MS-E2177 Seminar on Case
Studies in Operations

Research
Final Report for SOK

Amir Sultanbekov (project manager)
Pontus Heir
Hanna Karras

Kristo Laurila
Alvar Wilhelmsson

May 29, 2023

Contents

1

Introduction

1.1 Background
1.2 Objectives
1.3 Optimization theory

Literature Review

2.1 Scheduling and rostering L.
2.2 Vacation planningo oo
2.3 Days-off scheduling and planning

Data and Optimization Model

3.1 Constants
3.2 Decision variables oL
3.3 Constraints
3.4 Objective function L oL

Results

4.1 Different objective functions

4.2 Balancing real-world needs and optimality

4.3 Juliacode
4.3.1 Parser and output generator
4.3.2 Optimization Model
4.3.3 Structuring variables Lo

4.4 Quality of results

45 Output UL. oo o
4.5.1 Dashboard
4.5.2 Overtime

Discussion
Conclusions

Self Assessment

A.1 How closely did the actual implementation of the project follow
the initial project plan?

A.2 In what ways was this project successful?

A.3 In what ways was this project unsuccessful?

A.4 What could have been done better?.

Ok W W

© © 9

18
18
19
20
21
21
22
23
24
24
29

30

31

32

1 Introduction

1.1 Background

Suomen Osuuskauppojen Keskuskunta (SOK) is a cooperative organization that
operates in the retail industry in Finland. SOK is the leading player in the
Finnish retail market, accounting for nearly half of the grocery stores’ market
share. The company is responsible for the strategy of S Group, which comprises
over 1,900 stores in Finland, including grocery stores, department stores, and
service stations.

Maintaining a well-balanced labor force is crucial for SOK to ensure smooth
operations across all its business units. In grocery stores, for example, the need
for employees fluctuates seasonally, and the timing of vacations is therefore im-
portant to schedule accordingly. A poorly scheduled vacation plan can have
adverse effects on employees’ well-being, and work quality, and ultimately, in-
crease personnel costs. For instance, if there are too few employees during peak
periods, SOK may need to hire part-time workers to fill the gaps, which can
significantly increase personnel costs. Moreover, inadequate staffing levels can
lead to longer waiting times, decreased customer satisfaction, and even loss of
business. Therefore, by developing an optimized vacation scheduling tool that
can match workforce demand and supply, SOK aims to improve employee well-
being, increase operational efficiency, and reduce personnel costs.

Maintaining a well-balanced labor force is crucial for SOK to ensure smooth
operations across all its business units. In grocery stores, for example, the need
for employees fluctuates seasonally, and the timing of vacations is therefore im-
portant to schedule accordingly. A poorly scheduled vacation plan can result in
weeks with too few employees, which can have an adverse effect on employees’
well-being and work quality, and ultimately, increase personnel costs.

To address this concern, we work with SOK to develop an optimized vaca-
tion scheduling tool that can match workforce demand and supply. The tool’s
main objective is to minimize weeks where there are insufficient employees while
ensuring that there are always enough workers with the necessary skills to meet
demand. Our model takes into account various factors, such as complying with
laws and collective agreements, accommodating different employee skills, en-
abling vacations of different lengths, and considering employee vacation time
preferences. The planning scope of the project is to develop a model that covers
the summer months, as this is the peak holiday period for SOK’s grocery stores.

The scope of the project involves creating an optimization model for vacation
and absence planning on a weekly basis for approximately 100 employees over a
one-year period, focusing specifically on the summer months. The tool should
be user-friendly so that someone without optimization expertise can create va-
cation schedules using the model. The project only considers those employees

who work according to the work list, with supervisors or external contract work-
ers not being part of the vacation schedule.

This project is a significant undertaking for SOK, and it represents the com-
pany’s commitment to investing in innovative solutions that improve employee
well-being and increase operational efficiency. By leveraging advanced opti-
mization techniques, SOK aims to create a tool that can be scaled across all its
commercial establishments and help to set a new standard for employee vacation
planning in the retail industry.

1.2 Objectives

To develop an effective vacation optimization tool, there are several important
considerations to keep in mind. First and foremost, the tool must be based on
accurate and reliable data. This may include information on employee avail-
ability, skill sets, vacation preferences, and historical workload data. Gathering
and analyzing this data can help to inform the model’s design and identify po-
tential constraints that need to be considered. The model should also take into
account relevant laws and regulations related to labor and vacation time, as well
as collective agreements with employee representatives.

In addition to data collection and legal considerations, it is important to collab-
orate with stakeholders to ensure that the optimization tool meets their needs.
This may involve working closely with store managers and human resources per-
sonnel to understand their pain points and incorporate their feedback into the
model. By engaging with stakeholders in this way, it is possible to ensure that
the optimization tool is designed to meet the specific needs of SOK’s business
units and that it will be effectively used once it is deployed.

Once the optimization model has been developed, it is important to evaluate its
effectiveness and refine it as needed. This may involve running simulations using
different inputs or adjusting the model’s constraints to better reflect real-world
scenarios. For example, it may be necessary to adjust the vacation schedule
in response to unexpected fluctuations in demand or to accommodate changes
in employee availability or preferences. By refining the optimization model in
this way, it is possible to ensure that it continues to meet the evolving needs of
SOK’s business units over time.

To ensure that business units can use the optimization tool effectively, it may be
necessary to provide support to help them understand how to use the tool and
interpret its outputs. This can help to ensure that the model is implemented
successfully and achieves the desired results. It is also important to ensure that
the optimization tool is user-friendly and accessible to all employees, regardless
of their technical skills or level of expertise.

Expanding on the importance of providing support for using the optimization

tool, it is crucial to note that the successful implementation of the tool depends
on how well the employees can use and understand it. Since not everyone may
have the technical skills or expertise to operate the tool, providing support and
training can help to bridge the knowledge gap and ensure that the model is used
effectively.

Moreover, it is important to ensure that the optimization tool is user-friendly
and accessible to all employees. If the tool is complex or difficult to use, it may
deter employees from using it, which can hinder the successful implementation
of the model. Therefore, the tool should be designed with a user-friendly inter-
face that makes it easy for employees to operate and interpret its outputs.

By ensuring that the optimization tool is user-friendly and providing support
for its use, SOK can effectively leverage the tool’s benefits, such as improving
operational efficiency, reducing costs, and enhancing overall productivity. Addi-
tionally, when employees feel confident in using the tool, they can make better
decisions based on the model’s recommendations, which can lead to improved
outcomes, such as increased customer satisfaction and reduced personnel costs.

Overall, the development of an effective vacation optimization tool for SOK’s
business units represents an important opportunity for our team to apply our
skills in operations research to a real-world problem. By working closely with
stakeholders and engaging in careful data analysis and model development, we
are confident that we can create a tool that will help SOK’s business units to op-
timize their vacation schedules and improve employee well-being, work quality,
and reduce personnel costs.

1.3 Optimization theory

Optimization theory is a branch of applied mathematics that deals with the de-
velopment of mathematical models to find optimal solutions to problems. The
goal is to identify the best possible choice among a set of alternatives, given a
set of constraints. Optimization problems arise in many areas of science and
engineering, such as finance, logistics, engineering design, and resource alloca-
tion.

Mixed Integer Linear Programming (MILP) is a powerful optimization tech-
nique. It is a type of linear programming where some or all of the variables are
constrained to be integer values. MILP problems can model a wide range of
real-world problems, such as scheduling, network flow, and resource allocation.

MILP problems can be formulated as a set of linear constraints and a linear
objective function, with the added constraint that some or all of the variables
must be integers. The solution space for MILP problems is often discrete, mean-
ing that the variables can only take on specific values. The challenge in solving
MILP problems is to find the optimal solution within this discrete solution space.

One popular approach to solving MILP problems is branch and bound. This
approach involves dividing the problem into smaller sub-problems and solving
each sub-problem separately. The method proceeds by iteratively branching on
variables, creating a tree-like search space of possible solutions. The algorithm
uses bounds to eliminate sub-trees that are guaranteed to not contain optimal
solutions.

MILP solvers have become increasingly powerful and efficient in recent years,
enabling them to solve large-scale optimization problems that were previously
thought to be intractable. These solvers can handle problems with millions of
variables and constraints, making them a valuable tool for solving complex real-
world problems.

In the context of the SOK vacation scheduling project, MILP is used to opti-
mize the vacation scheduling plan to ensure that workforce demand is matched
with supply while minimizing the number of weeks with too few employees. The
MILP model takes into account various constraints, such as employees’ skills,
vacation time preferences, and the need to comply with laws and collective
agreements. By using MILP, the project team can develop an optimal vacation
schedule that meets the needs of the business and its employees. MILP will be
discussed more in Section 2.

In this project, we use Julia programming language and its optimization pack-
age, JUMP, to solve the mixed-integer linear programming problem for vacation
scheduling. JUMP is a powerful modeling and optimization package that allows
us to define and solve complex optimization problems with ease. One of the
main advantages of JUMP is its ability to interface with different solvers, pro-
viding flexibility and allowing us to choose the best solver for the problem at
hand.

In this project, we choose to use the HiGHS solver, which is a state-of-the-
art open-source solver for linear and mixed-integer linear programming. HiGHS
is known for its excellent performance and scalability, making it an excellent
choice for large-scale optimization problems. HiGHS was chosen over other
solvers such as Gurobi, CPLEX, and MOSEK, as HiGHS license and usability
matched the requirements for our project.

The combination of JUMP and HiGHS provides an efficient and robust so-
lution to the vacation scheduling problem. By using these tools, we are able
to find a high-quality vacation schedule that satisfies all the constraints and
objectives in a reasonable amount of time. Furthermore, the flexibility provided
by JUMP and the ability to switch solvers easily allows us to compare different
solver performances and choose the most appropriate one for future projects.

2 Literature Review

Literature specifically about vacation optimization is scarce, however, there is
a multitude of scientific papers concerning the optimization of scheduling and
rostering in general [10].

2.1 Scheduling and rostering

The process of creating optimized work schedules for employees, known as per-
sonnel scheduling and rostering, has gained increasing attention in recent years.
Ernst et al. [8] review hundreds of papers on having the appropriate personnel
available at any given time, which is a crucial aspect for most organizations in
meeting their customers’ needs. In essence, the problem of rostering involves
the allocation of qualified staff to meet time-sensitive service requirements while
complying with workplace regulations and seeking to fulfill individual work pref-
erences. These optimization problems are typically very complex and heavily
constrained. Because different industries have distinct requirements, various
rostering models exist, necessitating distinct solution methods to produce effec-
tive and practical solutions.

Van den Bergh et al. [16] provide a recent review of papers on personnel schedul-
ing problems and found out that the primary focus is on staffing and/or schedul-
ing workers based on fixed inputs. Based on the reviews, Van den Bergh et al.
recommend that researchers incorporate a range of factors into their personnel
scheduling problem, including demand forecasting, hiring and firing, machine
scheduling, and multiple locations. By controlling these variables, operational
advantages can be achieved. Many important aspects of the personnel schedul-
ing problem are often overlooked, which limits the solution method’s applica-
bility in real-life problems where these characteristics are present. Therefore, it
would be beneficial to incorporate as many aspects as possible, such as break
placement, different skills, and flexible worker contracts. In recent years, com-
panies have increasingly considered employee preferences, for example, requests
for specific working days or shifts, assignments to a particular location or work-
ing partner, and preferred durations or start times, to satisfy their workforce
and allow for flexible personal life management. While the literature on per-
sonnel scheduling has noted the growing trend toward flexibility, there are still
significant opportunities to develop algorithms that can efficiently manage these
preferences. However, the studies revealed that personnel scheduling problems
have numerous variations with regard to both hard and soft constraints. How-
ever, the impact of these constraints on the problem’s complexity has received
little attention. Conducting a more focused theoretical investigation would en-
able researchers to better comprehend the effects of various constraints and
provide an opportunity to develop suitable algorithms.

Koutsopoulos and Wilson [12] examine operator workforce planning in the tran-
sit industry, notably also considering vacation planning. Two fundamental prob-
lems were found in it. Firstly, the problem was determining the appropriate
workforce size by taking into consideration related factors such as hiring deci-
sions and vacation allocation. Secondly, the issue of maximizing the utilization
of the available manpower was addressed through the introduction of two new
models, tactical and operational models. The first model focuses on the day-
to-day management of absences during a given week and allocates extra-board
resources to minimize expected overtime while the operational model tackles the
challenge of determining report times for extra-board operators on a specific day.

Mixed integer programming (MIP) and integer programming (IP) are estab-
lished techniques for solving scheduling problems. Azmat et al. [2] introduce
MIPs with the objectives of distributing working hours equitably across the
workforce, minimizing annual overtime hours, and creating a yearly schedule
for the small-company manufacturing workforce in Switzerland. Two holiday
scenarios were described. In the first scenario, the workforce is given the op-
portunity to select their preferred holiday weeks from a predetermined set of
options. The second holiday scenario utilizes a MIP formulation to assign hol-
iday weeks. For both scenarios, two MIPs were presented. Three out of four
MIPs were able to find feasible solutions for all test problems, with the max-
imum workload difference between workers being 15.4 hours at most, which is
less than 1% of the normal work length per worker over a year, excluding holi-
day weeks.

Van den Broek et al. [4] examine the integration of personnel scheduling into
the planning of railway yards, specifically within the context of the train unit
shunting problem. The objective was to extend the problem to involve a conflict-
free schedule for all yard activities. The main challenge arose from the signif-
icant walking distances between activities, as railway yards often span several
kilometers of track. To address this problem, two efficient heuristics for staff
assignment were proposed. These heuristics were integrated into a local search
framework, allowing for the generation of feasible solutions for the train unit
shunting problem with staff requirements. Notably, this was the first algorithm
developed to solve the complete version of this problem. Additionally, a dynamic
programming method was introduced to assign staff members as passengers to
train movements, reducing their walking time. Furthermore, several ILP-based
approaches were outlined to find robust solutions for the staff assignment prob-
lem, with these solutions used to evaluate the quality of the heuristic-generated
solutions. Through experimentation on a dataset comprising 300 instances of
the train unit shunting problem with staff scheduling on a real-world railway
yard, the best-performing heuristic integrated into the local search approach
demonstrates a success rate of 97% within an average runtime of three minutes.

2.2 Vacation planning

Chong et al. [5] develop a quantitative model to assign leaves for flying mili-
tary squadrons with the objective of maximizing crew preferences. The process
is limited by manning constraints, which impose restrictions on the number of
crews that can be on leave at the same time. The assignment process is based
on a point system that enables each crew to bid for their preferred periods.
The periods are then assigned to the highest bidder, ensuring that each crew
has an influence in the leave assignment process, and the outcome is entirely
determined by the crews themselves. The method involves a two-phase partially
open bidding system. During Phase I, crews registered their preferred periods
on a posted calendar without assigning points to them. Crews were allowed
to modify their period requests during this phase to avoid conflicts with other
crews. The juggling process was closed at the end of Phase I, after which crews
could no longer change their period requests. Crews were given a week between
the end of Phase I and the start of Phase II to determine how many other crews
they were competing with. In Phase II, crews submitted their points via closed
bid.

Dewess [6] report a model for vacation planning for a German public trans-
portation company. The model aims to create socially acceptable annual holiday
plans while considering various legal, company, and driver-related constraints.
These constraints include holiday entitlements, driver qualifications, and con-
nections, among others. The model assigns benefit values to each application
based on social criteria, such as family situations and application priorities. To
solve this problem, a two-stage heuristic algorithm was used. In the first stage,
the algorithm assumes that the applications for leave are approved, resolves
capacity conflicts, and arranges the applications to obtain a feasible solution
with a high benefit. In the second stage, the algorithm attempts to improve the
solution further. Computational experiments indicate that the proposed algo-
rithm can efficiently handle problem instances with up to 10,000 drivers within
a reasonable amount of time.

2.3 Days-off scheduling and planning

The literature on workforce scheduling using integer programming approaches
has placed considerable attention on addressing shift and days-off scheduling
problems. These problems are commonly encountered in managerial scenarios
where the goal is to schedule full-time employees in a manner that minimizes
labor hours while effectively meeting the variable workforce requirements [14].

The scheduling of days off for staff members is a key concern in workforce
planning. Two types of constraints need to be considered. The first type in-
volves individual factors such as industry regulations, labor contracts, workplace
agreements, and personal preferences. These constraints include ensuring em-

ployees work within specified upper and lower limits, have at least one day off
per week, and limit the number of consecutive working days. The second type
of constraint focuses on daily staffing requirements for each shift throughout
the planning period. These constraints ensure that there are enough workers
with the necessary skills for each shift, taking into account the predetermined
staffing levels and the skills possessed by employees [11].

Elshafei et al. [7] introduce a dynamic programming algorithm to address
scheduling problems related to employee days off in a single-shift and com-
pressed workweek setting. The problem involved constraints on various factors
such as the maximum work stretch, maximum number of workdays per week,
and minimum number of consecutive off days per week. Notably, the problem
featured a unique cost structure that is dependent on the work sequence, where
the daily wage of each employee is influenced by the previous work assignments
in the preceding days. This characteristic caused traditional integer program-
ming models to be impractical for solving this problem effectively. To overcome
these challenges, an efficient dynamic programming algorithm was developed
to determine the optimal assignment of days off that minimizes the overall la-
bor cost. Finally, the algorithm was successfully applied to a real-life employee
scheduling problem and was extensively tested through a series of computational
experiments.

10

3 Data and Optimization Model

This chapter introduces constants, variables, constraints, and objective func-
tion for the optimization model and examples are shown with the data. Data
is gathered from the example Prisma unit, but all confidential information is
encrypted, and information is randomized in an Excel file, and all the examples
in the report are based on it.

As discussed in Introduction, the structure of the work can be divided into
three parts. The first part is the initial data that was received from the Prisma
unit in Excel files, which was collected and modified into a suitable format in
one input Excel file so that it is more convenient for the model to read all the
necessary data in one place. The second part is the most technical and math-
ematical part of the work, which is clearly the most significant regarding the
project. In this section, the mathematical modeling of vacation optimization
is studied and the Julia code is reviewed in the next section (Results). The
final part of the structure of the work is the final result in Excel, where optimal
vacations and statistics have been compiled for our client in a visualized form.

The model has employees, weeks, and skills with skill levels. Employees are
the ones for whom the optimal vacations are planned, and they are modeled by
e=1,2,..., FE. In the project, we use employee identification using an encrypted
employee ID, which is a series of numbers but in this example data the personnel
base is 20 employees. From a practical point of view, however, it is possible to
create a solution based on the employee’s first and last name. The unit can be
divided into several departments d = 1,2, ... which all have their own employees,
but in this example case, only one department is used.

Weeks are the period over which the vacations are placed, and are modeled
by w=1,2,...,W. In our project, the first week’s number is 18, the first week
of May, and the last is 35, the last week of August, since the optimization is done
for the summer period. However, the practical solution has been implemented so
that the user can define the desired parameters for the weeks and other variables.

In order to plan vacations so that there are always enough skilled employees
in the unit, the skill and skill level are taken into account with s = 1,2,...,S.
Every skill has a skill level which is in this example case from 1 to 3, meaning
that an employee with skill level 3 on skill s has the highest knowledge regard-
ing the skill. In addition, if the employee has skill level 3, it means she also
has all skill levels below that skill level, that is levels 2 and 1 of that skill. In
data handling, the skill level is coded to each skill, so, for example, one skill
can be skillylevels, and the number of skills s is the number of different skills
multiplied by the number of highest skill level.

11

3.1 Constants

The model uses several constants, which are read into the model from the input
data. Every employee has contractual hours, which means the minimum number
of hours that employees work during the work week. The constant is modeled
with H.. Every employee has also a vacation allowance V, measured in weeks.
In the Excel input side, this is measured in days but changed to a weekly basis
in data handling. This constant determines how many days an employee has a
vacation, and the vacation can not be longer than that constant. A matrix is
defined as all skills and employees, including which skills the employee has at
which skill level. This is formulated as binary constant z. ;. In input Excel, the
matrix is not binary, but data handling changes the size of the matrix to ExS
by reading the skill levels of the cells. Figure 1 presents the example data for
employees’ information.

"[e,s =

1, if employee e has skill s
0, otherwise

employee contract_h_week wvacation_summer skilll skill2 skill3 skill4

1 30 12, 1 0 0
2 25 12 o 2 0
3 24 28 o 1 o
4 30 2 0 1 1 1
5 25 127 1 0o 1 o0
6 25 24 1 o8 o
7 30 2 ol 2 1 2
8 30 12 1008 ofs
9 20 24/ 2 1 1 o0
10 20 12 o 10 2 o
11 24 22 o 1 1
12 30 2 102 1 1
13 30 2/ 2 o 1 1
14 24 12 2 1 o0 1
15 20 24 o o o3
16 24 18 1 0 0 0
17 20 12 1 1 2
18 25 24 1l 2 1 o
19 20 2 2003 2 1
20 25 12 0 0

Figure 1: Worker data of twenty employees

The model optimizes the next summer’s vacations based on last year’s va-

12

cations (Figure 2.), thus the constant Z.,, refers to when each employee can
have a long vacation this year. The constant is calculated during data processing
from the past year’s vacation plan and the vacation plan works with the circular
method, which means that each employee is allowed to start their long vacation
between four to eight weeks after the last year’s start of the long vacation. This
is a binary matrix for each employee for each week and the employee’s vacation
is often divided into at least two separate vacations, one of which is called a
long vacation if it is a vacation consisting of at least two consecutive weeks. If
the employee had no vacation last year, all weeks between June - August are
allowed. The user can also write in the input Excel when none of the employees
are allowed to start their vacation, for example, a busy week can be locked so
that all employees are at work that week.

_J 1, if start of the long vacation is allowed for employee e on week w
o 0, otherwise

employee |18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
P X

X
X

E]
b3

X
X
X
X

E T
k3 <

E I]

b3

A]
bl

ks

S

=
(=B
= o om % x

[ury
~J
E I A

P
[Nele]

X ox ox x x
=

=

3

<

=

=]
[=]
>
B
B
>

Figure 2: Vacation weeks of twenty employees from the last year

In addition to allocating vacations by the optimizer, the employee can re-
quest a week of vacation for themselves, which the user marks in the input data.
Such a week is forced as a holiday for the employee and the information can
be found in the binary matrix f.,,. Requested vacation weeks consumes vaca-
tion days and user can also do manual corrections to vacation weeks for each
employee by this constant.

1, if employee e must have vacation on week w
fe,w = .
0, otherwise

13

In addition to holidays, employees can have absences, such as sick leave or
parental leave, which can be marked by the user manually to input data. These
absences do not consume the employee’s vacation days but reduce the unit’s
total working hours. This constant is pe ., which is a binary matrix.

The model operates with two types of working hours. Other working hours
are those for which the employee is required to have a certain level of compe-
tence in a certain skill. These hours are defined in the input data, as how many
hours of work are required for each skill and skill level in total working hours
during the week. This constant is modeled by 75 and it is the same for all weeks.
Another of these constants models how many hours of general work per week
the unit should do, g,,,q4. This constant is calculated in data handling, where the
required amount of skilled work is subtracted from the total workload forecast
for each week.

Minimum vacation weeks . is a constant that is used to refer to how many
weeks each employee can have their vacation. In the case example, a. is at
most three and at lowest the number of weeks that each employee has in the
input data V.. Finally, the last constant in our model is big M, which is a
widely used method in linear programming, which makes the simplex algorithm
solve the problem more efficiently. In the project, the value of 1000 is used for
it.

3.2 Decision variables

The objective function obtains different values by changing the values of decision
variables. In this project, there are six decision variables in total. First decision
variable is v, ,, which denotes if employee e is on vacation on week w, which is
binary variable:

Ve,w =

{17 if employee e is on vacation on week w

0, otherwise

The number of working hours for each skill is measured on a weekly basis for
each employee. In other words, this variable y¢ ., s > 0 describes the working
hours for each employee e on each skill s on each week w. Naturally, if an
employee does not have a certain skill level, the variable will get a value of zero
for that employee with that skill for all weeks. On the other hand, also the
amount of working hours for general work for each employee e on each week
w is monitored with variable u.,, > 0. General skills are work that does not
require any skill from the employee.

It is important to plan the beginnings of long vacations so that rotating va-
cations can be successful, so the variable z. ,, is modeled as a binary variable if

14

employee e starts the long vacation on week w, i.e.,

{1, if employee e starts the long vacation on week w
Zeaw =

0, otherwise

The last two decision variables are D and o, ,,. The largest week deficit of re-
quired general work hours, that is general hours that are unfulfilled, is defined
in variable D. Unfulfilled general hours are calculated in such a way that the
required hours of skilled work are subtracted from the weekly workload forecast
and finally, the hours of general work, which are covered by the employees on
site in total, are subtracted. The other variable is 0., > 0 which describes how
many overtime hours there are for each employee e for each week w. Overtime
working hours can be accumulated for employees who have skills that are in
short supply. In this case, overtime hours ensure that the unit always has suffi-
cient expertise on site.

3.3 Constraints

In this subsection all 16 constraints are explained and some examples are given
to make the equations easier to understand.

Z Vew = Ve, Ve€E. (1)
wew

The sum of vacation weeks per employee must be equal to the vacation allowance
per employee. If an employee should have three weeks of vacation in total during
the vacation period, then three weeks off is allocated to them.

Z Zew * Ze,w = 1, Ve e E. (2)
weWw

Out of all the possible vacation starts, only one start is selected for each em-
ployee. The sum of the product of the allowed start of the long vacation and
the actual start of the long vacation needs to be one for all employees. This
basically ensures that each employee can start their long vacation only once.
For example, if an employee has allowed starts on weeks 20, 26, and 27 and
starts the long vacation on week 26, then the constraint is not violated.

Ts = Z Ye,w,s * Te,s, Yw € W, Vs € S. (3)

eckE

Specialized work must be fulfilled. A sum of all employee’s skilled work hours
multiplied by the employee’s skill base must be equal to the required hours per
skill. r4 is the same for all weeks. If the employee does not have a specific skill
then z. s = 0, and if an employee does not work at all for a specific skill for a

15

specific week, then ye s = 0.

Zyeyw,s + ey = He* (1 — Ve) + 0c, Ve € E,Ywe W. (4)
seS

The employee’s working hours match the amount of work planned. All work
hours done by an employee must be equal to the sum of the employee’s contract
hours and overtime hours. (1 — v, ,,) term ensures that no working hours are
required from an employee who is on vacation. For example, if an employee has
a 30-hour contract, works skilled work for a total of 12 hours, and general work
for 22 hours in one week, then overtime work of 4 hours is allocated to them.
Thus,
> zew=1, VecE. (5)
weWw
The long vacation can be started exactly once. This constraint ensures that all
employees can start their long vacation only once but also that every employee
must start their long vacation at some point, i.e.,

Zew < Zeyw, Ve € E,Yw € W. (6)

All possible starts of the long vacation must be included in constant Z, ,,, which
is all the allowed starts for the long vacation. This constraint verifies that no
employee can start their long vacation on a week that is not possible for them.
For example if possible startings are Ze, 22 = Z¢, 26 = Ze,,27 = 1 then z¢, 23 =1
is not possible.

Ve,w = fe,w, Ve € E,V'LU eWw. (7)

Employees must have a vacation on weeks that are manually marked as ”fixed
vacation” for the employee in the data. These fixed vacations can be weeks that
the employer has granted requested by the employee. This constraint is also
used if a user wants manually put someone on vacation on a specific week to
adjust the optimized vacation model.

Ve,w = Pe,w; Ve € E, Yw e W. (8)

An employee is having a ”vacation” if they are on sick leave, for example. This
constraint works in a similar way as a constraint (7).

D > guw,a— Z Uew, YweE W. (9)
eckE

The deficit of general work must be equal to or lower than the sum of total
general hours worked by the employees subtracted from estimated general work

hours.
Yew,s < Mxxes5, Ve€ EVweW,VseS. (10)

Amount of skilled working hours per employee needs to be lower or equal to a
big number if a significant employee has significant skill.

Ocw <10, Vee E,Vw e W. (11)

16

Overtime per employee can not exceed 10 hours per week. According to the
collective agreement in the retail sector [1], additional work is up to 40 hours
of work per week and overtime is work that exceeds this limit. The 10 hours of
additional work is determined by the project team and is justified by maintaining
the well-being of the employees.

D 0w <60, VweW. (12)
ecE

The sum of overtime for all employees must be equal to or lower than 60 hours
per week.
Ocy < M % v, VeeEVweW. (13)

The amount of overtime work for all employees and all weeks must be equal or
lower than a big number if an employee is on vacation on that week. In other
words, if an employee is not on vacation, overtime should be zero.

Ze,w < Ve, (w+ae) s Ve € Ea Vw € Hw' (14)

An employee with three or more vacation weeks should have three vacation
weeks in a row. If the employee has fewer vacation weeks than three they
should have as many as possible in a row. The constraint uses the variable
z that describes the start of the long vacation and ensures that the vacation
structure, that is the weeks following the start of the long vacation are also
considered vacation weeks.

1 — Ve (wtactb—1) — Zew = 0, Ve € E,Vw € W,Vb € B.. (15)

This constraint puts an artificial gap between the end of the long vacation and
a possible one-week vacation. B, is an employee-specific constant that specifies
the length of the gap between the long and short vacation.

1-— Ve, (w—b) — Ze,w >0, Vee E,YVwe W,Vb=DB,. (16)

This constraint does the same but ensures the same as constraint 15 except it
guarantees that there are no vacations B, weeks before the long vacation.

3.4 Objective function

The objective function is discussed in more detail in the next section, but it has
the following form.

{)nin D+ M? Z Oew (17)
o ecE,weW

17

4 Results

4.1 Different objective functions

Minimize the maximum difference

1 2] 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

==g==General Demand ==#==General Hours Worked

Figure 3: Demand in hours and actual hours worked when minimizing the
maximum difference

As discussed in Chapter 3.4, we chose the objective function:

min: D+ M x Z Ocw) (18)
ecEweW
Here the goal is to minimize the peak, that is minimize the maximum differ-
ence in available employee hours compared to the needed number of employee
work hours. We started by doing the inverse, that is maximizing the smallest
difference, which gives the objective function.

max: D — M x Z Oew) (19)
ecE,weW

As can be seen by comparing figures 3 and 4, both versions do create a distri-
bution of available employees that follows the needed number of working hours.

However, we noticed that the original maximization idea had some properties
we did not like. As it raised the minimum difference it tended to leave quite
large peaks, which generated poor results. Here it can be seen in the form of the
fourth week where the number of hours worked becomes too low at 209 com-
pared to the demand. Thus we ended up switching to the minimizing version

18

Maximize the minimum difference

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

«=g@==General Demand ==@==General Hours Worked

Figure 4: Demand in hours and actual hours worked when maximizing the
minimum difference

seemed to better generate more even solutions, that is the difference in supply
and demand was more consistent throughout the time period W. We do not
compare the objective values as they do not measure the same property.

4.2 Balancing real-world needs and optimality

The results are heavily impacted by constraints we set to enforce fairness and
to ensure we follow both the laws governing employee rights as well as all rules
present in the union agreement. Furthermore, the employee’s needs must be
considered in the model to ensure employee retention.

The biggest impact of these new constraints is the one pertaining to when
an employee can have their union-mandated long vacation as well as the one
determining the gap between the three-week vacation and the one-week vaca-
tion. These constraints constrain the set of possible solutions a lot. This can
be clearly seen in figure 5, where the weeks the long vacation can start on have
been marked as green. This limits the optimality of the model quite a lot, that
is it means the variance in the difference between hours worked and demand
varies a lot between weeks. We further limit the starting time of the vacation
to the weeks 18-33 as per the customer’s request.

The constraint modeling the gap between the long and short vacation also has

19

<< <
<< < <<
<<<<<

<< <<

Figure 5: Each possible starting week of the long vacation is marked in green
for each employee. Red marks the employees’ long vacation last year.

a clear impact, as when solving without it the model manages to find a more
optimal solution. However, the impact is a lot smaller than that of the afore-
mentioned constraints regarding the longer vacation period, as at most one week
is affected depending on the number of vacation weeks the employee has.

Finally, an addition to the model affords the user the possibility to manually set
a certain week as “locked”, that is no employee can be on vacation that week,
and to manually set an employee as either on vacation or otherwise unavailable
but not on vacation. The impact of these additional constraints is of course
heavily dependent on the number of additional limitations set, and the number
of employees affected. For example, locking a whole week, generally means the
difference in hours worked and hours needed that week is a lot smaller than
other weeks.

4.3 Julia code

The resulting product is a Julia [3] software application divided into three dif-
ferent parts, with the input and output handled through Excel. It is divided
into three working parts, the data parser, the optimization model, and the out-
put generator as well as a main file that works as a bridge between the three
code parts. This was done in order to ease future development and increase
readability as we considered it a natural way to divide the code into segments.
Furthermore, a customer requirement was that all Julia-related software used
to be open-source and free. All Julia packages used in this project are licensed
under the MIT license, which means it is open source and, thus, can be used
freely in commercial applications.

20

4.3.1 Parser and output generator

The Julia code that parses the input Excel is primarily based on the pack-
age XLSX.jl [15], which allows one to both read and write to and from Excel
files. Thus same Julia package is also used to display the results in the out-
put Excel. In addition to loading and displaying all relevant data, we carry
out post-processing on the data transforming it into a suitable form for the
optimization model itself. This includes transferring relevant information into
binary variables, the loaded skillsets, and fixing issues rising from the additions
of the aforementioned locked vacations and other absences. For example, if the
whole summer is set as absence except for the first four weeks the model is not
solvable unless we remove a few constraints.

We make the following changes to ensure such issues do not arise. In prac-
tice, we treat being absent from work in the same way as being on vacation,
as the impact on the vacation plan does not change. We also remove the con-
straint on a minimum gap between vacations if more than one vacation or other
absence is specified. For each specified vacation we lower the number of needed
vacation weeks in a row. That is if we have four vacation weeks out of which two
are locked, we only require a two-week long vacation. Finally, for each specified
absence unrelated to vacations we add a vacation week to ensure the employee
gets his full vacation in addition to the absences, if possible to fulfill within the
given time period.

4.3.2 Optimization Model

The optimization model is implemented as described in Chapter 3 using the
mathematical modeling language JuMP [13]. JuMP requires a separate solver
to solve the modeled problem, here we use HiGHS solver [9]. The solver solves
the problem using the branch and bound optimization method. We set the
solver to use multi-threading to increase the solution speed, as it helps in the
initial symmetry detection.

As the binary elements of the model, make it an MLP the solution time varies
a lot depending specifically on the number of binary elements. The number of
possible skills an employee can have means there is quite a lot of variance in the
solution time, with models having either a large number of employees or possible
skills being close to unsolvable. An acceptable solution to this was to take the
best possible solution found by the model after a set amount of time. As the
model does not have to be completely optimal this was considered acceptable
by the client, as it gives a viable solution.

Therefore, the change discussed in Chapter 4.1 has an even bigger on the solu-
tion. The current implementation starts with searching for a way to decrease

21

the highest difference of hours required on a summer week and the schedule by
the model the number of available hours. Thus, when the optimization run is
terminated prematurely before the optimal solution is found, the model would
be having the smallest found peak of not-fulfilled hours compared to the initial
solution, which would ensure that the week with the smallest number of missing
general working hours would be as even with other weeks as possible - at the
cost of having possibly left a few weeks with extremely unbalanced uncovered
demand.

Over the experiments with the real data of the testing SOK unit, the model
converged to below 5% difference between the upper and lower bounds of the
optimization model in under 60 seconds for every combination of skills and user-
added constraints and settings. This means that the difference between the
highest peak of the unfulfilled working hours of the presented vacation schedule
and the theoretical best result is under 5%. Given that the demand forecasts
contain a higher degree of uncertainty, it is reasonable to save computational
resources and time while presenting a solution that satisfies all set constraints.

4.3.3 Structuring variables

While reading the data from Excel to the optimization model, the input informa-
tion is grouped into three structs. A struct in Julia is a user-defined composite
type that allows grouping related data together. It provides a way to define
custom data structures with their own fields and functions, allowing for efficient
memory layout and performance optimizations.

Utilizing a struct allows grouping different variables into one container, which
is named to reflect its contents. Then, the parser function returns a handful of
containers to the main function and these containers can be conveniently passed
on to the optimization. In the optimization part, the required variables are read
directly from the structs. The grouping is influenced by the layout of the data
in the input Excel.

The following three containers were utilized to read the data from Excel. Fields
of each container are present in the respective bullet lists along with their math-
ematical notation from Chapter 3.1 or other explanations where applicable.

e Employee data:

— Employees, e
— Employee Skills, z. s

— Department, a list of departments

22

— Department Skills, a list of all skills and levels present per department
— Contract Hours, V,

— Vacation Weeks, H,

— Worker Name

— Minimum Vacation Weeks, a variable that limits the length of the
long vacation per employee. If the employee has four weeks of vaca-
tion, he should take three weeks in a row as the ”long vacation pe-
riod” as discussed earlier. If the employee has fewer vacation weeks,
he needs to take all his vacation in one continuous period.

e Last year vacations:

Start of last vacation, week number, when the employee had his long
vacation last year

First year at the firm, a boolean variable to check whether the em-
ployee had any vacation last year

— On leave, pe
— Vacation wish, fe .
— Allowed starts, Z,

e Other data:

— Skill, s
— Week, w

— Department, a dictionary of which departments each skill belongs in
specialized work requirements

— Required hours per week, 7, ¢
— Required general hours per week, g,

— No vacation weeks, a list of weeks, during which no vacations are
allowed

4.4 Quality of results

Figure 6 shows the generated vacation plan. One can clearly see how large of an
impact last year’s long vacations have by comparing it to Figure 2. The figure
manages to find a solution better than simply pushing all vacations forward by
four weeks, as can be seen by the broken pattern. Now looking at Figure 7,
the ideal scenario would of course be a straight line. However, if we ignore the
three dips where the difference is clearly smaller than the other weeks, It is quite
close to a line as the trendline shows. This means the result is at least somewhat
close to an ideal solution. A positive regarding the larger outliers being small
values is the fact that in order to cover the deficit stores generally hire summer
workers. Thus, one can hire in accordance with the trendline or largest peak
and simply be slightly overstaffed on weeks 19,27, and 31, in comparison to
being understaffed if the situation was the opposite.

23

Employees 18] 19] 20 21 2 23 2 25 2 27 28 29 30
X

=
=
=

xxx %

x % xx

Figure 6: The generated vacation plan.

Hours not covered

250
200
150
100

50

29744

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Figure 7: Graph displaying the number of hours not covered each week.

4.5 Output Ul
4.5.1 Dashboard

As discussed earlier, the output user interface is implemented using Excel to
flatten the learning curve and allow the end users to focus on analyzing the
results and not on learning how to use a new interface. The overview of the
resulting dashboard is present in Figure 8. The output can be discussed in the

following sections:

e vacation schedule, in the top-left corner with vacation weeks colored in

red

e employee’s skills, in the top-right corner with each present skill colored in

green

24

> x> x

e resulting statistics, below the vacation schedule
e skills of employees at work and on vacations, below the statistics
[]

hours worked per required specialized work skills, in the bottom-left in
gray

e charts, in the bottom-right

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35|lastyearvacationskilli:level 1 skilll:level 2 skill2:level 3 skill3: level 2 skill3:level 3 _skilld: level 2
1 X X 22[x X X
2 X X 22 X X
3 X X X X 22|x X
4 X X 23
s X X 23|x
6 X X X X 25| X X
7|x X X X 25 X
8| X X 25| X X
9 X X X X 27|x X
10| X X 27 X
1 X X 28|x X
12 X X X X 29|x
13 X X X X 30| X
14] X X 31|x X
15 X X X X 31 X
16| X X X 31|x
17 X X 32|x X X X
18] X X X X 32|x
19 X X X X 35| X X X
20 X X 36| X X X

Employeesonvecati 1 5 4 2 2 2 3 3 5 4 1 4 4 3 3 5 5 3
Employees working 19 15 16 18 18 18 17 17 15 16 19 16 16 17 17 15 15 17
General workforce o| 503[1402] 4311515 475 474 505 487 511 4231153511404 4s4) 41200540 433]1399)404|
General hours worky 362 278 288 338 342 348 324 323 268 292 372 298 288 312 311 267 267 312
General hours not c{ 141 124 143 177 133 126 181 16a[J348) 131 163[1106 1662000228 166 132 “

Objective value D: | 92 500 WM
Employees on vacation with: 400

General hours

skill1: level_1 o s 3 2 2 2 2 2 4 4 1 3 2 2 2 3 3 3 e Nm
skill1: level 2 0 3 2 2 1 1 1 0 1 2 1 2 1 1 0 1 1 2 * 20

skill2: level 3 o 1 0 0o 0 0 0 0 0 1 1 1 0 1 1 0 0 0 100

skill3: level_2 0 2] 0 1 1 0 0 2 3 1 2 1) 1 2 2 0 o

skill3: level 3 6 1 o0 o0 1 1 0 0 2 2 o0 1 1 0 1 1 1 0 18 18 20 21 22 23 24 25 2 27 28 20 30 31 32 33 34 35
skill4: level_2 1 0 1 o0 1 1 1 1 1 0 0 0 0 1 2 1 1 0 Week

Employees on work with:

skill1: level_1 1510 12 13 13 13 13 13 11 11 14 12 13 13 13 12 12 12 General workforce demandin hours General hours worked
skill1: level_2 7 4 5 5 6 6 6 7 6 5 6 5 6 6 7 6 6 5 i

skill2: level_3 2 1 2 2 2 2 2 2 2 1 1 1 2 1 1 2 2 2

skill3: level 2 7 s 7 7 6 6 7 71 5 4 6 5 6 7 6 5 5 7 General hours not covered

skill3: level 3 5 4 5 5 4 4 5 5 3 3 5 4 4 5 4 4 4 5 200

skilld: level 2 3 4 3 4 3 3 3 3 3 4 4 4 4 3 2 3 3 4

Worked hours with; =

skill1: level_1 20 20 20

skill1: level 2 8 8 é 150

skill2: level_3 24 24 2

skill3: level 2 24 24 100

skill3: level_3 12 12 0

skill4: level 2 2 21 .

1819 20 21 2 25 24 25 2 27 28 20 30 3 2 B/ M I
Week

Figure 8: Excel output dashboard

This dashboard is created in Excel separately for every department of the
company. This allows to keep the data neatly together without overwhelming
the user with the number of different skill and level combinations. Moreover,
printing each department’s results separately fits well with the concept of run-
ning the optimization for each department iteratively.

All the data presented is combined from several optimization output variables
into one matrix, which is written to Excel using the XLSX library. The library
does not support, however, the formatting. Therefore, an Excel file only with
the data is generated after the code finishes running. The formatting is added
later by the user using the conditional formatting function in MS Excel.

25

The vacation schedule is a table of employee numbers (later - names) in rows
and weeks used in the optimization - in columns. The weeks, on which the
employee is on vacation, are marked with X. This data comes from the decision
variable v, of the optimization model. The last column features the week
number when the employee started long vacations last year. This information
is used to ensure that the current optimization schedule aligns with the rule
that the long vacation is moved by a predefined interval every year. Moreover,
it helps to make manual adjustments to the plan while adhering to the afore-
mentioned rule. A closer look at the anonymized output can be explored from
Figure 9 below.

Employees 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

0 NS s WN P
S
XX X X
>

=
)
B3
>
B3
B3

Figure 9: Excel output: vacation schedule

Next, on the right from the vacation schedule, the skills of each employee
are marked with X. If the employee has level 2 of a skill, then he also is seen as
having level 1 of this skill. This allows to account that experienced employees
are able to do less specialized work if needed and the same concept is carried
over to the output file. This information helps the end user to make manual
adjustments to the optimized vacation schedule. For this, it is mandatory to
know the skills of each employee to ensure that the required specialized hours
are always covered after the required changes. A closer look is available from
Figure 10.

Furthermore, the statistics feature on a weekly basis: how many employees
are on vacation and how many are working, how many there are forecasted gen-
eral working hours in hours (coming from the input), how many general work
hours the department is scheduled by the program to output and the difference
between these two numbers for each week. Adding conditional formatting for
the required workforce demand and unfulfilled general working hours allows one
to notice easily, which weeks could turn out to be problematic. Lastly, the ob-
jective value is printed out, which is the same as the highest difference between
the required and worked hours.

26

skilll: level 1 skilll: level 2 skill2: level 3 skill3: level 2 skill3: level 3 skilld: level 2
X X X
X X

X X
X
X X X

X
X X X
X X

X

X X
X
X X
X X

X
X
X X X X
X
X X X X
X X X X

Figure 10: Excel output: skills

Climbing down the Excel sheet, the user is presented with the number of em-
ployees that possess each skill and who are either on vacation or at work. First,
the number of “skills on vacation” is printed, followed by the number of “skills
at work”. Naturally, a single employee possessing several skills would be present
in several of these numbers and together they reflect how many employees have
a certain skill. Again, this extra information allows the end user to make man-
ual changes and adjust the schedules while maintaining the required specialized
work hours. Moreover, it is important for the end user to know that each week
there will be a certain minimum number of workers with a certain skill. In case
of unexpected absence or a peak in demand, there would be a second worker to
cover the need.

Finally, in gray there is a number of hours that the department is working on
the required specialized skills. The numbers are printed from the model output
variable yc ., s and are the same as the input variable r,. This information
complements the previously described information on the general working hours
to create a holistic picture of available and scheduled working hours of the
department.

The last, manually added, piece of the user dashboard is the two charts that
visualize the required and worked hours. The top chart shows the trend per each
summer week with the forecasted workload in blue and planned by the model
working capacity in orange. It is easy to notice that the model strives to copy
the peaks in demand by having fewer workers on vacation on these weeks. The

27

lower chart focuses on the difference between these two numbers and illustrates
the uncovered general work hours. The format of the chart was chosen to be
a bar chart to make it easier to compare different weeks between each other.
Furthermore, the red line shows the average unfulfilled number of hours over
the whole summer period. The ideal result would be that every week would
be equal to this average and, thus, a fixed number of extra summer employees
would perfectly cover the demand and vacations. The charts are provided in
Figure 11.

General hours

600

500 \/\N\/\/\/_
400

il
3 300
I
200
100
0
18 1% 20 21 22 23 24 25 26 27 28 2% 30 31 32 33 34 35
Week
= General workforce demand in hours m= General hours worked
General hours not covered
300
250

Hours
(=]

=]

200
150
10
s 1
0

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Week

Figure 11: Excel output: charts

28

4.5.2 Overtime

For each department, a second sheet is printed. This worksheet contains the
number of overtime hours required from each employee to ensure that all con-
straints are satisfied. It is possible and was seen in the testing data, that some
departments may not have enough skilled workers to cover the required spe-
cialized work hours, which are included as a hard constraint. Therefore, the
planning tool is allowed to set some workers on overtime but at a considerably
high cost as described earlier. Thus, in reality, overtime is scheduled only in
mandatory cases. A snapshot of the overtime sheet of the user interface is in
Figure 12

Skills |18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

O 00~ ol bWk

N N = N =
W 00~ o0 1 B W N K~k O

]
o

Figure 12: Excel output: overtime

29

5 Discussion

The goal of the project was to create an optimization tool for SOK to reduce
planning costs and improve the quality of vacation planning by ensuring that
given constraints are always met. This goal was met with positive feedback
both from the project’s enablers at SOK and end users at the Prisma unit.

The created tool is by far not complete. It can be improved in a variety of
ways that were discussed during the implementation of the project. For ex-
ample, by creating a possibility to plan a long vacation in the length of two
weeks in a row instead of limiting a long vacation to three weeks only. Further
research can be implemented to analyze suitable ways to ensure that employees
get vacation weeks that are perceived as advantageous, like having a vacation
in July instead of September. Discussed options were to rotate vacations in a
fixed frame where the employee who is next on the list always would have a
vacation after the employees above him. Moreover, adjusting the parameters is
important to ensure reasonable results.

Furthermore, additional constraints can be added to account for law require-
ments, like that vacations cannot start on public holidays, or consider employees
who have less than a full week of vacation. Currently, vacation weeks are calcu-
lated by rounding up any starting weeks of vacation allowance, i.e. 10 vacation
days would be 2 weeks in the model.

Additionally, the tool can be modified to reflect the different processes and
requirements of different business entities and units collaborating with SOK.
The current model is tailored to the requirements of the testing unit and the
realities of their business. However, the model was built with space for general-
ization and further development.

On the other side, as discussed in the literature review, there are just a handful
of research papers that focus on the same applications of optimization. There-
fore, the solution of this project to create a MILP program that could effectively
create an output of acceptable quality in under a minute per optimization run
has used several unusual ways to model the objective and constraints.

30

6 Conclusions

This report summarizes four months of work done on developing a vacation
optimization tool for SOK. The project started with gathering information on
the vacation laws and regulations, and requirements of SOK and the Prisma
unit and stemmed from scientific research. Next, a theoretical optimization
model was developed and confirmed with SOK. The biggest part of the project
consisted of implementing the model in Julia and creating a parser that would
reliably read the information from the Excel file to Julia.

The collaboration with all parties has thrived throughout the project. SOK
representatives, Antti Punkka and Teemu Kinnunen, have offered invaluable
help in ideating on how to solve the challenges that have arisen during the
project and facilitated excellent communication with the end users to ensure
that the tool is designed in the required way. We had exactly enough online
meetings with the end users to go through the ways how they operate and what
tool would help them in vacation planning. Moreover, from the Aalto side, Ahti
Salo and Jerry Aunula offered valuable feedback on the project deliverables and
presentations, in addition to organizing the opportunity to work on this course.

Overall, the objectives of the project were achieved. The output vacation plans
were checked to satisfy the constraints and, thus, should be valid. Hopefully,
the code will be further developed by SOK and put into production to create
saving for the next year’s summer vacation planning.

31

A Self Assessment

A.1 How closely did the actual implementation of the
project follow the initial project plan?

The goal of this project was to create a vacation optimization tool for a single
Prisma store unit, so that it could be scaled to multiple S Group establishments.
The tool should be easy to use and produce better results than with hand and
faster. The schedules that our tool produces fulfil all the constraints and the
optimization process takes only seconds. How easy-to-use the tool finally was, is
to be seen, because no real life testing in the Prisma unit was excecuted during
the project. However, feedback from vacation planners of the Prisma seemed
like they would be able to use it with good-enough guiding.

Tasks in our project plan were mostly executed by the original schedule. How-
ever, some of the suggestions by the customers could not be implemented into
the final model, because the suggestions for improvement were suggested in the
final presentation for the customer, so there was no time. Nevertheless, the tool
was a success and after the project the S Group will be continuing working on
the tool.

A.2 In what ways was this project successful?

The primary objective of developing an optimized vacation planning tool was
successfully achieved. The final product may be considered a minimum viable
version, but it is a solution that can be effectively utilized by those experienced
with the methods and coding language.

Communication with the client played a crucial role in the success of the project.
From the outset, we established a clear and open line of communication with
the client, which allowed us to better understand their needs and expectations.
The client was always responsive and proactive in providing feedback and input,
which helped us to refine the model and ensure that it aligned with their goals.

Throughout the project, we maintained regular communication with the client
to keep them informed of our progress and any issues that arose. We also pro-
vided regular updates on the model’s performance and sought feedback on how
it could be improved. The client was consistently engaged and showed a genuine
interest in the success of the project, which made working with them a pleasure.

Finally the teamwork has been great. Every team member has aided the project
with their unique expertise and perspectives.

32

A.3 In what ways was this project unsuccessful?

The project had a few things that could have been improved upon. The per-
haps biggest issue with the end product is the fact that the excel is only updated
numerically. All formatting has to be done by hand. This drawback of the prod-
uct is mostly due to time-constraints as well as the general difficulty of doing so
through the chosen Julia package. This is in the end however a rather minor is-
sue as even a inexperienced excel user can quite easily add the cosmetic changes.

Another minor issue that came up such is the case by case handling of manually
inserted absences and vacations being handled by removing constraints instead
of modifying the constraints heavily. This however is quite a rare use case and
should not have a major impact on the final product.

Finally some small details such as the code being quite rigid and impossible
to modify without touching the source code, concerning for example the design
of the input excel, and still running rather slowly and likely possible to optimize
further remained unfixed.

A.4 'What could have been done better?

There are a few things we could have done differently in hindsight. The schedule
of the project plan could have been even more precise or the schedule could have
been followed even better, because the course, so to speak, ended too early com-
pared to what we reached in our project. By estimation we finished about 90 %
of all the work we had planned. We could have improved our model and added
new functionalities, but we had to limit them because of the course schedule.
However, this was not a completely critical problem, as SOK was satisfied with
the results we achieved, and plan to develop the solution even further. So, as
agreed at the beginning of the course, we got a good starting point for creating
optimal schedule plan for SOK.

We could also have started the coding part earlier, because learning Julia con-
text took some time, and also in the latter half of the course, the team members
were more busy with other courses as well. At the beginning of the course, get-
ting data from the client also served as a bottleneck for a couple weeks, because
at first we weren’t sure what all the information we needed to complete the
project, and it also took time to understand and clean the data.

33

References

[1]

Palvelualojen ammattiliitto. “Key provisions of the collective agreement
in the retail sector”. In: (2022). URL: https ://www . lukusali . fi/
pam/ #/reader /703£7638 - d290 - 11ec - b1f0 - 00155d64030a (visited
on 02/24/2023).

C. S. Azmat, T. Hiirlimann, and M. Widmer. “Mixed Integer Program-
ming to Schedule a Single-Shift Workforce under Annualized Hours”. In:
Annals of Operations Research 128.1 (2004), pp. 199-215.

J. Bezanson et al. “Julia: A fresh approach to numerical computing”. In:
SIAM review 59.1 (2017), pp. 65-98. URL: https://doi.org/10.1137/
141000671.

R. Van den Broek, H. Hoogeveen, and M. Van den Akker. “Personnel
Scheduling on Railway Yards”. In: 20th Symposium on Algorithmic Ap-
proaches for Transportation Modelling, Optimization, and Systems. Vol. 85.
2020.

P. S. Chong and M. W. Strevell. “A vacation scheduling algorithm for
military flight crews: Maximizing satisfaction while maintaining military
preparedness”. In: Journal of Operations Management 5.2 (1985), pp. 205—
211.

S. Dewess. “Socially acceptable annual holiday planning for the crew of
a local public transport company in Germany”. In: Public Transport 2.1
(2010), pp. 25—49.

M. Elshafei and H. K. Alfares. “A dynamic programming algorithm for
days-off scheduling with sequence dependent labor costs”. In: Journal of
Scheduling 11.2 (2008), pp. 85-93.

A. T. Ernst et al. “An Annotated Bibliography of Personnel Scheduling
and Rostering”. In: Annals of Operations Research 127.1 (2004), pp. 21—
144.

Q. Huangfu and J. A. J. Hall. “Parallelizing the dual revised simplex
method”. In: SIAM review 10.1 (2018), pp. 1867-2957. URL: https://
doi.org/10.1007/s12532-017-0130-5.

T. Kinnunen. Cost-efficient vacation planning with variable workforce de-
mand and manpower. Espoo, 2016. URL: https ://sal . aalto.fi/
publications/pdf-files/tkinl6_public.pdf.

A. Klinkert. “Proceedings of the 7th International Conference on the Prac-
tice and Theory of Automated Timetabling (PATAT’08)”. In: 2008.

H. N. Koutsopoulos and N. HM. Wilson. “Operator workforce planning
in the transit industry”. In: Transportation Research Part A: General 21.2
(1987). Special Issue Managing transportation, pp. 127-138.

M. Lubin et al. “JuMP 1.0: Recent improvements to a modeling language
for mathematical optimization”. In: Mathematical Programming Compu-
tation (2023). In press.

34

[14] J. G. Morris and M. J. Showalter. “Simple Approaches to Shift, Days-Off
and Tour Scheduling Problems”. In: Management Science (1983), pp. 942—
950.

[15] F. Noronha. XLSX. URL: https://felipenoris.github.io/XLSX.jl/
stable/?ref=morioh.com&utm_source=morioh.com.

[16] J. Van den Bergh et al. “Personnel scheduling: A literature review”. In:
European Journal of Operational Research 226.3 (2013), pp. 367-385.

35

