that appropriately reflects the seismic characteristics
of the Loviisa region while still incorporating as much global data as possible. One
viable solution is to use of superdomains, as introduced in the 1994 EPRI study [9].

In this project, we base the prior distribution on catalog data from superdomain 13
(SD13), which includes Loviisa. As illustrated in Table 1 and Figure 3, SD13 en-
compasses 12 seismic domains (DNs) distributed across six global regions. For each
region, GR b-values were obtained from the 1994 EPRI report. The overall b-value
for SD13 is calculated as the arithmetic mean of the regional values, resulting in an
approximate value of 1.03.

To estimate the mean of the mmax prior, we first compute the average observed max-
imum magnitude (mobs

max) across the superdomain. This value is then bias-corrected
following the procedure described in Section 4.1.1. The resulting corrected mean,
along with the standard deviation derived from the superdomain data, forms the
basis for the Bayesian prior distribution.
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Table 1: Domain-wise completeness-corrected number of earthquakes, observed
maximum magnitudes, and regional GR b-values in SD13

DN N mobs
max (Mw) Region Regional GR b

113 71.7 6.7 China 1.029
133 107.7 6.7 India 0.966
236 2 6.0 North America 0.790
42 1 4.9 South America 1.212
56 8.4 5.4 South America 1.212
72 13.6 6.2 Africa 0.982
171 2 4.7 Europe 1.156
173 3 5.3 Europe 1.156
175 2 4.8 Europe 1.156
177 2 5.9 Europe 1.156
238 9.3 5.3 North America 0.790
242 2.5 5.2 North America 0.790
Mean 18.8 5.6 1.033

Figure 3: Earthquakes of SD13 in the SCR catalog

While this method enables the incorporation of geographically broad data into the
prior, it has its limitations. As noted in the EPRI reports [9, 10], the statisti-
cal robustness of the criteria used to define superdomains is relatively weak. This
observation is supported by our analysis: a one-way ANOVA conducted on SDs
comprising more than one domain yields a p-value of approximately 0.14, indicat-
ing that the observed variation in mobs

max across SDs may be attributable to random
chance rather than systematic differences.
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Nonetheless, given current data constraints—particularly the global scarcity of high-
resolution explanatory variables, such as rift lengths—superdomains likely remain
a practical and justifiable framework for grouping seismically similar regions in a
global context.

4.1.3 Prior with Clustering

To address the issues associated with superdomains, clustering is introduced as an
alternative method to group domains based on their seismic characteristics, aiming
to identify a set of domains representative of the Loviisa region. In cluster analysis,
a set of objects are grouped such that similar objects, i.e. objects close to each other
in the feature space, are in the same group. In this case, the objects are the domains
of the SCR catalog, and the feature space consists of continuous variables describing
tectonic, seismic, or spatial characteristics of those domains. Constructing the prior
using domains with these characteristics helps ensure that it is both justifiable and
representative of the Loviisa region.

To implement the clustering, both k-means clustering and agglomerative hierar-
chical clustering were considered. Both methods are widely popular, trusted, and
well documented. Hierarchical clustering was selected as the primary method since
it is fully deterministic and does not require predefining the number of clusters.
Euclidean distance and ward linkage were chosen due to their popularity in similar
tasks. All variables are normalized because the method is affected by the scale of
the variables. The clustering is carried out in two approaches: one based on seismic
variables and the other on spatial variables.

In seismic clustering, domains are clustered based on seismic structure of historical
earthquakes. The variables used are mean and standard deviation of earthquake
magnitudes, frequency of earthquakes per area, latitude and longitude. The idea is
that domains with similar earthquake structure would also be similar in terms of
maximum magnitudes. However, there are notable limitations when relying on his-
torical seismic variables to predict similarities in maximum magnitudes. The period
during which humans have documented seismic events is relatively brief, resulting in
a limited dataset. Consequently, similarities observed in this small sample over such
a short time frame may not indicate future patterns reliably. This approach biases
the results towards historical realizations, which may not be accurate due to the low
sample size. The dendrogram and earthquakes of the chosen domains are in Figure 4.
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In spatial clustering, variables used are longitude, latitude and distance to nearest
tectonic plate. Since tectonic plate boundary data was not readily available from
standard sources, it was obtained from Hasterok et al. [16]. While this approach
overcomes the problems of seismic clustering, it has low explanatory power on mobs

max,
i.e. domains similar in this way may not be similar in terms of maximum magnitude.
The dendrogram and earthquakes of the chosen domains are shown in Figure 5.

(a) Dendogram of seismic clustering

(b) Earthquakes color-coded by seismic cluster, 14 clusters

Figure 4: Dendrogram (a) and map of earthquakes (b) for seismic clustering.
Cluster of Loviisa is 0.
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(a) Dendogram of spatial clustering

(b) Earthquakes color-coded by spatial cluster, 9 clusters

Figure 5: Dendrogram (a) and map of earthquakes (b) for spatial clustering.
Cluster of Loviisa is 0.

Important hyperparameter regarding the clustering is the number of clusters, k.
It essentially defines the size of the Loviisa cluster, which then defines the prior
distribution. Number of clusters was chosen to be 14 for seismic clustering and 9
for spatial clustering. The decision was made based on a suitable sample size, the
position of the clusters on the map and the one-way ANOVA test. Different number
of clusters are included as a way of sensitivity analysis. This is further discussed in
section 5.1.2.

Since polygonal boundaries of the domains were not readily available, domain lo-
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cations were approximated using the centroid of earthquakes within each domain.
Following this procedure, position of Loviisa domain ends up at Central Europe
rather than South-Finland. To mitigate this issue within the spatial clustering
framework, a proxy domain is assigned to the geographic coordinates of Loviisa.
Those domains ending up in the same cluster as the proxy domain are then used to
create the prior.

4.1.4 Bayesian Updating of the Prior

According to the EPRI 1994 and 2012 studies [9, 10], the posterior probability dis-
tribution is obtained by multiplying the prior distribution with a likelihood function

L[mu] =

{
0, for mu < mobs

max

[1− exp {−b ln(10)(mu −mmin)}]N≥min , for mu ≥ mobs
max

(5)

Here, b ln(10) represents the slope of the GR law estimated from the local catalog,
mobs

max is the maximum observed magnitude in the local dataset, and N≥min is the
number of earthquakes with magnitudes equal to or greater than the defined thresh-
old mmin = 4.5.

Following multiplication, the posterior distribution must be normalized to ensure
that it integrates to one. This is achieved by dividing the product of the prior and
the likelihood by its integral over all possible values of mu, which corresponds to
the marginal distribution in Bayes’ theorem (Equation (2)).

The likelihood function has two key effects on the prior distribution. First, it trun-
cates the distribution at the observed maximum magnitude, setting the probability
of lower values to zero. Second, it sharpens or narrows the posterior around mobs

max,
with the intensity of this effect depending on N≥min. A higher number of qualifying
events increases the influence of the likelihood, whereas if no events in the local cat-
alog exceed mmin, the likelihood function becomes ineffective in updating the shape
of the prior. In such cases, the only effect of the Bayesian updating is the truncation
of the prior below mobs

max.

4.1.5 Synthetic Data Generation for Bayesian Updating

Since one of the main challenges behind updating the priors involves the lack of a
significant seismic catalog in the Loviisa area, a potential solution lies in the gen-
eration of additional data. Although methods vary between research, it is usually
accomplished by drawing out samples from a pre-defined distribution which is sup-
posedly representative of the seismic activity seen in the region [17]. This has been
suggested in the literature, see eg. [18] for utilizing synthetic catalogs to perform
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statistical analysis like clustering quality test. The literature also focuses on the cre-
ation of simulation models to simulate ground motions based on the characteristics
of a specific region [19]. However, since the project focuses on PSHA and not PRA,
these aspects are not considered in the final results.

One of the key challenges regarding synthetic data is overfitting. If the true pa-
rameters are not known, any additional synthetic data will not reflect the existing
bias in the catalog. A considered method involved utilizing the University of Helsinki
Earthquake Catalog to generate additional data points that better reflect the su-
perdomain Loviisa is located in before combining it with the SCR catalog to update
the Bayesian prior. However, as noted in previous section, there is a notable issue
with using the University of Helsinki Earthquake catalog. The maximum observed
magnitude in the catalog is 4.5 while the SCR catalog consists of only earthquakes
with magnitude of 4.5 and above. Generated data points from the university catalog
would not be relevant to the SCR superdomain prior. However, generating earth-
quake data using the superdomain prior would only create additional bias that goes
against the goals of the project.

Upon realizing the ineffectiveness of this method, a further literary review was con-
ducted regarding the use of synthetic data generation. The review indicates that
synthetic catalogs are more widely used for validating specific parameters within
the Gutenberg-Richter distribution. For example, to test the validity of a specific
region’s b-value, synthetic catalogs can be generated at different parameters follow-
ing different models to estimate overall bias of the provided b-value. As mentioned
above, other use cases include testing the clustering of earthquake dataset. As both
are outside the scope of this project, this method is not considered in the final
results.

4.1.6 Application in Fortum’s PSHA 2021

Fortum’s PSHA from 2021 was conducted by Slate Geotechnical Consultants. Ac-
cording to their report [14], a slightly modified version of a prior originally proposed
in the 1994 EPRI study [9], referred to as the undifferentiated SCR Mmax prior
distribution, was used. The authors report that the prior included mmax values on
the Mw interval [5.25, 7.75].

As the local seismic catalog for Loviisa did not include any events exceeding Mw

5.25, no Bayesian updating was carried out. Consequently, the selected prior served
directly as the posterior distribution for mmax. However, at Fortum’s request, the
upper bound of the distribution was later truncated to Mw 7.00, to better reflect the
low-seismicity nature of the region. This adjustment resulted in the final discrete
distribution for mmax shown in Table 2.
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Table 2: Maximum magnitude distribution in Fortum’s PSHA 2021 (Bayesian
method)

mmax (Mw) Weight
5.25 0.01
5.75 0.08
6.25 0.23
6.75 0.36
7.00 0.32

Although the table provides the discrete weights for each magnitude bin, the full
form and parameters of the underlying distribution are not disclosed in the report.
To approximate the continuous distribution used, we assume that the posterior fol-
lows a truncated normal distribution. Specifically, we model the distribution as a
normal distribution with zero probability beyond Mw 7.00, scaled so that the CDF
is bounded within the interval [0, 1].

To estimate the parameters µ and σ of this truncated normal distribution, we use
the Solver tool in Microsoft Excel. The goal is to find parameter values such that
the probability density values at each discrete magnitude in Table 2 are approxi-
mately proportional to the corresponding reported weights. This procedure yields
an estimated distribution of N (6.74, 0.56) for both the prior and the posterior. The
resulting distribution is illustrated in Figure 6.
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Figure 6: Estimated posterior probability distribution for mmax in Fortum’s PSHA
2021

4.2 Kijko Method

The Kijko method [8] is a statistical approach used in seismic hazard analysis to
estimate the seismicity parameters of a region, particularly when dealing with in-
complete or uncertain earthquake catalogs. According to [8], the CDF which is
bounded from above by mmax is

FM(m) =


0 for m < mmin

1−exp{−β(m−mmin)}
1−exp{−β(mmax−mmin)} for mmin ≤ m ≤ mmax

1 for m > mmin,

(6)

where β is the slope in Gutenberg-Richter equation.

Based on the CDF, the confidence limit for estimated maximum earthquake magni-
tude mmax is

Pr(mmax < z) = 1− [FM(mobs
max; z)]

n, (7)

where mobs
max is the maximum observed magnitude in the region, and n is the number

of events.
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4.2.1 Application in Fortum’s PSHA 2018

In Fortum’s 2018 report [20], the weights are reported for each magnitudes 5.5, 6.0,
6.5, 7 with a strip of 0.5 magnitude units. These weights were calculated by Dr.
Jouni Saari from ÅF-Consult Ltd in [21] and [22]. Seismicity parameters calculated
in University of Helsinki 2016 report [12] for area within 300 km of Loviisa are
used for the calculation. These include time span T of 245 years, mmin = 1.4,
m = mobs

max = 4.5 according to [12]. The reported weights are in Table 3.

Table 3: Maximum magnitude weights for 300 km area around Loviisa in 2018 report

mmax (Mw) Weight
5.50 0.726
6.00 0.20
6.50 0.057
7.00 0.016

It is also noted that there is a concern with Kijko’s method applicability in Finland.
In this report, the value P (mmax < z) is below 0.5 with increasing z, where P (mmax >
7) = 1 − P (mmax < 7), which represents the truncated probability, is above 0.5.
According to [8], when z → +∞, the probability in Equation 7 approaches a number
less than 1. According to Chapter 5 of 2012 EPRI report [10], it is recommended
that the truncated distribution should be below 0.5, which is not achieved in [20].
This recommendation is built upon the fact that the weights for different magnitudes
should be determined based on the majority (over 50%) of the distribution. With a
higher value of truncated distribution, the weight are calculated based on a minor
part of the distribution, thus making it less justified. The high truncated probability
obtained in 2018 report by Fortum is caused by the small catalog for Finland, with
lower the reliability of estimating mmax using Kijko’s method.

4.2.2 Implementation Using Updated Parameters

In 2024, Fortum conducted a probabilistic seismic hazard analysis [23] recalculating
seisimic parameters for region around Loviisa, using catalog from [11], with com-
pleteness analysis conducted in Juhana Vehmas’s thesis [13]. In this report, we
calculate new weights for the different magnitudes according to the method in For-
tum’s 2018 report [20] using these updated parameter values.

The parameters are calculated separately for each SSZ instead of for the whole
area within 300 km of Loviisa. Therefore, in our analysis, we will use the updated
b-values to determine new maximum magnitude weights for each SSZ within 300 km
of Loviisa separately. This includes SSZs 6, 8, 10, and 11. Due to low earthquake
activity, SSZ 11 is excluded from the analysis. Therefore, only SSZ 6, 8, and 10 are
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included in the analysis.

In determining the weights for each SSZ, we compute an average set of weights
between the SSZs, weighted by number of earthquakes in each SSZ, as

Warea =
∑
SSZ

nSSZ∑
nSSZ

·WSSZ , (8)

where
∑

SSZ represents summation over all SSZs, nSSZ is the number of earthquakes
in a given seismic source zone, and WSSZ represents the corresponding magnitude
weight distribution for that zone. This method represents each SSZ’s contribution to
the overall magnitude distribution by weighting zones based on their seismic activ-
ity, ensuring that more active zones have a greater influence on the final calculation.

In addtion, we also provide sensitivity analysis of the truncated probability P (mmax >
z) with regards to different radius around Loviisa for a further discussion on Kijko’s
applicability to the region. For this analysis, an average b-values of all included
SSZs is used for simplicity. We experiment with different values of radius at 100
km, 300 km, and 500 km. The SSZs included with regards to different radius
were obtained using geographic information system application QGIS [24]. Figure
7 shows these different radius and included SSZs. For a radius of 100 km, SSZ 6
and 10 are included. For a radius of 300 km, SSZ 6, 8, and 10, 11 are included.
For a radius of 500 km, SSZs 2, 3, 4, 5, 6, 7, 8, 10, and 11 are included. Similar
to the weights calculation, SSZ 7 and 11 are excluded due to low earthquake activity.
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Figure 7: SSZs and the radius 100 km, 300 km, and 500 km around Loviisa
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4.3 Integration of Methods

Ultimately, we chose to combine the outcomes of the Bayesian approach and Kijko’s
method to obtain a more balanced and robust estimate of mmax. Each method offers
distinct advantages: the Bayesian framework incorporates prior knowledge and is
particularly valuable in low-data environments, whereas Kijko’s method leverages
statistical inference based directly on the observed earthquake record and is well-
suited for capturing empirical patterns in the data.

Given the lack of definitive evidence favoring one method over the other in the
context of this study, we opted to assign equal weights (50 % each) to the two
methods. This weighting scheme reflects a neutral stance, avoiding the imposition
of potentially unwarranted assumptions about the relative accuracy or reliability of
either approach. It also ensures that both prior knowledge and empirical observa-
tions are given due consideration in the final estimate.

While this simple averaging approach is pragmatic, we acknowledge its limitations.
In particular, it does not account for differences in uncertainty, sample size, or
methodological bias between the two approaches. Future work could conduct more
thorough literature review on this area and explore more refined weighting strategies,
potentially based on uncertainty quantification, cross-validation, or expert elicita-
tion, to further improve the integration of these methods.

For the purposes of this study, however, the equal weighting approach provides
a transparent and justifiable means of synthesizing the available information, pro-
ducing an estimate that benefits from the complementary strengths of both the
Bayesian and Kijko methodologies.
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5 Results

5.1 Results of the Bayesian Method

We developed three alternative prior distribution proposals using different subsets
of the SCR catalog. The first prior was constructed based on superdomain 13, which
includes the Loviisa region. The other two priors were derived using clustering tech-
niques applied to varying catalog parameters to explore alternative groupings of
seismically comparable regions.

In the updated UH 2023 catalog [11], mobs
max = 4.4 within a 300 km radius of the Lovi-

isa NPP. As this value falls below the minimum magnitude threshold (mmin = 4.5)
defined for Bayesian Mmax weighting, Bayesian updating had no effect on the shape
of the priors. Consequently, each posterior distribution remained identical to its cor-
responding prior, with the exception that it was truncated from below atmmax = 4.4
and rescaled to ensure a total probability of one. The weights assigned to the dis-
cretized mmax bins were determined by integrating the posterior probability density
over the range defined by each bin and subsequently normalized to ensure that the
sum of all weights equals one.

5.1.1 Results Using SD13 Prior

As shown in Table 1 in Section 4.1.2, the mean observed maximum magnitude
(mobs

max) within SD13 is 5.59, with a standard deviation of 0.70. Applying the bias
correction procedure described in Section 4.1.1 yields a corrected mean of 5.86, re-
sulting in a prior distribution approximated by N (5.86, 0.70).

Compared to the original prior for non-extended domains proposed in the 1994
EPRI study [9], which follows N (6.3, 0.5), this prior places significantly greater
weight on lower mmax values. This adjustment is motivated by the relatively low
observed seismicity and geological constraints in regions analogous to Loviisa, which
suggest that lower maximum magnitudes may be more plausible, thus supporting
the use of a less conservative prior in such low-seismicity contexts.

After truncating the distribution at the lower bound of mmax = 4.4 and rescaling
the density to ensure proper normalization, we obtained the posterior probability
distribution shown in Figure 8.
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Figure 8: Posterior probability distribution for mmax using the SD13 prior

The weight distribution for the discretized magnitude bins within the Mw interval
[5.00, 7.00] is presented in Table 4. Each bin represents a symmetric interval of
width 0.5 units; for example, the bin centered at 5.00 corresponds to the interval
[4.75, 5.25]. The weight assigned to each bin is proportional to the integral of the
posterior probability density function over the corresponding interval.

Table 4: Maximum magnitude weight distribution with the SD13 prior.

mmax (Mw) Weight
5.00 0.14
5.50 0.28
6.00 0.30
6.50 0.20
7.00 0.08

5.1.2 Results Using Prior with Clustering

Results regarding both seismic and spatial clustering are displayed in Table 5. Fol-
lowing the procedure in Sections 4.1.2 and 4.1.3, with domains listed in Table 5,
priors for the clusters were obtained. For seismic and spatial clustering, the corre-
sponding priors become N (5.28, 0.35) with k = 14 and N (6.07, 0.58) with k = 9,
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respectively. P-values of one-way ANOVA test for the mean of mobs
max in these clus-

ters is statistically significant, indicating that at least for some clusters, mobs
max does

not come from the same distribution. Varying the number of clusters does seem to
impact mean mobs

max, but the magnitude of the change is acceptable, i.e. the result
does not change completely as k changes.

Table 5: Results for seismic and spatial clustering in stable continental regions.

Seismic clustering Spatial clustering
k = 9 k = 14 k = 17 k = 6 k = 9 k = 14

Chosen
domain
numbers

89, 93,
108, 109,
134, 138,
140, 141,
144, 146,
148, 152,
154, 156,
157, 158,
160, 161,
166, 167,
168, 170,
171, 173,
175, 182,
183, 184,
185, 186,
188, 189,
190, 193,
196, 197,
198, 200,
201, 244,
246

89, 93,
108, 109,
156, 157,
158, 160,
161, 166,
167, 168,
171, 173,
175, 182,
183, 184,
185, 186,
188, 189,
190, 193,
196, 197,
198, 200,
201, 244,
246

89, 93,
108, 156,
157, 158,
160, 161,
166, 167,
168, 171,
173, 175,
182, 183,
184, 185,
186, 188,
190, 196,
197, 198,
200, 201,
244, 246

154, 159,
166, 167,
168, 171,
173, 177,
179, 183,
184, 185,
186, 188,
189, 190,
194, 217,
218, 221,
222, 223,
224, 225,
226, 227,
228, 229,
230, 235,
236, 237,
239, 246,
247, 248,
249, 250,
251, 253

154, 159,
166, 167,
168, 171,
173, 177,
179, 183,
184, 185,
186, 188,
189, 190,
194, 251,
253

167, 177,
179, 183,
184, 185,
186, 188,
189, 190,
194, 251,
253

Mean mobs
max 5.05 5.06 5.08 5.57 5.32 5.42

STD mobs
max 0.31 0.35 0.35 0.80 0.58 0.65

Mean N 3.34 4.03 4.29 5.44 4.05 4.92
One-way
ANOVA
p-value

0 0 0 0.60 0.02 0.06

After truncating and normalizing the prior distributions, the posterior distributions
for the clustering approach were obtained. The posterior distributions are displayed
in Figure 9. Table 6 displays weights obtained from these posteriors.
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(a) Posterior probability distribution for mmax using the seismic prior.

(b) Posterior probability distribution for mmax using the spatial prior.

Figure 9: Posterior distributions for priors constructed by seismic and spatial clus-
tering.

Table 6: Maximum magnitude weight distributions with clustering

(a) Seismic weights

mmax (Mw) Weight
5.00 0.42
5.50 0.49
6.00 0.09
6.50 0.00
7.00 0.00

(b) Spatial weights

mmax (Mw) Weight
5.00 0.07
5.50 0.22
6.00 0.34
6.50 0.27
7.00 0.10

30



All in all, while the clustering is an interesting concept, it is limited by the qual-
ity and amount of the variables available. Among the clustering strategies, seismic
clustering appears to yield promising results. However, as noted in the literature [9],
these results are likely to be biased. This bias arises from the fact that clustering
based on observed magnitudes inherently produces priors that predominantly reflect
the sparse local data available for the region of interest, rather than broader seismic
characteristics. At the same time, spatial variables used have little correlation with
mobs

max. We therefore conclude that constructing the prior based on SD13 — effec-
tively clustering by tectonic characteristics — is the most rational and well-justified
approach, supported by existing literature.

One way to improve the clustering approach could be to include categorical tec-
tonic attributes as one-hot-encoded binary variables. In addition, the position of
the domain could be used. This would be similar to using SD13, but also taking
into consideration the geographic positions of the domains.

5.2 Results of the Kijko Method

The Kijko’s final weighted average weight is in Table 7. Details of the parameters
and calculations are in Table A1, A2, and A3. Noticeably, mmin = 1 is used instead
of 1.4 as in 2018 Fortum report [20] for consistency with Vehmas’ complete analysis
[13], which also uses mmin = 1 as the minimum threshold. In addition, the num-
ber of earthquakes N is derived directly from the number of earthquakes in each
area instead of being calculated from the rate of earthquake λ as in the 2018 report.

Table 7: Maximum magnitude weights for 300 km area around Loviisa.

mmax (Mw) Weight
5.50 0.721
6.00 0.204
6.50 0.058
7.00 0.016

Table 8 shows the truncated probability P (mmax > 7) for SSZ 6, 8, and 10. It
can be seen that all the values exceeded the recommended value 0.5. Furthermore,
there is a significant difference between SSZ 10 and the other SSZs. This is likely
due to the lower mobs

max = 2.9 reported in this area, compared to mobs
max = 4 in SSZ 6

and mobs
max = 4.4 in SSZ 8.
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Table 8: Truncated probability for SSZ 6, 8, and 10.

SSZ 6 8 10
P (mmax > 7) 0.988 0.904 0.573

Finally, Table 9 shows the truncated probability at different radius value around
Loviisa. It can be seen that the truncated probability decreases with increasing
radius.

Table 9: Sensitivity of the truncated probability with regards to radius.

Radius 100 km 300 km 500 km
P (mmax > 7) 0.978 0.95 0.723
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6 Discussion and Conclusion

6.1 Final Maximum Magnitude Distribution

For the Bayesian method, the main focus was on the construction of the prior dis-
tribution, i.e. choosing which domains are the most representative of the Loviisa
region. Three different ways of constructing the prior distribution were demon-
strated, one of which was using the SD13 as defined in the literature. The other two
ways were related to clustering of the domains based on historical seismic activity
and spatial features. Using SD13 to construct the prior is theoretically sound and
pragmatic approach. Nevertheless, there is a possibility that the superdomains ex-
hibit no meaningful differences in their mobs

max distributions. This would imply that
clustering by superdomains may not be that much better than using a global prior.

The clustering method aimed to address these limitations. The main challenge
of the clustering method lies in the limited number of explanatory variables that
correlate with mobs

max. For the clustering method to be improved, tectonic character-
istics of the domains should be included one way or another. Furthermore, there is
always a bit of unavoidable ambiguity in choosing the number of clusters: how close
is close enough for a point in the feature space to be considered representative of
the Loviisa region? As is, the use of clustering priors would not be advised due to
inherent bias with the seismic clustering and low explanatory power of the spatial
clustering with respect to mobs

max.

In essence, we recommend adopting the SD13-based prior due to its stronger method-
ological justification and lower degree of ambiguity compared to alternative clusters.
The resulting distribution also lies between those obtained from the seismic and
spatial clustering methods, suggesting it offers a balanced representation of the un-
derlying data. Nonetheless, we acknowledge that the current superdomain grouping
could be further refined through clustering, particularly if extended datasets incor-
porating additional tectonic characteristics become available.

For Kijko’s method, it can be seen that the weights are heavily distributed in the
lower magnitude region between 5 to 6 Mw, with the strip 5-5.5 taking up a value
at approximately 0.72. Regarding the truncated probability, our analysis yields
truncated probability much higher than the recommended value of 0.5. This is at-
tributable to the limited size of the Finnish earthquake catalog, and the even smaller
subset of data for each SSZ.

The sensitivity analysis shows that increasing radius around Loviisa lower the trun-
cated portion of the distribution, due to the increasing number of earthquakes. How-
ever, at the highest radius value of 500 km, the truncated probability P (mmax > 7)
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approaches 0.723, which indicates that 72% of the distribution is truncated, surpass-
ing the 50% value recommended in [10]. Therefore, it may be appropriate to find
ways to increase the data samples to be used with Kijko’s method. Furthermore,
other methods could also be considered for the analysis.

6.2 Comparison with Previous Studies

As illustrated in Figure 10, all Bayesian posterior distributions proposed in this
study assign significantly greater probability mass to lower mmax values compared
to Fortum’s previously applied implementation. This suggests that the seismic po-
tential of the Loviisa region may be lower than previously reported. Additionally,
the relatively broad spread of the distributions reflects the heightened uncertainty
associated with limited data availability.

Among the proposed approaches, the SD13 and spatial clustering posteriors yield
broadly consistent results, while the seismic clustering posterior deviates more no-
ticeably. This divergence is likely due to the inherent bias discussed in Section 5.1.2,
wherein clustering based on observed magnitudes tends to exaggerate lower mmax

values in regions characterized by sparse seismic activity.

Figure 10: Proposed Bayesian posteriors for mmax compared to the estimated pos-
terior probability distribution in Fortum’s PSHA 2021
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Since in all cases Bayesian updating only truncated the prior distributions with-
out reshaping them, the observed differences among the posteriors are entirely at-
tributable to the underlying priors. This highlights the critical importance of select-
ing a well-justified and representative prior, particularly in regions characterized by
low seismicity.

Regarding the weights calculated using Kijko’s method [8], our final results are
rather similar to those obtained in [20]. However, it is difficult to compare the cal-
culation process. This is because the weights are calculated separately for each SSZ
in our report. While in 2018 Fortum report, the weights are calculated at once for
the whole 300 km area around Loviisa.

6.3 Conclusion

The primary goal of this study was to improve the existing probability models that
estimate the maximum magnitudes of a Fortum nuclear site in Loviisa. Two ap-
proaches were used: Bayesian modeling [9, 10] and the Kijko method [8]. Both of
these methods were implemented successfully. Furthermore we explored the use of
clustering methods to extend the feasible catalog that can be used. Despite the very
different approaches of these methods, they both converge to broadly similar central
values. For both, the most probable mmax is between 5.5 and 6.0. However, we see
significant divergence on larger values of mmax. Using the clustered superdomain,
the Bayesian posterior assigns roughly probability of 0.07 to mmax event of 7, but
for Kijko method the similar mmax probability is at 0.016.

A clustering of superdomains was also performed in order to group domains to
achieve a complete dataset with larger amount of data. K-means and agglomerative
hierarchical clustering were used and the clustering was based on seismic structure
of historical earthquakes. The method showed promising results but due to limited
quality of data no justified reason wad found to use the clustered dataset for prior
estimation.

A comparison of these results with the original estimate from 2021 points to signif-
icantly differences. The study from 2021 [14] resulted in a most probable mmax of
6.7. However, it is difficult to say whether the new estimate is more accurate. More
research is needed to ascertain that the new estimates reflect the environmental
factors of Loviisa more accurately.

We recommend treating the two distributions together rather than selecting either
one alone. A simple 50–50 mixture captures the tighter lower-range confidence of
the Kijko result while keeping the heavier upper tail from the Bayesian model. This
mixed probability distribution reduces the median hazard relative to the 2021 study,
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but maintains a conservative look for even more rare high-magnitude events. With
this in mind, a deeper look of the parameter weights should be performed as the
50-50 mix may not be optimal for Loviisa site.

Furthermore, we suggest that a thorough sensitivity analysis on the results is to
be conducted before interpreting the results as given. It is possible that the results
derived in this study may be sensitive to parameter changes.
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A Kijko Weights for SSZs

Table A1: Kijko weights for SSZ 6

5 5.5 6 6.5 7
mmin 1 1 1 1 1
m 4.4 4.4 4.4 4.4 4.4
b 1.103 1.103 1.103 1.103 1.103
β 2.539 2.539 2.539 2.539 2.539
n 69 69 69 69 69
mmax 5 5.5 6 6.5 7
F(m) 1 1 1 1 1
Pr(mmax < z) 0.010 0.011 0.012 0.012 0.012
Wn - 0.724 0.203 0.057 0.016

Table A2: Kijko weights for SSZ 8

5 5.5 6 6.5 7
mmin 1 1 1 1 1
m 4 4 4 4 4
b 1.035 1.035 1.035 1.035 1.035
β 2.383 2.383 2.383 2.383 2.383
n 128 128 128 128 128
mmax 5 5.5 6 6.5 7
F(m) 0.999 0.999 0.999 0.999 0.999
Pr(mmax < z) 0.087 0.093 0.095 0.095 0.096
Wn - 0.703 0.213 0.065 0.020

Table A3: Kijko weights for SSZ 10

5 5.5 6 6.5 7
mmin 1 1 1 1 1
m 2.9 2.9 2.9 2.9 2.9
b 1.168 1.168 1.168 1.168 1.168
β 2.689 2.689 2.689 2.689 2.689
n 92 92 92 92 92
mmax 5 5.5 6 6.5 7
F(m) 0.994 0.994 0.994 0.994 0.994
Pr(mmax < z) 0.426 0.427 0.427 0.427 0.427
Wn - 0.743 0.193 0.050 0.013
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Table A4: Kijko weights for radius 100 km (SSZ 6, 10)

5 5.5 6 6.5 7
mmin 1 1 1 1 1
m 4.4 4.4 4.4 4.4 4.4
b 1.135 1.135 1.135 1.135 1.135
β 2.614 2.614 2.614 2.614 2.614
n 161 161 161 161 161
mmax 5 5.5 6 6.5 7
F(m) 1 1 1 1 1
Pr(mmax < z) 0.017 0.021 0.022 0.022 0.022
Wn - 0.734 0.198 0.054 0.014

Table A5: Kijko weights for radius 300 km (SSZ 6, 8, 10)

5 5.5 6 6.5 7
mmin 1 1 1 1 1
m 4.4 4.4 4.4 4.4 4.4
b 1.102 1.102 1.102 1.102 1.102
β 2.537 2.537 2.537 2.537 2.537
n 289 289 289 289 289
mmax 5 5.5 6 6.5 7
F(m) 1 1 1 1 1
Pr(mmax < z) 0.040 0.047 0.050 0.050 0.050
Wn - 0.724 0.203 0.057 0.016

Table A6: Kijko weights for radius 500 km (SSZ 2, 3, 4, 5, 6, 8, 10)

5 5.5 6 6.5 7
mmin 1 1 1 1 1
m 4.4 4.4 4.4 4.4 4.4
b 1.063 1.063 1.063 1.063 1.063
β 2.447 2.447 2.447 2.447 2.447
n 1330 1330 1330 1330 1330
mmax 5 5.5 6 6.5 7
F(m) 1 1 1 1 1
Pr(mmax < z) 0.221 0.261 0.272 0.276 0.277
Wn - 0.719 0.204 0.060 0.017
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B Self-assessment

B.1 How closely did the project follow the plan?

The actual implementation largely adhered to the initial plan, with some deviations
that were expected given the exploratory nature of the project. Most deviations
stemmed from the need to justify the chosen methodologies. As outlined in the
report, concerns arose regarding the applicability of both Kijko’s and Bayesian ap-
proaches. Consequently, additional analyses were conducted to assess result sensi-
tivity and statistical significance.

Although the project remained on schedule overall, some team members experi-
enced periods of intense workload. Spring break was not factored into the initial
timeline, and competing responsibilities from other courses led to some tasks being
deferred to the final weeks.

In terms of workload distribution, some team members ended up with more re-
sponsibilities than originally planned. Certain aspects of the project proved more
time-consuming than anticipated.

B.2 In what regard was the project successful?

The team considers the main analyses and resulting insights a success. We were able
to conduct our work with appropriate reasoning and methodological justification,
avoiding unfounded conclusions and overly optimistic interpretations. The results
are grounded in evidence and reflect a balanced and critical approach to analysis.

The project was also successful in delivering reproducible results and meaningful
insights to the client. It addresses several current challenges in the domain, offering
a foundation for further internal research at Fortum. The methods and findings can
serve as a basis for more targeted studies or development work in the future.

Client communication was effective throughout the project. We received consistent
support and valuable guidance from Fortum’s representatives, who also granted us
considerable autonomy in conducting our research—provided we could justify our
choices. The client maintained realistic expectations regarding both the scope of
the work and the results, allowing us to focus on depth and quality.

Lastly, the team demonstrated strong internal communication and collaboration.
Team members were consistently available for meetings, adhered to deadlines, and
contributed actively throughout the project.
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B.3 In what regard was the project less successful?

In hindsight, the project manager could have played a more active role in facilitat-
ing communication and redistributing tasks to maintain a more balanced workload
across the team.

Some of the original analytical directions proved difficult to implement in prac-
tice. An earlier and more thorough literature review and preliminary research phase
would have helped identify more suitable approaches from the outset. This will also
facilitate more balanced work division.

B.4 What could have been done better?

B.4.1 Team

In retrospect, several aspects of the team’s workflow could have been improved.
More consistent communication regarding individual progress would have helped
prevent bottlenecks and periods of intense workload. Additionally, allocating more
time to the project during its early phases could have led to more refined analyses
and deeper insights in the final results.

B.4.2 Client

Overall, Fortum provided excellent communication and project scoping. We were
granted access to high-quality data and internal documentation, which significantly
supported our work. However, due to the inherent complexity of the project, some
aspects were initially difficult for the team to grasp. These challenges are under-
standable, given the technical and domain-specific nature of the work, which natu-
rally requires a learning curve.

B.4.3 Teaching staff

We found the guidance from the teaching staff appropriate, especially given the wide
variety of projects under supervision. The teaching staff emphasizes collaboration
and alignment with the client. That said, we found some inconsistencies between
the expectations for the interim report and the interim presentation. In our view,
the interim phase could have been simplified by requiring only a presentation, as
the written report offered limited added value at that stage.
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