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1 Introduction

1.1 Background

The Finnish pension system is financed through a combination of contributions from
employers, employees, and the government, as well as investment returns. The level
of contributions is determined by factors such as the age of the employee and the
type of work they perform. The contributions are then used to pay for the pensions
of current retirees. Any excess funds are invested in a variety of instruments to help
ensure the long-term viability of the pension system. The Finnish pension system
is designed to be sustainable and adaptable to changing demographic and economic
conditions.

Technical provisions are an important aspect of the financing of pensions in Fin-
land. These are the funds that pension providers set aside to ensure they can meet
their future obligations to pay out pensions to their clients. Technical provisions
are calculated based on actuarial assumptions, taking into account factors such as
life expectancy, inflation, and investment returns. They are designed to ensure that
pension providers have adequate reserves to cover future payouts and can maintain
financial stability in the long term. The Financial Supervisory Authority monitors
technical provisions to ensure that pension providers have sufficient reserves and
can meet their obligations to their clients. Overall, technical provisions are a crucial
component of the pension system in Finland and help to ensure the financial security
of retirees.

The Solvency Regulation in Finland is a set of rules that govern the financial
stability of pension providers. It ensures that pension providers have enough as-
sets to cover their liabilities and can meet their obligations to pension recipients.
The regulation requires pension providers to maintain a certain level of solvency,
which is the difference between their assets and liabilities. If the solvency level falls
below the required amount, the pension provider must take corrective measures to
restore its financial stability. The Solvency Regulation is an important part of the
Finnish pension system, which aims to provide secure and sustainable pensions for
all citizens.

Portfolio optimization is a process of selecting a mix of assets that maximize the
discounted value of future returns (Markowitz, 1952). It involves analyzing various
investment options, their historical performance, and their correlations with each
other to create a diversified portfolio that balances risk and return. This approach

1



helps investors minimize their exposure to any single asset or market sector, while
maximizing their overall returns. In our project, we use portfolio optimization to
study the effects of solvency requirements on the optimal mix.

1.2 Objectives

The main objective of this project is to analyze the impact of the Finnish solvency
requirements on optimal asset allocation and realized portfolio return. The invest-
ment options include two baskets, equity index and bonds. Asset return paths are
simulated from historical returns data using geometric Brownian motion for equity
and Cox-Ingersoll-Ross for bonds. An optimization model for simulating the return
paths for different assets and optimizing the asset allocation under solvency require-
ment constraints is developed based on a literature study on existing solutions.

The goal for the model implementation is to be a clean and cohesive program
that can easily be easily run with different data and be expandable or adaptable to
other similar problems with low effort. The code should be high quality including
comments, and the development should be documented using version management.
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2 Literature Review

In this section, we provide a literature review on the key concepts of this study. The
literature review consists of previous studies regarding asset-liability management
models in different environments and scenario generation for financial modelling.

Asset-liability management (ALM) is a crucial aspect of financial management
for firms that need to manage their liabilities and assets in order to meet their
financial obligations. The aim of ALM is to ensure that a company can meet its
financial obligations, even in adverse market conditions.

A common approach to ALM is the use of stochastic models to simulate future
scenarios of asset returns and liabilities. These models enable firms to simulate a
range of potential outcomes and evaluate the impact of different investment strate-
gies on their financial position. Many studies have proposed different stochastic
models for scenario generation, such as the use of Geometric Brownian Motion
(GBM) for equity prices and the Cox-Ingersoll-Ross (CIR) model for fixed income
prices, which have been employed in this study.

2.1 Scenario Generation for financial modelling

We consider two assets in the model: equity index and fixed income. The scenario
generation for each follows the suggestions of Kouwenberg and Zenios (2001) which
suggests to use Stochastic Differential Equations (SDEs) to simulate the asset prices.
Equity index prices are generated with Geometric Brownian Motion (GBM) and the
fixed income asset prices are simulated with the Cox-Ingersoll-Ross model (CIR)
(Cox et al., 1985).

2.2 Stochastic Programming in asset-liability management

Asset-liability management models have been used in a variety of environments,
ranging from banking, insurance companies, personal finance, to pension funds
(Zenios and Ziemba, 2007). This study focuses on the case of Solvency Regula-
tion in Finland and modeling this case using Stochastic Programming.

Stochastic programming models have been applied to asset-liability manage-
ment for a long time. Bradley and Crane (1972) proposed a multistage model for
bond portfolio management in the early seventies. De Oliveira et al. proposes a
multistage stochastic programming approach for the asset-liability management in
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the case of Brazilian pension funds. In this paper, they generate asset price scenar-
ios with stochastic differential equations. They use Geometric Brownian Motion for
equities and Cox-Ingersoll-Ross model for fixed income securities. De Oliveira et al.
also develop a stochastic programming model that takes into consideration the sol-
vency regulatory rules for Brazilian pension funds. To achieve this, they implement
a VaR probabilistic constraint to achieve a positive funding ratio at each time step
with a high probability.

2.3 Solvency requirements

Another key concept in this study is the impact of regulatory requirements on opti-
mal asset allocation. Solvency requirements are regulations that mandate the min-
imum level of capital an insurer must hold to meet its financial obligations. These
regulations can significantly impact investment decisions, as insurers must balance
the need to meet regulatory requirements with the goal of achieving high investment
returns. Many studies have examined the impact of solvency requirements on invest-
ment decisions and optimal asset allocation. De Oliveira et al. proposed an ALM
model for the case of Brazilian pension funds. In this study, the solvency require-
ment was that the funding ratio, defined as the ratio of current assets to the present
value of future liabilities, cannot be smaller than one in more than consecutive years.
De Oliveira et al. found that if the initial funding ratio is high, the fund allocates
70 % and 30 % in fixed income and stocks, respectively. As the initial funding ratio
goes slightly below 1, the fund concentrates invests more in fixed income to reduce
its risks of not paying the liabilities.

The Finnish solvency requirements are defined according to the Finnish Pension
Alliance TELA (2023), which states that a pension provider’s solvency capital must
exceed the solvency limit for the provider to be solvent. The solvency limit applied in
this study is defined according to the Finnish Centre for Pensions Eläketurvakeskus
(2023), which is the technical provisions considered as the liabilities of the ALM
model. The technical provisions are of form:

RSV = b16 + i0 + λ · j, (1)

where b16 is a supplementary factor, i0 is a discount rate, λ is the degree of stock
return dependence and j is an equity-linked provision. The supplementary factor
b16 is subject to the solvency capital of each pension fund.
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3 Data & Methods

3.1 Data

We received the dataset used in this study from Varma’s contact person, Hamed
Salehi. The dataset includes daily price data for the equity index and the fixed
income from December 29, 2000 to January 26, 2023. The price data only includes
trading days, meaning that weekends and holidays are not included in the data.
The data contains 5737 rows and each row contains the date, equity index price and
fixed income price. The timeseries for both are plotted in Figure 1.

Figure 1: Daily price for both the equity index and bond.
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Returns Equity (daily) Bond (daily) Equity (annualized) Bond (annualized)

Mean 0.02% 0.01% 6.06% 2.90%
Std Dev 1.02% 0.39% 16.20% 6.21%
Minimum -9.70% -2.51% -2443.95% -631.87%
Maximum 8.67% 2.83% 2183.90% 712.40%

Table 1: Summary statistics of the dataset

From Table 1, we can see the summary statistics of the dataset. The minimum
is smaller, the maximum and standard deviation are larger for the equity index
which means that it is much more volatile compared to the bond timeseries.

3.2 Scenario Generation

The validity of the optimization model’s results depends heavily on the quality of
the scenarios generated to represent the stochasticity of the assets’ prices Dupacová
and Polívka (2009). This means that simulating the prices of the assets considered
for this study is extremely important for the model’s performance. In this study,
the asset prices follow correlated Stochastic Differential Equations (SDEs) of form

dξit = µ(ξit, t) dt+ σ(ξit, t) dWit, (2)

where Wit is a Wiener process normally distributed with mean zero and variance
u, Wt+u −Wt ∼ N (0, u).

When we simulate more than one asset, we have to take the returns’ correlated
errors into account (Dempster et al., 2003). The correlation coefficients ρij between
two assets i and j at time t are defined by

dWi · dWj = ρijdt, ρii = 1,∀i, j. (3)

We use the Geometric Brownian Motion model for generating the prices for the
equity index (Mitra, 2006)

dξ1t = µ(ξ1t, t) dt+ σ(ξ1t, t) dW1t. (4)

The GBM above also has the analytic solution for an arbitrary initial value S0
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ξ1t = ξ1(t−1)e
(µ− 1

2
σ2)dt+σϵ

√
dt (5)

with ϵ ∼ N (0, 1). For the price of the fixed income asset, we use the Cox-Ingersoll-
Ross model (Cox et al., 1985)

dξ2t = α(β − ξ2t)dt+
√

ξ2tσdW2t, (6)

where α, β and σ are model parameters. The drift function µ(ξ2t, α, β) = α(β − ξ2t)

is linear and it ensures mean reversion of the interest rate in the long run. The
diffusion function σ2(ξ2t, σ) = ξ2tσ

2 ensures that the interest rate stays positive at
all times t.

We use the maximum likelihood estimation method for estimating the model
parameters α and β of the Cox-Ingersoll-Ross model (Kladivko, 2007) with N ob-
servations rti , i = 1, ..., N

L(θ) =
N−1∏
i=1

p(rtt+1|rti ; θ,∆t). (7)

However, it is computationally more efficient to work with the log-likelihood-
function

lnL(θ) =
N−1∏
i=1

ln p(rtt+1|rti ; θ,∆t). (8)

After formulating the likelihood function, the goal is to find the values of the
model parameters a and b that make the observed data most probable. This is
achieved by maximizing the likelihood

(α̂, β̂) = argmax
θ

lnL(θ). (9)

Because the logarithmic function is monotonically increasing, maximizing the
log-likelihood function also maximizes the likelihood function.
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3.3 Optimization model

The objective of asset-liability management is to allocate wealth in financial assets
i = 1, ..., N to maximize profits while liabilities Lts are always covered. This is a
stochastic dynamic allocation problem due to the randomness of the asset prices
and the time-dependency of the investment and rebalancing decisions. To solve the
problem, an optimization model was formulated following loosely de Oliveira et al.
(2017). The indices and sets, decision variables and parameters are summarized in
Table 2. The basic profit maximizing allocation problem is

max
S∑

s=1

N∑
i=1

PsXiT s (10)

subject to
N∑
i=1

Xi0s = k0L0, s = 1, ..., S (11)

Xi0s = ai

N∑
j=1

Xj0s, i = 1, ..., N, s = 1, ..., S (12)

Xi1s = (1 +Ri1s)Xi0s, i = 1, ..., N, s = 1, ..., S (13)
N∑
j=1

Xjts =
N∑
j=1

(1 +Rjts)Xj(t−1)s, t = 2, ..., T, s = 1, ..., S (14)

Xits ≥ 0, i = 1, ..., N, t = 1, ..., T, s = 1, ..., S (15)

ai ≥ 0, i = 1, ..., N. (16)

The objective function (10) is the expected value of the portfolio at the final
time-step. Constraint (11) sets the initial value of the portfolio to be equal to the
initial solvency ratio k0 times initial liabilities L0. To obtain a single best initial
allocation that considers all scenarios, constraint (12) imposes a common initial
asset allocation ai for all scenarios. To increase the weight of the initial allocation
decision, in the first time-step rebalancing the assets is not allowed. Therefore, the
new amount invested in each asset is simply the old amount after returns, according
to constraint (13). After the first time-step, however, assets can be rebalanced at
every time-step. The rebalancing is ruled by constraint (14), which ensures that the
new value of the portfolio is equal to the sum of the old amounts invested in each
asset after returns.

The solvency ratio, assets to liabilities, of Finnish pension insurance companies
is never allowed to go below one. We enforce this rule softly using a stochastic
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Indices

t Time index t = 1, ..., T

i Index of asset classes i = 1, ..., N

s Index of scenarios s = 1, ..., S

Decision variables

Xits Amount of asset i to hold at time t at scenario s

Xi0s Amount of asset i to hold initially at scenario s

ai Initial allocation of asset i

Cts Binary variable with value 1 if solvency requirement not fulfilled in
time t and scenario s and 0 otherwise

Lts Liability at time t at scenario s

kts Solvency ratio at time t at scenario s

jts Stock return provision at time t at scenario s

its Interest provisions at time t at scenario s

pts Supplementary basis at time t at scenario s

b∗ts Supplementary factor at time t at scenario s

bts Supplementary factor liability addition at time t at scenario s

Random variables

Rits Random return of asset i at time t at scenario s

cits Cumulative return of asset i at time t at scenario s

Deterministic parameters

Ps Probability of scenario s
i0 Discount rate
λ Degree of stock return dependence
K Required solvency ratio
k0 Initial solvency ratio
L0 Initial liability
α Risk level
w Fund weight
M Large positive coefficient

Table 2: Notation summary
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constraint - the probability of the solvency ratio kt being below 1 must be less than
the risk level α at each time-step:

P(kt < 1) ≤ α, t = 1, ..., T. (17)

We implement this stochastic constraint in steps with the constraints

ktsLts =
N∑
i=1

Xits, t = 1, ..., T, s = 1, ..., S (18)

K − kts ≤ MCts, t = 1, ..., T, s = 1, ..., S (19)
S∑

s=1

Cts ≤ αS, t = 1, ..., T (20)

kts ≥ 0, t = 1, ..., T, s = 1, ..., S (21)

Cts ∈ {0, 1}, t = 1, ..., T, s = 1, ..., S. (22)

Constraint (18) calculates the solvency ratio. Cts is a binary variable which indicates
whether or not the solvency ratio is below the required limit. If it is, the indicator
is forced to one by the big-M constraint (19). Finally, (20) constrains the share
of insolvent scenarios below the risk level at each time-step. The formulation used
is quite lenient - it allows every scenario to become insolvent during its lifetime,
just not simultaneously. A stricter and more realistic constraint would limit the
insolvency probability for the whole duration of the scenario instead of separately
for each time-step. Such constraint would, however, introduce additional inter-time
dependencies to the model and affect solving speeds, so we settle for the simpler
version.

A key part of the model is the calculation of liabilities. We assume that short-
term liabilities are covered by short-term contributions, so the liabilities to be cov-
ered by the portfolio are the technical provisions as defined in Eläketurvakeskus
(2023). The piecewise defined supplementary factor

b16 =


(1− λ) · 0.36 · p− 0.057 p < 0.198

0 0.198 ≤ p < 0.218

(1− λ) · 0.15 · p− 0.026 p ≥ 0.218,

(23)

defined in Eläketurvakeskus (2023), is formulated using Special Ordered Set of Type
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2 (SOS2) constraints of the form

pts =
∑
k

pkγkts, t = 1, ..., T, s = 1, ..., S (24)

b∗ts =
∑
k

bkγkts, t = 1, ..., T, s = 1, ..., S (25)∑
k

γkts = 1, t = 1, ..., T, s = 1, ..., S (26)

γkts ≥ 0, k = 1, ..., 4, t = 1, ..., T, s = 1, ..., S (27)

SOS2(γ1, ..., γ4). (28)

Here γk are members of a Special Ordered Set of Type 2, meaning that only two
of them can be nonzero and they have to be neighbors. Therefore they act as
weights which are used to interpolate between breakpoints (pk, bk) and (pk+1, bk+1).
We achieve the wanted piecewise definition of b16 by using four breakpoints, (-2,
-0.633), (0.198, 0) (0.218, 0) and (2, 0.214). The quarterly supplementary factor
liability addition bts is then calculated as

b1s · 4 = b∗1sL0, s = 1, ..., S (29)

(bts − bt−1,s) · 4 = b∗tsL0, t = 2, ..., T, s = 1, ..., S. (30)

Since we simulate only a single pension fund, we calculate the average supple-
mentary basis p as a weighted average of our own supplementary basis

p∗ts = kt−1,s − 1 (31)

and the average supplementary basis from years 2011 to 2022 (0.31) is calculated
from Työeläkelakipalvelu (2023)

pts = (1− w) · 0.31 + w · p∗ts, t = 1, ..., T, s = 1, ..., S. (32)

In reality, the weight of each pension fund in the average calculation is capped at
0.15 to limit the effect of large funds on the average. However, we assume that the
performance of different funds is correlated through macroeconomic factors, so we
set our weight to 0.5 to simulate the effect of the performance of multiple funds
moving in the same direction simultaneously.

Due to the exact calculations of the stock return factor j being nonlinear, we
approximate stock return provisions linearly using cumulative returns:

jts = λ(c1ts − 0.01 · t/4)L0, t = 1, ..., T, s = 1, ..., S. (33)
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Similarly, interest provisions are linearized as

its = i0L0t/4, t = 1, ..., T, s = 1, ..., S. (34)

Finally, liabilities are

Lts = jts + its + bts + L0, t = 1, ..., T, s = 1, ..., S. (35)

4 Results

4.1 Simulation

Figures 2 and 3 show simulated equity and bond prices in 300 5-year scenarios
generated using geometric Brownian motion for equity and Cox-Ingersoll-Ross for
bonds. These are used as the scenarios in optimization. The mean and standard
deviations of the annualized returns are 6.4% and 16.2% for equity and 0.01% and
0.6% for bonds, respectively. For equity, the statistics match well to the observed
values in table 1. For bonds, however, both the mean and standard deviation are too
small. The Cox-Ingeroll-Ross assumes that the underlying process is mean reverting,
while the input data has a clear trend. The model therefore seems to have fit poorly
to the data. Despite the ill-fitted model, we accept the bond simulations as they
are, because the main factors separating them from equity still hold - both the drift
and volatility are smaller.
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Figure 2: 300 scenarios generated using Geometric Brownian Motion for the equity
index.

Figure 3: 300 scenarios generated using Cox-Ingersoll-Ross for bonds.

4.2 Effect of time span

Due to the complexity of the model, one has to choose between a high number of
scenarios or a long time span to be able to solve the model in a reasonable time.
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Long time spans allow the scenarios to develop properly and can offer insight into
good long term allocations, but on the other hand a large number of scenarios
is needed to make full use of the probabilistic solvency constraint. We therefore
study how the time span affects the results to determine a sufficient time span
for further tests. The test is performed using an initial solvency ratio of 1.3 and
solvency requirements of 1.15 and 1.2, because when the initial solvency ratio is high
compared to the requirement, the initial allocation is 100% stocks independent of
the time span.

Table 3 shows the optimal allocation with time spans from 1 to 4 years when the
solvency requirement is 1.15 and 1.2. We see that the optimal allocation is mostly
not affected by the time span. Figure 4, containing the solvency ratios in the 4 year
simulation with solvency requirement 1.2, explains why this is the case. Due to the
high equity returns, stable bond prices and optimization’s ability to allocate assets
perfectly, all of the scenarios are likely to maintain good solvency in the long run.
This may not be the case in reality, where the price movements can not be predicted
perfectly, and where trading costs prevent as aggressive allocation changes as we
allow. The most demanding moment for the portfolios is the beginning, where the
initial allocation has not yet been reallocated to the scenario-specific optimum. Due
to these findings, we can choose a short 1-year time span for the following tests in
order to be able to maximize the number of scenarios used.

T Equity (%)
(K=1.15)

Fixed-income
bond (%)
(K=1.15)

Equity (%)
(K=1.2)

Fixed-income
bond (%)
(K=1.2)

1 96.3 3.7 66.3 33.7
2 94.7 5.3 66.3 33.7
3 96.0 4.0 65.8 34.2
4 96.3 3.7 66.3 33.7

Table 3: Initial portfolio allocation with different total time spans.
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Figure 4: Solvency ratios in a 4-years simulation, when the solvency requirement is
1.2.
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4.3 Effect of initial solvency ratio

Initial solvency
ratio

Equity (%) Fixed-income
bond (%)

Obj. Value (cor-
rected)

Insolvency prob-
ability (%)

1.5 100 0 165.6 0
1.4 100 0 165.5 0
1.3 100 0 165.6 0
1.25 100 0 165.5 1
1.2 95.3 4.7 165.4 2
1.15 78.2 21.8 164.9 2
1.1 59.4 40.6 164.2 2
1.05 39.4 60.6 163.6 2
1.02 23.9 76.1 163.1 2
1.01 NA NA NA > 2

Table 4: Initial portfolio allocation and insolvency probability under different initial
solvency ratios. The solvency requirement is fixed at 1.0.

In table 4, we present how the initial portfolio allocation, objective function
value (expected portfolio value) and the insolvency probability vary with the initial
solvency ratio. The insolvency probability is calculated as the share of scenarios
that go insolvent at any point, and the effect of differing initial portfolio values is
corrected. The effect was tested by optimizing the allocation for sets of 100 scenarios
using a 1-year time span and iteratively lowering the initial solvency ratio from 1.5
to 1.01, where no feasible solutions were found in optimization due to the solvency
constraint being violated. The required solvency ratio K was kept fixed at 1.0.

Table 4 highlights that with higher initial solvency ratios, we are able to with-
stand higher volatility in our constructed portfolio, which is reflected in the portfolio
allocations. With initial solvency ratios ranging from 1.25 to 1.5, the portfolio is
constructed entirely of equities and the allocation to fixed income securities is 0%.

The insolvency probability is stable and very low until the initial solvency ratio
reaches 1.01, according to Table 4. When the initial solvency ratio gets this close
to the required solvency ratio 1.0, some scenarios inevitably become insolvent, be-
cause the volatility of both investment options is too high for such a small buffer.
However, initial solvency ratios of 1.2 to 1.05 seem to have stable insolvency proba-
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bilities, meaning that increasing the allocation of fixed-income securities when close
to the required solvency ratio has a high probability of keeping the fund solvent.
Increasing the share of fixed-income, however, reduces the expected value of the
portfolio slightly.

Figure 5 displays the changing percentages of equity and fixed income alloca-
tions in the portfolio as a function of the initial solvency ratio. When the initial
solvency ratio goes below 1.2, the allocation of equity in the portfolio starts to de-
cline steeply and the allocation of fixed income securities increases rapidly. The
portfolio allocation is 100 % in equity for higher initial solvency ratios.

Figure 5: Portfolio allocation for different initial solvency ratios.
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4.4 Effect of solvency requirement

Solvency requirement Equity (%) Fixed-income
bond (%)

Obj. Value Insolvency prob-
ability (%)

1.0 100 0 143.5 0
1.1 88.5 11.5 143.1 2
1.15 70.0 30.0 142.6 2
1.2 51.6 48.4 142.1 3
1.25 27.2 72.8 141.4 1
1.26 21.0 79.0 141.2 1
1.27 NA NA NA > 1

Table 5: Initial portfolio allocation and insolvency probability under different sol-
vency requirements. The initial solvency ratio is fixed at 1.3.

In Table 5, we present how the solvency requirement, the required solvency ratio
K, affects the portfolio allocation, expected value and the insolvency probability.
The solvency requirement ranges from 1.0 to 1.27 and the initial solvency ratio k0s

and the number of scenarios are fixed to 1.3 and 100, respectively.
While the setup is similar to the one with differing initial solvency ratios, the

situations are not completely identical. This is because the liabilities grow with
the solvency ratio, not with the distance between the ratio and the requirement.
Nevertheless, the results in table 5 show that, as was the case with differing initial
solvency ratios, the larger the distance from the initial solvency ratio to the solvency
requirement is, the more we will favor equity in the portfolio over fixed income
securities. When the requirement is raised, the equity allocation decline is similar
in speed compared to how the portfolio allocation changes with the initial solvency
ratio k0 as variable (see Figure 5) when compared by the relative distance between
the solvency ratio and the requirement. When the solvency requirement ranges
from 1.0 to 1.2, the portfolio will have a majority allocation of equities. After this,
majority will be fixed-security. The profit losses related to increased fixed-income
allocation are also similar.

The portfolio is constructed mainly of fixed income securities as the solvency
requirement K gets closer to the initial solvency ratio. When the solvency require-
ment goes below 1.27 with an initial solvency ratio of 1.3, the risk of insolvency
grows too large. The apparent non-monotonicity of the insolvency probability is
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caused by the low number of scenarios (100). By chance, there are suitable price
movements that allow several scenarios to become insolvent at different times. The
effect should disappear if the number of scenarios was raised significantly.

5 Discussion and Conclusion

The aim of this project was to examine the impact of Finnish solvency requirements
on optimal asset allocation, realized portfolio return, and insolvency probability.
Two investment options were considered in the study, equity index and fixed income,
and the results were analyzed for different time horizons, required solvency ratios
and initial solvency ratios.

The asset return paths were simulated using historical returns data. Equity
index prices were generated using geometric Brownian motion (GBM), and fixed
income asset prices were simulated using the Cox-Ingersoll-Ross model (CIR). While
the geometric Brownian motion model was able to create similar output scenarios
as the input data, the Cox-Ingersoll-Ross model fit the data poorly. This was most
likely due to the mean-reverting property not being fulfilled by the input data.
Other models should therefore be investigated in place of CIR if the aim is to model
fixed-income prices with a clear trend. Due to the ill-fitted model, the simulated
fixed-income prices were too stable and contained no trend. The effect of this on
the optimization results are significant, because this offers the high-volatility equity
a relatively risk free alternative where assets can be allocated when equity prices
drop. This meant that the portfolios rarely made significant loss. With higher bond
volatility, the portfolios would be forced to make loss more often and could face
more difficulty in maintaining a good solvency rate.

The optimal asset allocation was found by developing and applying a multi-
stage stochastic programming ALM model for a Finnish pension fund that takes
into account the Finnish solvency regulation. The results show that the optimal
asset allocation is affected greatly by the Finnish solvency regulation and the con-
straints it imposes on the optimizaton model. There is a link between the optimal
portfolio allocation and the difference between the initial solvency ratio and the
required solvency ratio. Equity is preferred as long as solvency is on a good level,
but the allocation of fixed income securities generally increases when the difference
between the initial solvency ratio and the required solvency ratio decreases. The
initial solvency ratio has to get close to the solvency requirement before the pro-

19



gramming model formulation becomes infeasible, giving insights to fund managers
on the required buffer to keep the fund solvent with a high probability. The results
differed from other studies, such as de Oliveira et al. (2017), where fixed-income was
preferred. The reason for this difference comes back to the unprofitable bond prices
caused by the ill-fitted model.

Another key factor making it too easy for the portfolios to stay solvent is the
absence of trading costs. With no limits on the allocation changes, the optimal
allocation strategy uses bang-bang control, where assets are always fully allocated
to the asset type which profits the most during the next period. In reality, such
aggressive allocation changes are not possible. A large improvement for the model
would therefore be to include trading costs, for example as a percentage of traded
assets, or simply as a constraint for maximum allowed allocation change.

The optimization model turned out to be surprisingly heavy. The solving scales
badly especially with the number of time-steps to solve, but also with the number
of scenarios. There seems to be a threshold on the number of time-steps after which
the model struggles to find a feasible solution at all. This is most likely due to
the large number of equality constraints and dependencies to previous time steps in
the liability calculations. This and the solving time could probably be improved by
reformulating parts of the model and by turning some of the equality constraints
into inequalities or by otherwise relaxing them.

The results and implementation of this project provide valuable insights into
the impact of Finnish solvency requirements on optimal asset allocation, realized
portfolio return, and realized solvency ratio. The developed models for simulat-
ing the return paths for different assets and optimizing the asset allocation under
solvency requirement constraints could be adapted to other similar problems. The
results of the project can assist funds in making informed investment decisions and
help pension funds optimize their asset allocation under solvency constraints.
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7 Self Assessment

7.1 Project plan with respect to the project

7.1.1 Scope

The project was finished according to the initial project plan and there were no
deviations from it. The planned sections were finished as discussed with the client
and the main objectives were completed. Expansion of the scope to additional
investment baskets was not done due to lack of time.

7.1.2 Risks

The risks, their likelihood, effect and the way to mitigate them in the initial project
plan proved to rather accurate and the project plan included most risks associated
with this kind of group study. The risks that realized at the end of the project were
scheduling risks. We finalized the code and therefore the results way too close to
the deadline of this project. We should have completed the coding tasks at least
one week in advance. We should have also started writing the final report earlier.
These risks were mainly a derivative of the members lack of time to work on the
project. Gladly, the objectives of the study were met but the we were quite close to
delivering the project late.

7.1.3 Schedule

We already discussed this briefly in the previous section. The schedule in the project
plan was sufficient but the final validation of the model and verifying the results was
done much later than the original schedule suggested. The main problem here was
that every other course of every team member ended in April, meaning that our
schedules were packed with other tasks. The number of team members also realized
here. With only three people working on the project, unforeseen changes increase
the work needed to finish the project significantly for each team member.

7.2 In what regard was the project successful?

Every main objective of the project set at the beginning of this course were com-
pleted and relevant insights and conclusions to the main research questions were
found. We were able to simulate return paths for equities and fixed income and
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develop an optimization model that finds the optimal asset allocation under the
Finnish solvency constraints. We were also able to develop the code that is capable
of solving the aforementioned tasks. The scenario simulation and optimization model
work seamlessly together, and it is easy to run the model with different parameters.

7.3 In what regard was the project less successful?

Too much work was left to do at the end of the course. Validating the model,
verifying the results and writing the final report proved to be a lot of work. Since
there are only three team members, the amount of work at the end of the course
was high, and an additional team member would have helped.

This of course leads to a multitude of avenues that were not as successful as we
would have wanted them to be. For example, sensitivity analysis was completely left
out. Ideally, we would have also wanted to increase the number of assets considered
in the portfolio from the two options which are now equity index and fixed income.

7.4 What could have been done better?

7.4.1 Team

We should have had frequent meetings, for example once a week to improve the
communication and pace the project better. During the project, the team members
mainly did tasks independently and then discussed the results or difficulties in our
group chat. This proved to be sufficient but scheduled meetings would have improved
the project with a high probability.

7.5 Client

Varma and their contact person, Hamed Salehi was very flexible and available for
the whole duration of this project. This was appreciated by our team. Mr. Salehi
responded to every question we had within a short interval which made getting
over speedbumps easy. There was no point in the project where we were stuck on
anything for an extended amount of time due to successful communication with Mr.
Salehi.
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7.5.1 Teaching staff

The teaching staff was clear in the communication concerning deadlines and the
timeline of project deliverables, although the first excursion dates would have been
useful to know a bit earlier. The course was well organized and structured, and the
meetings were pleasant and had a great atmosphere. The project topics were also
very interesting and the client organizations were diverse, which is excellent in a
seminar case course.
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