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Abbreviations	
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CDR	 Cumulative	Default	Rate	

CDS	 Credit	Default	Swap	

CDO	 Collateralized	Debt	Obligation	

CLO	 Collateralized	Loan	Obligation	
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1 Introduction		
Collateralized	loan	obligations	(CLO)	are	structured	asset	backed	securities	that	compound	a	
pool	 of	 corporate	 loans	 (collateral	 portfolio)	 with	 notes	 of	 varying	 cash-flow	 priority	
(obligations).		A	CLO	is	constructed	as	a	special	purpose	vehicle	(SPV)	that	finances	the	CLO	
by	issuing	the	collection	of	notes,	namely,	tranches,	and	purchases	the	collateral	portfolio	of	
corporate	loans	by	searching	for	appropriate,	typically	B-rated,	loans	for	the	portfolio.		

The	cash	flow	structure	of	a	CLO	allocates	the	interest	and	principal	incomes	of	the	portfolio	
of	loans	to	the	notes	according	to	a	pre-specified	prioritization	scheme,	termed	the	payment	
waterfall	of	the	CLO.	This	study	considers	CLOs	with	standard	prioritization	scheme,	termed	
simple	subordination,	in	which	the	coupon	(and	principal)	payments	of	senior	notes	are	paid	
before	those	of	mezzanine	and	subordinate	notes.	The	cash	flow	stream	of	a	standard	CLO	is	
illustrated	in	Figure	1.		

	
FIGURE	1:	STANDARD	CLO.	

The	prioritization	scheme	of	a	CLO	includes	checks	for	sufficient	collateralizations	for	senior	
notes,	which	allow	for	the	higher	credit	quality	of	those	notes	ensuring	that	the	possibility	of	
losses	 is	 minimal.	 These	 checks	 may	 cause	 premature	 principal	 payments,	 which	 enable	
passing	the	checks	in	the	future.	Because	the	senior	tranches	are	less	risky,	they	pay	smaller	
coupon	payments	than	the	riskier	junior	tranches.	The	riskiest	note	is	the	subordinate	note,	
which	receives	payments	only	 if	 there	 is	cash	remaining	after	all	 the	coupon	and	principal	
payments	to	the	other	notes	have	been	made.	

Currently,	because	of	the	zero	reference	rates	of	many	central	banks,	there	are	few	attractive	
fixed	 income	 securities	 available	 in	 the	market	 for	 an	 investor	 seeking	 high	 returns.	 This	
makes	the	 junior	notes	of	CLOs	an	attractive	 investment	opportunity	nowadays.	However,	
because	of	 the	complex	payment	structure	of	 these	securities,	 it	 is	not	straightforward	 to	
assess	the	risk	of	these	securities,	and	consequently,	finding	a	fair	price	may	be	troublesome.	
Hence	 developing	 a	 method	 for	 analyzing	 the	 cash	 flows	 of	 a	 CLO	 can	 provide	 valuable	



	 	 	
	

	 	 	
	

6	

information	on	the	risks	of	the	notes	of	different	priority,	and	consequently	alleviate	finding	
a	fair	price	for	these	securities.	

This	study	presents	a	comprehensive	analysis	on	different	factors	affecting	the	cash	flows	of	
the	most	junior	mezzanine	tranche	of	a	CLO,	termed	also	as	BB	tranche.	The	analysis	is	made	
by	 constructing	 a	 model	 which	 generates	 different	 default	 schemes	 for	 the	 loans	 of	 the	
collateral	portfolio	and	distributes	the	received	payments	to	the	notes	of	a	CLO	under	these	
schemes.	The	analysis	results	in	fair	prices	in	terms	of	expected	returns	and	assesses	the	risk	
of	the	note	by	presenting	distributions	of	the	possible	returns	under	different	scenarios.	We	
study	the	return	distributions	in	a	case	study	by	applying	the	model	for	an	example	CLO.		

The	rest	of	this	study	is	organized	as	follows.	Section	2	provides	a	review	of	some	relevant	
literature	on	CLO	modelling	and	presents	the	references	used	for	this	study.	Section	3	then	
presents	 the	methods	 and	 explains	 the	 selected	 approaches	 for	 the	 developed	model.	 In	
Section	4	 the	used	data	 is	clarified	and	Section	5	presents	 the	results	of	 junior	mezzanine	
tranche	returns	under	different	scenarios.	Section	6	explains	model	validation	and	discusses	
the	most	important	limitations	of	our	model.	Section	7	concludes	the	report	with	a	summary	
of	our	methods	and	findings.	

2 Literature	review	
There	is	extensive	literature	on	different	pricing	models	of	portfolio	derivatives	(Amsdorf	and	
Halperin,	2008).	A	compact	and	comprehensive	overview	of	the	field	of	CLO	modelling	has	
been	made	by,	e.g.,	 Sepci	et	al.	 (2009).	They	made	a	 rough	division	of	 the	CLO	models	 in	
academic	 literature	 into	 (i)	 static	 and	 (ii)	 stochastic	models.	 This	 division	 is	made	 by	 the	
different	approaches	to	modelling	defaults	of	the	portfolio	loans.	

2.1 Static	models	
In	static	models,	the	loans	of	the	underlying	portfolio	are	assumed	to	default	with	a	constant	
rate.	These	kinds	of	models	can	also	 include	assumptions	of	constant	prepayments	of	 the	
loans	 and	 constant	 recovery	 rates	 from	 the	 defaulted	 loans.	 These	 specify	 the	 expected	
amounts	of	the	defaulted	loans,	the	cash	recovered	from	the	defaults	and	the	cash	obtained	
from	loans	where	no	defaults	occur.	The	expected	cash	flows	obtained	from	the	loan	portfolio	
is	then	distributed	to	the	liabilities	of	CLO,	the	tranches	and	the	subordinate	equity	holders,	
by	the	specified	payment	rules.	

2.2 Stochastic	models	
The	stochastic	models	use	same	assumptions	of	default,	prepayment	and	recovery	rates	and	
similarly	distribute	 the	portfolio	proceeds	according	 to	 the	payment	 rules	of	 the	CLO.	The	
main	feature	that	distinguishes	the	stochastic	models	from	static	models	is	the	treatment	of	
loan	 defaults.	 Defaulting	 a	 portion	 of	 loans	 in	 static	 models	 is	 in	 contradiction	 with	 real	
behavior,	where	loans	either	default	or	do	not	default.	Moreover,	the	stochastic	models	allow	
for	varying	amounts	of	loans	to	default	in	each	period,	which	is	also	in	keeping	with	real	world	
behavior.	These	features	are	obtained	by	simulating	different	default	scenarios	using	random	
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number	generation.	This	simulation	can	also	include	simulation	of	different	prepayment	and	
recovery	rates.	The	distributions	from	which	the	default	behavior	is	generated	are	defined	so	
that	 they	 are	 in	 harmony	with	 historical	 or	market	 data.	 Unlike	 static	models,	 stochastic	
models	allow	for	examination	of	the	tail	of	the	distribution.	

Giesecke	 and	 Kim	 (2011)	modelled	 CLO’s	 cash	 flows	 to	 analyze	 the	 risk	 of	 different	 CLO	
tranches.	They	pointed	out	that	if	realistic	estimates	of	the	default	probabilities	are	desired,	
historical	 default	 data	 should	 be	 preferred	 to	 market	 derivative	 pricing	 data.	 If	 default	
probabilities	 are	 estimated	 from	 the	 market	 pricing	 data,	 they	 will	 not	 be	 real	 world	
probabilities	but	risk-neutral	probabilities	 instead,	which	are	often	greater	than	real	world	
default	probabilities,	due	to	the	fact	that	most	investors	are	risk-averse.	

2.3 Default	simulation	
Li	 (2000)	 introduced	a	method	 to	model	defaults	of	 financial	 instruments	using	a	 random	
variable	called	“time-until-default”,	or	simply	survival	time,	which	denotes	the	length	of	time	
that	 a	 security	 survives.	 He	 derived	 some	 properties	 for	 the	 distribution	 of	 the	 random	
variable,	 such	 as	 exponential	 distribution	 over	 certain	 periods	 under	 mild	 assumptions.	
Perhaps	the	most	notable	outcome	of	Li’s	study	was	the	notorious	default	correlation	model	
using	copula	functions.	This	model	was	widely	used	before	the	subprime	crisis	and	some	have	
even	blamed	this	model	as	the	cause	of	the	financial	crisis	(Salmon,	2009).	Whether	or	not	
the	model	played	a	major	role	in	the	calculations	of	market	players	involved	in	the	crisis,	it	is	
evident	that	lack	of	comprehension	of	the	nature	of	default	correlation	was	one	great	cause	
for	the	crisis,	which	Li	worried	already	in	Whitehouse	(2005).	

While	default	time	modelling	has	been	widely	studied	in	academic	 literature,	the	recovery	
rates	of	loans	are	rarely	given	as	much	consideration.	For	example,	Sepci	et	al.	(2009)	simply	
assumed	a	constant	recovery	rate	in	their	model.	The	only	stochastic	model	for	recovery	rates	
recognized	from	academic	literature	was	made	by	Duffie	and	Gârleanu	(2001).	Nevertheless,	
while	they	modelled	the	times	of	defaults	with	stochastic	differential	equations,	they	simply	
assumed	 that	 the	 cash	 amounts	 recovered	 from	defaulted	 loans	 follow	a	 uniform	𝑈(0,1)	
distribution,	relative	to	the	par	amount	of	the	loans.	

2.4 Historical	data	
For	 realistic	 estimates	 of	 the	 default	 time	 distributions	 and	 recovery	 rates,	 the	 most	
important	references	are	the	annual	default	studies	by	Moody’s.	These	studies	are	published	
in	the	first	quarter	of	each	year,	and	we	use	the	studies	made	in	years	2011	and	2016	(the	
former	study	contains	some	additional	information	on	Moody’s	default	rates).	Moody’s	rates	
different	corporate	loans	by	how	prone	they	are	to	defaults.	Moreover,	Moody’s	monitors	
the	default	events	that	occur	to	these	and	some	un-rated	loans	(such	as	 loans	of	formerly	
rated	issuers).	

It	is	important	to	note	here	the	definition	of	default	by	Moody’s.	Moody’s	defines	default	as	
four	 different	 credit	 events.	 These	 include	 (i)	 a	 missed	 or	 delayed	 interest	 or	 principal	
payment,	 (ii)	 a	 bankruptcy	of	 the	debt	 issuer,	 (iii)	 a	 distressed	exchange	 (e.g.,	 the	obligor	
offers	the	creditors	a	restructured	debt	with	diminished	financial	obligation	as	compared	to	
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the	original	obligation),	and	(iv)	a	forced	change	in	the	terms	of	the	credit	agreement	(such	
as	 forced	 currency	 re-denomination	 imposed	 by	 the	 debtors	 sovereign).	 This	 definition	 is	
provided	in,	for	example,	the	default	study	of	year	2011.	Hence	the	default	events	monitored	
by	Moody’s	include	also	less	severe	credit	events	than	the	bankruptcies	of	the	obligors.	

Using	historical	data	of	the	defaults,	Moody's	calculates	statistics	of	the	defaults,	such	as	the	
average	cumulative	default	rates	(CDR)	and	recovery	rates	(RR).	The	average	CDR	represents	
an	estimate	of	the	expected	cumulative	probability	function	of	the	time	until	default	for	loans.	
Moody's	methodology	to	calculate	the	cumulative	default	rates	is	described	by	Hamilton	and	
Cantor	(2006).	They	explain	that	the	Moody’s	CDRs	estimate	unbiased	default	probabilities	as	
the	average	CDRs	presented	by	Moody's	take	into	account,	for	example,	the	censoring	bias	
due	to	rating	withdrawals.	The	data	on	recovery	rates	is	available	both	as	post-default	trading	
prices	and	as	ultimate	recovery	rates,	that	is,	the	actual	cash	recovered	from	the	issuers	after	
an	event	of	default.	

2.5 Pricing	
After	the	default	scenarios	have	been	generated	and	all	the	calculations	of	the	tranche	cash	
flows	 have	 been	 made,	 a	 fair	 value	 for	 a	 tranche	 can	 be	 calculated	 by	 discounting	 the	
expected	cash	flow	yielded	by	the	model	 (Sepci	et	al.,	2009).	The	selection	of	appropriate	
discount	 factor	can,	however,	be	ambiguous,	because	 it	should	take	 into	account	 features	
such	as	credit	risk	and	liquidity	premium,	defining	of	which	requires	subjective	knowledge.		
Another	approach	to	valuate	a	CLO	bond	 is	 to	generate	the	scenarios	under	a	risk-neutral	
probability	measure,	and	to	calculate	the	discounted	cash	flows	using	the	risk-free	rate	as	the	
discount	factor	(Kim,	2010).	

Nevertheless,	it	is	possible	to	avoid	the	assumption	of	an	appropriate	discount	rate	and	still	
perform	modelling	with	real	world	probabilities	instead	of	the	risk-free	probabilities	by	using	
internal	rates	of	return	(IRR)	of	par	priced	notes	as	the	value.	This	is	usually	done	to	valuate	
equity	tranches,	because	the	subordinate	note	does	not	have	a	fixed	coupon	payment	and	
hence	the	only	way	to	assess	the	periodical	payments	of	the	equity	tranche	is	to	calculate	its	
IRR.	Such	analysis	for	par	priced	equity	tranche	is	presented,	for	example,	in	Tavakoli	(2008).		

3 Methodology	
The	CLO	model	is	presented	in	this	section.	The	first	subsection	describes	the	estimation	of	
future	 reference	 interest	 rates.	 Then	 we	 move	 on	 to	 discussing	 the	 default	 scenario	
generation	 by	 simulation	 of	 (i)	 default	 times	 and	 (ii)	 recovery	 cash	 flow	 received	 from	
defaulted	loans.	Next,	we	explain	how	the	cash	flows	of	the	collateral	portfolio	of	a	CLO	are	
derived	under	different	default	scenarios,	followed	by	describing	how	these	cash	flows	are	
distributed	to	the	notes	of	a	CLO.	The	last	two	parts	of	this	section	discuss	what	the	simulation	
scheme	is	and	how	different	pricing	measures	are	calculated	from	simulation	outcomes.	
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3.1 LIBOR	forward	curve	
The	coupons	of	the	notes	and	the	loans	in	the	portfolio	of	the	CLOs	considered	in	this	study	
depend	on	the	3-month	London	Interbank	Offered	Rate	(LIBOR).	Hence	to	obtain	realistic	cash	
flows	 in	 our	 CLO	 model,	 we	 estimate	 the	 future	 3-month	 LIBOR	 rates	 based	 on	 market	
information.	One	of	the	most	traded	interest	rate	derivatives	are	swap	agreements	on	the	3-
month	LIBOR,	and	we	estimate	the	future	LIBOR	rates	based	on	the	market	information	of	
these	agreements.	In	an	interest	rate	swap,	one	party	pays	periodical	payments	according	to	
a	floating	reference	rate,	and	another	party	pays	a	fixed	periodical	payment.	Hence,	at	the	
initialization	of	a	swap	contract	it	is	assumed	that		

𝑑 𝑇) ⋅ ∆𝑐
-

)./

= 𝑑 𝑡2 𝛿2E 𝑟2 ,
6

2.7

	

where	𝑐	is	the	constant	payment,	Δ	and	𝛿	are	fractions	of	year	that	correspond	the	periods	
of	 the	payments,	𝑑(⋅)	 is	 the	discount	 factor	and	E[𝑟2]	 is	 the	market	expectation	of	 the	3-
month	LIBOR	rate	(Fujii	et	al.,	2010).		

Assuming	that	expectations	dynamics	hold,	we	denote	E 𝑟) = 𝑙),	where	𝑙) 	is	the	forward	rate	
of	the	3-month	LIBOR	to	period	𝑖.	The	day	count	of	typical	swap	agreements	(and	for	those	
from	which	the	market	data	is	obtained)	is	semi-annual	and	the	day	count	of	3-month	LIBOR	
is	quarterly.	Hence	

𝑑 𝑇) ⋅ 𝑐6/2
?6

)./

= 𝑑 𝑡2 𝑙2/4 ,
A6

2.7

	

where	𝑚	is	the	tenor	(maturity)	of	the	swap	and	𝑐6	the	constant	payment	corresponding	to	
this	tenor.	We	make	a	simplifying	assumption	that	the	LIBOR	changes	only	at	even	years,	from	
which	 follows	 that	 𝑙2 = 𝑙2C/ = 𝑙2C? = 𝑙2CD	∀	𝑗 = 1 + 4𝑘, 𝑘 = 0,1,2, ….	 Discounting	 with	 3-
month	LIBOR	and	approximating	1 + 𝑙KL6/2 = 1 + 𝑙K/4 ?	(where	𝑙K	is	the	3-month	forward	
LIBOR	to	period	𝑘)	yields		

1 +
𝑙K
4

?)

K./

M/
𝑐6
2

?6

)./

= 1 +
𝑙K
4

)

K./

M/
𝑙2
4 ,

A6

2.7

	

1 +
𝐿K
4

MA)M/

K./

1 +
𝐿)
4

M?

+ 1 +
𝐿)
4

MA 𝑐6
2

6

)./

= 1 +
𝐿K
4

MA)M/

K./

1 +
𝐿2
4

MOA

O./

𝐿2
4

6

2.7

,	

where	 the	annual	3-month	 forward	LIBORs	are	denoted	as	𝐿K = 𝑙P, 𝐾 = 4(𝑘 − 1) + 𝑖, 𝑖 =
1,2,3,4	 (because	 we	 assume	 only	 yearly	 change	 in	 the	 3-month	 LIBOR).	 From	 the	 above	
equation	 we	 can	 solve	 the	 rates	 by	 bootstrapping,	 when	 the	 constant	 payments	 can	 be	
obtained	 from	 market	 data,	 for	 example	 online	 on	 the	 webpages	 of	 ICE	 Benchmark	
Administration	(IBA).		
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3.2 Default	time	generation	
Similar	to	the	approach	of	Li	(2000),	we	model	defaults	of	corporate	loans	as	a	point	events,	
occurring	after	a	length	of	time.	We	model	the	survival	time	of	a	security,	that	is,	the	time-
until-default,	as	a	random	variable	𝑇	that	has	a	cumulative	distribution	function	(CDF)	𝐹 𝑡 =
P(𝑇 ≤ 𝑡).	𝑇	 is	a	 continuous	 random	variable	 that	measures	 the	 length	of	 time,	measured	
from	 the	 present	 time,	 until	 a	 default	 occurs.	 For	 example,	 for	 a	 non-defaulted	 security,	
𝐹 0 = 0, 𝐹 ∞ = 1,	and	𝐹 𝑡/ = 𝑝/,	where	𝑝/	is	the	probability	that	the	security	defaults	
after	𝑡/	length	of	time	at	the	latest.	

3.2.1 Default	probability	distribution	

3.2.1.1 Marginal	distributions	
The	distributions	of	probabilities	of	defaults	of	individual	loans	can	be	obtained,	for	example,	
from	the	historical	default	rates	presented	in	Moody’s	Investors	Service	(2016).	These	rates	
present	 the	 actual	 realized	 relative	 amounts	 of	 defaults	 occurring	 for	 corporate	 loans	 of	
different	credit	quality,	as	measured	by	alphanumeric	Moody’s	ratings.	Hence,	assuming	that	
the	default	times	of	loans	have	come	from	the	same	distributions	for	loans	of	similar	credit	
rating,	 these	 historical	 rates	 present	 a	 large	 sample	 estimate	 of	 the	 true	 probability	
distribution	of	default	times.	

Another	approach	to	obtain	default	probabilities	would	be,	for	example,	to	estimate	them	
from	credit-default-swap	(CDS)	rates	(Chan-Lau,	2006).	In	CDS	one	party	pays	a	quarterly	fee	
in	exchange	for	the	other	party	paying	the	experienced	losses	in	case	the	reference	obligor	
defaults	during	the	life	of	the	contract.	Estimation	of	default	probabilities	can	be	illustrated	
using	the	following	one-period	example.		

The	protection	seller	is	exposed	to	an	expected	loss	𝐿	equal	to	𝐿 = 𝑝 1 − 𝑅𝑅 ,	where	𝑝	is	the	
one-period	default	probability	and	𝑅𝑅	the	expected	recovery	rate	at	default.	Assuming	risk-
neutrality	(and	fair	pricing	arguments	and	frictionless	markets)	the	CDS	spread	𝑆,	that	is,	the	
quarterly	fee	paid	for	by	the	protection	buyer,	is	then	𝑆 = 𝑝(1 − 𝑅𝑅)/(1 + 𝑟),	where	𝑟	is	the	
risk-free	rate.	By	direct	observation	of	the	market	CDS	spreads	and	using	historical	recovery	
rates,	 it	would	then	be	possible	to	estimate	the	default	probabilities	𝑝.	A	similar	approach	
could	 be	worked	 to	 estimate	 default	 probabilities	 from	 the	market	 prices	 of	 the	 loans,	 if	
reliable	data	of	these	would	be	available.	

While	 the	 CDS	 estimation	 can	 provide	 more	 recent	 data	 on	 the	 default	 probabilities	 of	
individual	loans,	it	does	not	allow	for	the	estimation	of	real	world	probabilities,	because	the	
risk-neutrality	 assumption	 is	 not	 realistic	 for	 real	world	 investors.	 Hence	 the	 probabilities	
estimated	this	way	would	be	the	risk-neutral	probabilities,	instead.	The	same	applies	for	the	
loan	 market	 price	 estimation,	 and	 the	 loan	 market	 prices	 do	 not	 satisfy	 the	 frictionless	
markets	assumption	either,	because	the	market	of	B-rated	loans	is	illiquid.	For	these	reasons,	
we	prefer	the	Moody’s	historical	default	rates	as	the	most	reliable	estimates	of	the	real	world	
probabilities	 that	 a	 loan	 of	 a	 certain	 credit	 quality	 defaults,	 under	 normal	 economic	
circumstances.	
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3.2.1.2 Joint	distribution	
The	default	rates	provide	the	marginal	probability	distributions	of	defaults	of	individual	loans.	
Li	 (2000)	presented	a	 copula	 function	approach	 that	 links	univariate	marginal	 to	 their	 full	
multivariate	distribution.	Specifically,	 form	𝑚	uniform	random	variables	𝑈/, 𝑈?, … , 𝑈6,	 the	
joint	distribution	𝐶,	termed	a	copula	function	is	

𝐶 𝑢/, 𝑢?, … , 𝑢6, 𝜌 = Pr 𝑈/ ≤ 𝑢/, 𝑈? ≤ 𝑢?, … , 𝑈6 ≤ 𝑢6 ,	

where	𝜌	is	the	correlation	parameter	of	the	multivariate	distribution.	Li	(2000)	showed	that	
for	a	given	set	of	marginal	distributions	𝐹/ 𝑥/ , 𝐹? 𝑥? , … , 𝐹6(𝑥6)	the	function	

𝐶 𝐹/ 𝑥/ , 𝐹? 𝑥? , … , 𝐹6 𝑥6 , 𝜌 = 𝐹(𝑥/, 𝑥?, … , 𝑥6)	

results	 in	 a	 multivariate	 distribution	 function	 with	 marginal	 distributions	
𝐹/ 𝑥/ , 𝐹? 𝑥? , … , 𝐹6(𝑥6).	The	most	popular	copula	function	used	to	 link	marginal	default	
time	distributions	is	the	multivariate	copula	

𝐶 𝑢/, 𝑢?, … , 𝑢6 = Φ6 ΦM/ 𝑢/ ,ΦM/ 𝑢? , … ,ΦM/ 𝑢6 , 𝚺 ,		

where	Φ6	is	the	𝑚-variate	and	Φ	the	univariate	normal	distribution	and	𝚺	is	the	correlation	
matrix	of	the	𝑚-variate	normal	distribution.	

It	is,	however,	difficult	to	assign	realistic	correlations	between	the	default	times	of	loans	in	
the	 collateral	 portfolio.	 Suppose,	 for	 example,	 two	 loans	 that	belong	 to	 companies	 in	 the	
same	industry.	If	the	size	of	the	industry	shrinks,	the	default	probability	of	both	loans	may	
increases.	On	the	other	hand,	if	one	of	the	companies	succeeds	in	increasing	its	market	share,	
the	other	company’s	loans	may	become	more	prone	to	default.	Hence	by	only	considering	
the	 correlations	 of	 two	 loans	 by	 the	 industries	 of	 the	 companies	 (which	 is	 the	 only	 data	
available	for	correlation	estimation	provided	in	a	typical	CLO	portfolio	sheet),	it	is	difficult	to	
assess	any	realistic	correlations	for	the	loans.	

Modelling	 correlation	could	be	useful	when	modelling	of	economic	 crises,	because	during	
these	crises	the	defaults	of	loans	appear	to	be	more	correlated	than	in	normal	circumstances	
(the	timings	of	defaults	of	corporate	 loans	tend	to	cluster	 into	economic	crises).	However,	
this	 behavior	 could	 also	 be	 explained	 by	 temporal	 increase	 in	 the	 default	 probabilities	 of	
individual	 loans	 during	 economic	 crises,	 which	 can	 be	 modelled	 by	 scaling	 the	 default	
probabilities	of	different	periods.		

For	 the	 aforementioned	 reasons,	 we	 do	 not	 include	 default	 correlation	modelling	 in	 our	
model,	and	instead	generate	the	default	times	from	their	marginal	distributions	directly.	Note	
that	this	corresponds	to	modelling	zero	correlations	between	the	default	times	of	individual	
loans.	

3.2.2 Inverse	CDF	sampling	
Generation	from	an	arbitrary	empirical	probability	distribution	function	is	possible	with	the	
inverse	CDF	method.		Suppose	data	𝑋	from	a	distribution	𝑝	with	a	CDF	𝐹(𝑥).	That	is,	

𝐹 𝑥 = Pr 𝑋 ≤ 𝑥 = 𝑝 𝑢 d𝑢.
e

Mf
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To	generate	from	this	distribution,	we	first	draw	a	random	value	𝑈	from	a	uniform	distribution	
on	 [0,1].	 Then	 we	 let	𝑋 = 𝐹M/ 𝑈 .	 	 Then	 the	 random	 variable	𝑋	 will	 follow	 exactly	 the	
distribution	𝑝.	Hence	to	simulate	from	𝑝,	we	can	use	the	following	procedure:	

1. Draw	𝑢	from	𝑈(0,1).	
2. Calculate	𝑥 = 𝐹M/ 𝑢 ,	i.e.,	solve	𝐹(𝑥) = 𝑢	for	𝑥.	

Now	that	our	variable	is	time	until	default	of	a	loan	𝑇,	and	the	CDF	is	assumed	to	match	the	
historical	default	rates,	the	cumulative	distribution	function	is	

𝐹 𝑡 =

𝑝/, 𝑖𝑓	𝑡 = 𝑡/,
𝑝?, 𝑖𝑓	𝑡 = 𝑡?,…
𝑝-, 𝑖𝑓	𝑡 = 𝑡-,
1,											𝑖𝑓	𝑡 > 𝑡-,

	

where	𝑝), 𝑖 = 1,… , 𝑛	 are	 the	 average	 cumulative	default	 rates	 to	 years	 𝑡) = 1,2, … , 𝑛	 and	
where	the	last	state	corresponds	a	time	out	of	the	boundaries	of	our	consideration.		

Because	 our	 cash	 flow	model	 is	 discrete	 but	 generated	𝑈	 are	 continuous,	 the	 generated	
default	times	𝑡 = 𝐹M/(𝑢)	have	to	be	approximated	to	match	the	closest	period	𝑖	of	the	model,	
that	is,	we	approximate	𝑡) ≈ 𝐹M/(𝑢).	Hence	a	rounding	rule	for	the	generated	default	times	
has	to	be	defined.			

The	defaults	of	loans	will	have	two	effects:	the	recovery	rate	of	the	loan	is	obtained	instead	
of	the	interest	stream	and	principal	payment,	and	the	principal	of	the	loan	portfolio	is	reduced	
by	the	size	of	the	defaulted	loans.	The	recovered	cash	from	a	defaulted	loan	typically	occurs	
with	a	delay	after	the	default	time.	Based	on	this,	an	upward	rounding	rule	on	the	default	
times	can	be	justified,	and	hence	we	use	this	rounding	rule.	

Using	this	rounding	rule,	we	define	

𝐹M/ 𝑢 =

𝑡/,
𝑡?,⋯
𝑡-,
∞,

							𝑖𝑓	0 ≤ 𝑢 ≤ 𝑝/,
									𝑖𝑓	𝑝/ < 𝑢 ≤ 𝑝?,

⋯
														𝑖𝑓	𝑝-M/ < 𝑢 ≤ 𝑝-,

𝑖𝑓	𝑢 > 𝑝-,

	

where	again	the	 last	state	 is	out	of	consideration	boundaries.	This	method	 is	 illustrated	 in	
Figure	 2:	 Default	 time	 generation.	 The	 presented	 distribution	 shows	 the	 probability	
distribution	for	B3-rated	loans.	
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FIGURE	2:	DEFAULT	TIME	GENERATION.	

3.2.3 Quarterly	intervals	
Our	model	has	quarterly	intervals,	but	the	default	data	in	Moody’s	Investors	Service	(2016)	is	
presented	on	annual	basis.	Hence	to	generate	default	times	that	can	occur	during	any	period	
of	our	model,	we	interpolate	the	empirical	CDF	of	the	default	times.	We	fitted	a	piecewise	
linear	function	to	the	default	time	data,	that	is,	

𝐹 𝑡 =

𝑝/ ⋅
𝑡
𝑡/

,																																															𝑖𝑓	𝑡 ≤ 	 𝑡/,
𝑝? − 𝑝/
𝑡? − 𝑡/

⋅ 𝑡 − 𝑡/ + 𝑝/,																						𝑖𝑓	𝑡 ≤ 𝑡?,
…

𝑝- − 𝑝-M/
𝑡- − 𝑡-M/

⋅ (𝑡 − 𝑡-M/) + 𝑝-M/, 𝑖𝑓	𝑡 ≤ 𝑡-,

1,																																																															𝑖𝑓	𝑡 > 𝑡-.

	

This	function	is	then	used	to	generate	default	times	using	the	inverse	CDF	method.	

3.2.4 Economic	crisis	modelling	
We	 test	 some	 characteristics	 that	 will	 affect	 the	 proceeds	 of	 CLO	 notes.	 One	 of	 these	
characteristics	 is	 the	 default	 rates	 for	 the	 loans,	 that	 is,	 if	 the	 cumulative	 probability	
distribution	 of	 default	 times	 differs	 from	 the	 historical	 averages	 presented	 by	 Moody’s	
Investors	Service	(2016).	

We	 test	 different	 default	 rates	 as	 if	 the	 default	 rates	 would	 increase	 from	 the	 historical	
averages	for	some	period	during	the	lifetime	of	the	CLO.	This	corresponds	to	modelling	an	
economic	crisis,	a	period	during	which	defaults	of	corporate	loans	are	much	more	common	
than	 during	 an	 ordinary	 economic	 state	 (in	 addition	 to	 other	 exceptional	 circumstances).		
Suppose	that	the	probability	of	the	loan	defaulting	before	times	𝑡/	or		𝑡?	are	Pr(𝑇 ≤ 𝑡/)	and	
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Pr(𝑇 ≤ 𝑡?),	respectively.	We	model	an	economic	crisis	happening	between	time	𝑡/	and	𝑡?	by	
increasing	 the	probability	of	defaults	of	 loans	happening	between	 these	 times,	 that	 is,	by	
scaling	up	the	conditional	probability	Pr 𝑇 ≤ 𝑡? 𝑇 > 𝑡/).	First	we	calculate	this	probability	
from	 (known)	 Pr 𝑇 ≤ 𝑡/ = 𝑎	 and	 Pr 𝑇 ≤ 𝑡? = 𝑏	 using	 the	 Kolmogorov	 definition	 of	
conditional	probability	as	

Pr 𝑇 ≤ 𝑡? 𝑇 > 𝑡/) =
Pr(𝑇 ≤ 𝑡? 	∩ 	𝑇 > 𝑡/)

Pr(𝑇 > 𝑡/)
=
𝑏 − 𝑎
1 − 𝑎.	

Suppose	now	that	a	crisis	occurs	at	time	interval	𝐼q = [𝑡/q, 𝑡?q]	and	suppose	𝑡? ∈ 𝐼q.	Then,	the	
conditional	probability	of	a	loan	defaulting	in	this	time	interval	is	scaled	by	a	crisis	factor	𝛾	to	
get	

Pr 𝑇 ≤ 𝑡? 𝑇 > 𝑡/, 𝑡? ∈ 𝐼q) = 𝛾
Pr(𝑇 ≤ 𝑡? 	∩ 	𝑇 > 𝑡/)

Pr(𝑇 > 𝑡/)
= 𝛾

𝑏 − 𝑎
1 − 𝑎.	

Note	that	if	the	crisis	does	not	occur	in	a	considered	time	interval,	the	conditional	probability	
is	Pr 𝑇 ≤ 𝑡? 𝑇 > 𝑡/, 𝑡? ∉ 𝐼q) = (𝑏 − 𝑎)/(1 − 𝑎).	

Finally,	we	can	calculate	a	new	cumulative	probability	function	recursively	𝐹 𝑡 = P(𝑇 ≤ 𝑡)	
by	integrating	over	the	conditional	probabilities	as		

𝐹 𝑡 = Pr 𝑇 ≤ 𝑡 = Pr(𝑇 ≤ 𝑡) 	∩ 	𝑇 > 𝑡)M/)
uvwu

= Pr 𝑇 ≤ 𝑡) 𝑇 > 𝑡)M/)Pr	(𝑇 > 𝑡)M/)
uvwu

	

𝐹(𝑡) = Pr 𝑇 ≤ 𝑡) 𝑇 > 𝑡)M/, 𝑡) ∈ 𝐼q)Pr(𝑇 > 𝑡)M/)
uvwu,uv∈xy

+ Pr 𝑇 ≤ 𝑡) 𝑇 > 𝑡)M/)Pr(𝑇 > 𝑡)M/)
uvwu,uv∉xy

	

𝐹 𝑡 = Pr 𝑇 ≤ 𝑡) 𝑇 > 𝑡)M/, 𝑡) ∈ 𝐼q) 1 − Pr 𝑇 ≤ 𝑡)M/
uz	uv∈xy

+ Pr 𝑇 ≤ 𝑡 𝑇 > 𝑡)) 1 − Pr 𝑇 ≤ 𝑡)M/
uz	uv∉xy

,	

where	𝑖 ≥ 1	and	𝑡7 = 0.	We	estimate	a	reasonable	value	for	the	crisis	factor	by	studying	the	
default	data	during	different	crises	in	Moody’s	Investors	Service	(2016).	In	2009,	the	default	
rate	of	all	Moody’s	rated	loans	was	5.02%	and	in	2008	this	rate	was	2.51%.	On	average,	the	
Moody’s	rated	loans’	default	rate	has	been	1.57%,	from	year	1983	to	year	2015.	Hence	during	
the	financial	crisis	in	2008-2009,	the	default	rates	were	(5.02% + 2.51%)/(2 ⋅ 1.57%) = 2.4	
times	greater	 than	on	average.	Hence	to	model	a	similar	change	 in	 the	default	 rates	as	 in	
2008-2009	crisis	we	set	the	crisis	factor	to	𝛾 = 2.5	for	two	years	during	some	two-year	period	
in	the	CLOs	lifetime.		

3.3 Recovery	rate	generation	
We	model	recovery	rates	as	ultimate	recovery	rates,	meaning	the	portion	of	principal	that	is	
ultimately	recovered	from	the	defaulting	company,	often	with	a	delay	of	approximately	one	
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year.	In	contrast	with	market	recovery	rates,	the	ultimate	recovery	rates	are	typically	higher	
and	 receiving	 an	 ultimate	 recovery	 does	 not	 require	 activity	 from	 the	 CLO	 manager.	 An	
alternative	modeling	possibility	would	be	to	use	market	recovery	rates	and	assume	that	the	
CLO	manager	immediately	trades	the	defaulted	loan	away.		

The	 historical	 average	 ultimate	 recovery	 rate	 for	 loans	 has	 been	 80.4%	 in	 the	 1987-2015	
timeframe	as	stated	by	Moody’s	Investors	Service	(2016).	In	effect,	the	recovery	rates	can	be	
as	low	as	zero	and	on	the	other	hand	occasionally	even	surpass	100%.		In	our	model	we	limit	
recovery	rates	to	the	range	between	zero	and	one.	

As	 in	 Duffie	 and	Gârleanu	 (2001),	we	model	 the	 recovery	 rate	 as	 a	 uniformly	 distributed	
random	 variable.	 The	 mean	 of	 the	 distribution	 is	 easily	 changeable	 in	 the	 model	 and	 is	
currently	set	at	60%	based	on	a	conservative	expert	expectation.	The	range	of	the	random	
variable	is	limited	to	be	from	20%	to	100%.	

3.3.1 Recovery	rate	adjustment	
To	incorporate	market	information	into	our	model,	we	adjust	the	random	recovery	rate	based	
on	the	market	price	of	the	loan	in	relation	to	the	other	loans	in	the	portfolio.	We	calculate	
the	expected	value	of	the	loan’s	cash	flow	𝐶𝐹)(𝑗), 𝑗 = 1,… ,𝑚) 	(where	𝑚) 	is	the	maturity	of	
the	loan)	of	each	loan	𝑖	at	the	assumed	60%	recovery	rate	and	calculate	the	ratio	between	
the	net	present	value	of	this	expected	cash	flow	(discounting	with	3-month	LIBOR)	and	the	
price	of	the	loan.	We	then	calculate	the	average	of	these	ratios.	The	recovery	rates	of	the	
cheap	loans	are	adjusted	down	and	the	recovery	rates	of	the	expensive	loans	up.	

Ultimately	the	ultimate	recovery	rates	are	generated	by:	

𝑅𝑅) =
0,
𝑟𝑟),
1,

𝑖𝑓	𝑟𝑟) ≤ 0
								𝑖𝑓	0 < 𝑟𝑟) < 1

𝑖𝑓	𝑟𝑟) ≥ 1
,	

where	

𝑟𝑟) = 𝑢�,� +
E 𝑑 𝑗 𝐶𝐹) 𝑗

6v
2./

𝑃)
−
1
𝑛

E 𝑑 𝑗 𝐶𝐹) 𝑗
6v
2./

𝑃)

-

)./

,	

where	𝐶𝐹)(𝑗)	is	the	(random)	cash	flow	of	loan	𝑖	at	period	𝑗	(consisting	of	coupon,	principal,	
and	 recovery	payments),	𝑑(𝑗)	 is	 the	discount	 factor	 corresponding	 to	period	 𝑗	 and	 the	3-
month	LIBOR	rate	of	that	period,	𝑃) 	is	the	price	of	the	loan,	and	𝑛	is	the	number	of	loans	in	
the	 portfolio.	 𝑢�,�	 is	 a	 realization	 of	 a	 uniform	 random	 variable	 𝑈�,� ∼ 𝑈 𝑎, 𝑏 =
𝑈 0,1 𝑏 − 𝑎 + 𝑎.	 Parameters	 𝑎	 and	 𝑏	 define	 the	 mean	 and	 variance	 for	 the	 random	
variable	𝑈�,�.	With	mean	60%,	for	example,	the	maximum	variance	is	received	with	𝑎 = 0.2	
and	𝑏 = 1,	and	we	use	these	values	for	𝑅𝑅	generation.	
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3.4 Portfolio	cash	flow	model	
The	notes	of	the	CLO	pay	coupons	quarterly,	and	for	this	reason	we	model	the	cash	flows	of	
the	CLO	quarterly.	Under	normal	circumstances,	each	corporate	loan	𝑖	in	the	CLO’s	portfolio	
pays	 coupon	 payments	 𝐶) 	 in	 every	 period	 𝑘	until	 the	 maturity	 of	 the	 loan	 and	 the	 loan	
principal	𝐹) 	at	the	maturity	𝑡)6	of	the	loan.	The	coupons	of	the	loans	are	floating	rate	coupons,	
that	is,		

𝐶) 𝑘 = 𝐿K + 𝑠) 𝐹),	

where	𝐿K	is	 the	3-month	 London	 Interbank	Offered	Rate	 (LIBOR)	 in	period	𝑘	and	𝑠) 	 is	 the	
spread	 of	 the	 loan	 which	 is	 the	 additional	 interest	 paid	 by	 the	 loan,	 in	 addition	 to	 the	
reference	rate.	For	most	of	the	loans	a	LIBOR	rate	floor	𝑓) 	is	also	defined,	which	protects	the	
loan	buyers	from	interest	rate	decreases	by	setting	a	minimum	to	the	reference	rate.	Under	
these	circumstances,	the	periodical	coupon	payment	becomes	

𝐶) 𝑘 = min(𝐿K, 𝑓)) + 𝑠) 𝐹).	

We	do	not	model	prepayments	of	the	loans,	and	hence	the	loans	in	the	portfolio	act	as	if	they	
were	floating	rate	bonds.		

Each	loan	has	a	certain	probability	Pr 𝑇 ≤ 𝑡K 𝑇 > 𝑡KM/)	of	default	in	each	period	𝑘.	If	a	loan	
defaults,	it	will	no	longer	pay	any	coupons	and	instead	it	will	make	a	payment	equal	to	𝑅𝑅)𝐹) 	
once,	where	𝑅𝑅) 	is	the	recovery	rate	of	the	loan.	The	recovery	cash	flows	received	in	the	case	
of	default	are	often	delayed	due	to	the	circumstances	of	the	corporation	that	lead	to	default.	
Hence	we	model	the	recovery	rates	to	be	paid	after	a	delay	of	one	year.		

We	denote	the	𝑛-vector	of	realized	default	times	as	𝚻 = (τ/, 𝜏?, … , 𝜏-),	where	𝜏)’s	are	the	
realizations	 of	 the	 default	 times	 of	 each	 loan	 𝑖	 and	𝑛	is	 the	 number	 of	 loans	 in	 the	 loan	
portfolio.	We	then	denote	the	maturities	of	each	loan	as	an	𝑛-vector		𝐭 = (𝑡/6, 𝑡?6,… , 𝑡-6).	
The	cash	flow	received	from	the	loan	portfolio	in	each	period	𝑘	is	then	

𝐶𝐹 𝑘 = 𝟏 𝑡K ≤ 𝑡)6 𝟏(𝑡K < 𝜏)) 𝐶) 𝑘 + 𝟏 𝑡K = 𝑡)6 𝐹)

-

)./

+ 𝟏 𝑡K = 𝜏) + 1 𝑅𝑅)𝐹),	

where	𝟏 𝐴 = 1,	if	statement	𝐴	is	true	and	0,	otherwise	and	𝐶) 𝑘 	is	the	coupon	payment	of	
loan	 𝑖	 as	 defined	 above.	 The	 coupon	payments	 of	 the	 collateral	 portfolio	 are	 termed	 the	
interest	payments	and	the	rest	of	the	payments	are	the	principal	payments	of	the	portfolio.	
These	are	treated	somewhat	differently	in	the	payment	waterfall	of	the	CLO.	Hence	we	write	
the	cash	flows	of	the	collateral	portfolio	also	as	

𝐶𝐹 𝑘 = 𝐶𝐹)-u����u 𝑘 + 𝐶𝐹��)-q)��� 𝑘 ,	

where	𝐶𝐹)-u����u 𝑘 = 𝟏 𝑡K ≤ 𝑡)6 𝟏(𝑡K < 𝜏))𝐶) 𝑘-
)./ 	and	𝐶𝐹��)-q)��� 𝑘 = 𝟏 𝑡K =-

)./

𝑡)6 𝟏 𝑡K < 𝜏) + 𝟏 𝑡K = 𝜏) + 1 𝑅𝑅) 𝐹).	

In	addition	to	the	cash	flows	of	the	portfolio,	the	operation	of	CLO	requires	monitoring	the	
par	value	of	the	portfolio	in	each	period.	The	par	value	of	the	portfolio	is		



	 	 	
	

	 	 	
	

17	

𝐹���u���)� 𝑘 = 𝟏(𝑡K < 𝜏))
-

)./

𝐹).	

3.4.1 Portfolio	adjustments	
At	the	time	when	the	notes	of	a	CLO	are	priced,	the	whole	collateral	portfolio	has	not	usually	
been	 purchased.	 In	 keeping	 with	 this,	 we	 model	 a	 CLO	 where	 most	 of	 the	 loans	 of	 the	
collateral	portfolio	have	already	been	purchased,	but	where	approximately	fifth	of	the	loans	
have	not	yet	been	purchased.	These	 loans	are	used	as	adjustable	 loans	 for	 the	 sensitivity	
analysis	of	the	CLO.	We	complete	the	collateral	portfolio	with	20	identical	artificial	loans,	so	
that	the	adjustment	of	the	average	characteristics	of	these	loans	is	straightforward	(they	are	
identical)	 and	 that	 they	 behave	 as	 the	 rest	 of	 the	 portfolio	 in	 terms	 of	 default	 scenarios	
(separate	 loans).	 Suppose	 that	 the	 current	 par	 amount	 of	 the	 portfolio	 is	𝐹���u���)�(−1)	
(before	the	simulation	is	initiated)	and	the	target	par	amount	is	𝐹���u���)�(0)	(the	initial	par	
amount	 of	 the	 portfolio).	 The	 target	 par	 amount	 is	 selected	 according	 to	 the	 sensitivity	
analysis	scenario.	Then	the	par	amount	of	each	of	these	loans	is	

𝐹��u)�)q)�� =
𝐹���u���)� 0 − 𝐹���u���)�(−1)

20 	

These	artificial	loans	can	be	used	to	modify,	for	example,	the	(i)	weighted	average	spread	(ii)	
the	weighted	average	rating	factor	and	(iii)	the	initial	par	amount	of	the	portfolio.	The	first	
two	are	the	averages	of	characteristics	of	individual	loans,	weighted	by	the	par	amount	of	the	
loans,	that	is,	

𝑠�� =
𝐹)𝑠)-

)./

𝐹���u���)�(0)
, 𝑟𝑓�� =

𝐹)𝑟𝑓)-
)./

𝐹���u���)�(0)
,		

where	𝑟𝑓) 	is	a	numerical	value	of	the	credit	quality	of	loan	𝑖	(defined	from	the	alphanumeric	
rating	factors	and	the	conversions	provided	by	Moody’s),	termed	the	rating	factor	of	a	loan.	

3.5 Liability	model	
The	 liability	 model	 chiefly	 implements	 the	 payment	 waterfall,	 allocating	 given	 portfolio	
interest	and	principal	payments	 to	 interest	and	principal	payments	of	 the	 tranches.	Along	
with	 scheduled	 interest	 payments,	 changes	 in	 the	 portfolio	 structure	 might	 trigger	 early	
principal	 payments	 to	 senior	 tranches	 in	 order	 to	 reduce	 their	 risk.	 To	 facilitate	 this,	 par	
subordination	and	overcollateralization	percentages	are	tracked	before	and	after	each	batch	
of	payments.	A	summary	of	each	key	concept	is	given	below,	after	which	a	typical	payment	
waterfall	is	described.	

3.5.1 Par	subordination	
Let	 𝑡 = 0,… , 𝑇	 denote	 a	 tranche	 in	 descending	 order	 of	 seniority.	 Par	 subordination	 of	 a	
tranche	𝜏	is	defined	as	

𝑃𝑎𝑟𝑆𝑢𝑏� 𝑘 = 𝐹���u���)�(𝑘) − 𝐹u(𝑘),
�

u.7
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during	period	𝑘	where	𝐹u	is	the	par	of	tranche	𝑡,	i.e.,	as	the	portfolio	par	less	par	of	all	senior	
tranches	divided	by	the	portfolio	par.	

Par	subordination	serves	to	describe	the	amount	of	“buffer”	par	that	needs	to	default	before	
that	tranche	incurs	losses.	The	more	senior	the	tranche,	the	more	par	subordination	it	has.	
During	the	years	of	operation	of	the	CLO,	some	of	its	assets	are	expected	to	default,	reducing	
the	par	subordination	of	each	tranche	 (given	that	 there	 is	any	still	 left).	The	price	of	each	
tranche	then	reflects	whether	the	defaults	and	their	effect	on	par	subordination	has	been	
lower	of	higher	than	expected.	

3.5.2 Overcollateralization	tests	
Overcollateralization	(OC)	for	each	period	𝑘	and	for	each	tranche	𝜏	in	turn	is	defined	as	

𝑂𝐶� 𝑘 =
𝐹���u���)�(𝑘)

𝐹u(𝑘)�
u.7

,	

i,e,	as	the	portfolio	par	divided	by	the	sum	of	par	of	all	non-junior	tranches.	Similar	to	the	par	
subordination	 figures,	OC	 serves	 to	 indicate	 the	 amount	 of	 buffer	 and	 risk	 the	 tranche	 is	
subject	to.	The	CLO	bylaws	often	define	so	called	trigger	levels	for	the	OC	of	each	tranche,	
that	when	met,	 trigger	early	payments	to	senior	 tranches	 in	order	to	recover	OC	 levels	 to	
acceptable	levels.	The	principal	payment	needed	to	re-establish	a	required	tranche	OC	level	
𝑂𝐶��is	therefore	given	by	

𝑂𝐶� 𝑘 = 𝑂𝐶�� ⇔
𝐹���u���)�(𝑘)

𝐹u(𝑘)�
u.7

=
𝐹���u���)�(𝑘)

𝐹u′(𝑘)�
u.7

	

⇒ 𝐹7(𝑘) − 𝐹7�(𝑘) ≡ Δ𝐹7(𝑘) =
𝑂𝐶�� − 𝑂𝐶� 𝑘 ⋅ 𝐹u(𝑘)u

u.7
?

𝑂𝐶�� − 𝑂𝐶� 𝑘 ⋅ 𝐹u(𝑘)u
u.7 + 𝐹���u���)� 𝑘

,	

where	𝐹u�(𝑘)	is	the	tranche	par	after	payment.	The	early	payments	are	made	from	interest	
proceeds,	reducing	the	funds	available	to	make	payments	to	junior	tranches.	

3.5.3 Interest	coverage	tests	
Interest	coverage	tests	test	the	CLO's	 interest	coverage,	 i.e.,	the	ratio	of	 interest	proceeds	
generated	by	the	CLO's	assets	compared	to	the	interest	cost	of	the	CLO's	debt.	Upon	failure,	
interest	proceeds	are	directed	to	early	amortization	until	the	given	coverage	ratios	are	met,	
similarly	as	with	OC	tests.	The	model	discussed	here	currently	only	supports	CLOs	with	no	
interest	coverage	tests.	

3.5.4 Interest	diversion	tests	
Interest	diversion	tests	are	similar	to	OC	tests	in	that	their	triggers	are	defined	in	terms	of	
overcollateralization.	However,	when	triggered,	a	fraction	of	the	remaining	interest	income	
is	spent	on	acquiring	new	assets,	hence	diversifying	the	loan	portfolio.		

After	the	reinvestment	period	(see	below),	interest	diversion	test	failure	results	in	principal	
payments	according	to	the	priority	of	payments.	However,	interest	diversion	test	failure	can	
cause	only	50%	of	the	remaining	proceeds	to	be	directed	to	early	amortization	at	most.		
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3.5.5 Reinvestment	period	
The	bylaws	of	a	CLO	often	also	define	a	 reinvestment	period,	during	which	early	principal	
payments	from	the	loan	portfolio	are	reinvested	to	new	loans	instead	of	making	payments	to	
the	senior	tranches.	Modeling	the	reinvestment	period	requires	one	to	take	assumptions	as	
to	 the	 qualities	 of	 the	 reinvested	 loans.	 By	 introducing	 new	 loans	 following	 the	 median	
qualities	 of	 the	 current	 loan	 portfolio,	 the	 portfolio	 would	 start	 to	 converge	 towards	 an	
unrealistically	 homogeneous	 structure,	 and	 sampling	 new	 loans	 according	 to	 the	 current	
portfolio	distribution	would	significantly	increase	the	number	of	samples	required	to	reach	
accurate	results.	Realistically	modelling	the	reinvestment	period	was	deemed	to	be	complex	
and	it	was	excluded	from	the	model's	scope.	For	this	reason,	modelling	interest	diversion	test	
was	 also	 made	 according	 to	 post-reinvestment	 period	 means.	 Depending	 on	 the	 CLO	
manager's	 incentivization,	 she	 might	 be	 encouraged	 to	 take	 aggressive	 bets	 during	 the	
reinvestment	 period,	 exposing	 its	 creditors	 to	 additional	 risk.	 Therefore,	 excluding	
reinvestment	period	from	the	model	potentially	underestimates	risk.	

3.5.6 Payment	waterfall	
Interest	 proceeds	 and	 principal	 payments	 from	 the	 loan	 portfolio	 are	 distributed	 to	 the	
creditors	of	the	CLO.	The	securities	issued	by	the	CLO	belong	to	a	tranche	indicating	its	level	
of	subordination	w.r.t	to	other	of	the	CLO.	The	payment	waterfall	describes	the	subordination	
of	payments	as	well	as	other	fees	and	costs	relevant	to	the	CLO.	The	payment	waterfall	 is	
additionally	subject	to	a	series	of	overcollateralization	(OC)	and	interest	diversion	(ID)	tests.	

In	 its	 current	 form,	 the	model	 allocates	 interest	 payments	 as	 follows	 (namely,	 as	 per	 the	
example	CLO	provided	by	the	client).	Currently,	only	overcollateralization	tests	are	assumed	
for	 the	 initial	CLO	model.	OC	 tests	and	principal	payments	 resulting	 from	test	 triggers	are	
modelled.		

1.	Senior	management	fee	to	the	CLO	manager	(typically	0.20%	of	par	p.a.)	
2.	Interest	of	AAAs	
3.	If	an	event	of	default	has	occurred,	then	to	pay	the	principal	of	AAAs	
4.	Interest	of	AAs	
5.	If	AAA/AA	OC	test	is	breached,	then	to	pay	the	principal	of	AAAs	until	AAA/AA	OC	test	is	
satisfied.	
6.	Interest	of	As	
7.	If	A	OC	test	is	breached,	then	to	pay	the	principal	of	AAAs	until	A	OC	test	is	satisfied.	
8.	Interest	of	BBBs	
9.	If	BBB	OC	test	is	breached,	then	to	pay	the	principal	of	AAAs	until	BBB	OC	test	is	satisfied.	
10.	Interest	of	BBs	
11.	If	BB	OC	test	is	breached,	then	to	pay	the	principal	of	AAAs	until	BB	OC	test	is	satisfied.	
12.	 During	 the	 reinvestment	 period	 only	 (4	 first	 years):	 If	 the	 interest	 diversion	 test	 is	
breached,	then	to	use	50%	of	the	remaining	proceeds	to	buy	new	loans	into	the	portfolio	until	
the	interest	diversion	test	is	satisfied.	
13.	Junior	management	fee	to	the	CLO	manager	(typically	0.30%	of	par	p.a.)	
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14.	Rest	to	the	subordinated	note	

Principal	payments	aside	from	those	used	to	satisfy	outstanding	interest	payments	and	those	
borne	from	OC	test	failures	are	similarly	distributed	on	tranche	seniority,	i.e.,	AAA	is	paid	all	
principal	payments	until	all	par	is	repaid.	After	this,	AA	is	paid	principal	and	so	on,	until	all	
principal	payments	from	the	loan	portfolio	are	repaid.	Due	to	the	possibility	of	defaults	in	the	
loan	 portfolio,	 it	 is	 entirely	 possible	 for	 the	 principal	 cash	 flow	 from	 the	 portfolio	 to	 be	
insufficient	to	repay	all	liabilities.	This	leads	to	losses	in	the	more	junior	tranches	of	the	CLO,	
in	accordance	to	their	higher	riskiness	and	price.	

3.6 Monte	Carlo	methods	
Monte	Carlo	methods,	as	defined	by	Mooney	(1997)	among	others,	are	a	class	of	algorithms	
characterized	by	the	use	of	repeated	random	sampling	to	yield	results	about	a	probabilistic	
system	that	would	otherwise	be	difficult	or	impossible	to	derive	analytically.	For	instance,	by	
the	law	of	large	numbers,	the	sample	mean	of	a	random	variable	should	converge	towards	its	
expected	value.	In	the	case	of	CLO	cash	flow	modeling,	the	method	is	particularly	helpful	in	
that	is	allows	estimating	the	distribution	of	tranche	cash	flows	by	simulating	the	performance	
of	 their	 underlying	 loan	 portfolio,	 given	 that	 one	 is	 able	 to	 sample	 from	 the	 random	
distributions	describing	the	loans.	The	payment	waterfalls	fundamental	to	each	CLO	allocate	
asset	cash	flows	to	each	tranche	in	a	non-trivial	way,	making	it	difficult	to	derive	the	exact	
trance	flows	exactly.	

In	our	Excel	model,	deterministic	calculations	are	created	to	determine	tranche	cash	flows	
given	default	times	and	recovery	rates	for	each	loan.	Default	times	and	recovery	rates	are	
then	repeatedly	sampled	and	their	respective	cash	flows	are	recorded	via	data	tables.	The	
resulting	 estimated	 cash	 flow	 distributions	 are	 then	 summarized	 to	 facilitate	 pricing	
assessments.	The	expected	computation	time	is	proportional	to	the	number	of	samples	and	
furthermore	 carrying	 out	 sensitivity	 analysis	 on	 any	 of	 the	 models	 inputs	 multiplies	 the	
number	of	calculated	samples	by	the	number	of	different	input	values	used.	It	is	therefore	
important	 to	 weigh	 the	 importance	 of	 both	 accuracy	 and	 computation	 time	 to	 make	 a	
balanced	 trade-off	 between	 them.	 Additionally,	 maximizing	 the	 performance	 of	 the	
deterministic	calculations	in	turn	reduces	needed	computation	time	per	sample	and	allows	
for	improved	accuracy	and	total	computation	time.	In	this	instance,	a	run	with	1000	samples	
was	found	to	yield	sufficient	accuracy	while	still	consuming	a	reasonable	time	to	calculate.	

3.7 Pricing	and	risk	analysis	
3.7.1 Expected	internal	rate	of	return	
The	internal	rate	of	return	𝑟	for	a	cash	flow	𝑥7, 𝑥/, … , 𝑥-,	where	𝑥7 < 0	and	𝑥K ≥ 0, ∀𝑘 > 0,	
is	defined	as	the	solution	to	the	equation	

0 = 𝑥7 +
𝑥/
1 + 𝑟 +

𝑥?
1 + 𝑟 ? + ⋯+

𝑥-
1 + 𝑟 - =

𝑥K
1 + 𝑟 -

-

K.7

	

If	the	cash	flow	stream	is	known,	it	is	possible	to	solve	the	above	equation	by,	for	example,	
some	numerical	solver.	However,	when	the	possible	events	of	defaults	are	taken	into	account,	
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the	 cash	 flow	stream	received	varies	according	 to	 the	experienced	 losses	 in	 the	 collateral	
portfolio.		

Nevertheless,	it	is	possible	to	obtain	a	distribution	for	the	internal	rate	of	return	by	simulation.	
Suppose	we	can	generate	observations	𝒙) = (𝑥/) , … , 𝑥-v

) )	of	a	random	cash	flow	stream	𝑿 =
𝑋/,… , 𝑋  	 (where	𝑛) 	 is	 a	 realization	 of	 random	 time	 of	 last	 payment	𝑁).	We	 can	 then	
calculate	the	internal	rate	of	return	𝑟) 	for	this	realized	cash	flow	by	solving	the	above	equation	
for	𝑟.	 By	 repeating	 this	 procedure	numerous	 times,	we	obtain	 realizations	of	 the	 random	
variable	𝑅,	which	is	the	internal	rate	of	return	of	the	random	cash	flow	stream	𝑿.	From	these	
realizations	we	can	calculate	different	descriptive	statistics.	

After	generating	𝑚	realizations	of	the	internal	rates	of	return	𝑟), 𝑖 = 1,2, … ,𝑚,	it	is	possible	
to	estimate	the	expected	internal	rate	of	return	by	the	sample	average,	that	is,		

E 𝑅 =
1
𝑚 𝑟)	

6

).)

	

We	can	also	estimate	the	conditional	value	at	risk	(CVaR)	on	5%	level,	that	is,	the	expected	
value	of	the	5%	of	the	worst	outcomes.	The	population	5%-CVaR	can	be	estimated	from	𝑚	
realizations	of	a	random	variable	by	the	sample	average	of	the	5%	of	the	smallest	samples,	
that	is,	

CVaR¦%[𝑅] =
1

0.05𝑚 𝑟∗)	
7.7¦6

)./

,	

where	0.05𝑚	was	assumed	to	be	an	even	number	and	𝑟∗)s	are	 the	 realized	 IRRs	ordered	
ascending.	

3.7.2 Discount	margin	of	the	tranches	
The	CLO	notes	are	valued	by	the	discount	margin	 (DM)	of	a	par	priced	note.	The	DM	of	a	
floating-rate	security	is	the	return	over	the	return	of	a	reference	security	(we	calculate	DM	so	
that	the	price	of	the	return	of	the	security	corresponds	a	par-priced	security).	Let	us	denote	
the	random	return	of	a	CLO	tranche	𝑡	as	𝑅u	and	the	internal	rate	of	return	of	a	security	of	
which	payments	depend	on	the	3-month	LIBOR	as	𝑟 x©ª«.	Then	the	DM	of	the	tranche	𝑡	 is	
𝐷𝑀u = 𝑅u − 𝑟 x©ª«.	 We	 consider	 the	 expected	 value	 of	 the	 return	 over	 the	 reference	
security,	that	is,	the	expected	DM	E[𝐷𝑀u] = E[𝑅u] − 𝑟 x©ª«,	which	can	be	calculated	from	
sample	averages	of	the	realizations	of	𝑅u.	We	also	consider	the	worst	case	scenarios	explicitly,	
that	is,	we	compare	the	average	of	returns	of	the	5%	worst	outcomes	to	the	reference	rate	
by	calculating	CVaR¦% 𝐷𝑀u = CVaR¦%[𝑅u] − 𝑟 x©ª« 	for	different	CLO	notes	of	interest.	
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4 Data	used	
The	data	used	consists	mainly	of	 the	 four	CLOs	and	seven	 loan	portfolios	provided	by	 the	
client.	 The	properties	of	 the	CLOs	and	portfolios	were	 inspected	 thoroughly	 to	 familiarize	
ourselves	with	the	data.	This	was	to	achieve	better	understanding	of	the	common	contents	
and	properties	of	available	data	when	investing	in	a	CLO.	As	the	format	of	especially	the	loan	
portfolios	varied	greatly,	we	first	extracted	the	necessary	data	from	the	portfolios	and	CLOs	
for	ease	of	examination.	With	this,	we	noticed	that	some	portfolios	were	lacking	information	
essential	for	our	model,	like	Moody's	ratings,	and	hence	could	not	be	used	to	full	extent.	

The	 range	of	 values	 for	each	property	was	examined	as	well	 as	 the	 connections	between	
values	of	different	properties.	This	way,	we	were	able	to	assess	which	properties	and	values	
would	have	 the	most	 impact	 on	 the	portfolio's	 output	 cash	 flows	 and	 therefore	 the	CLO.	
Those	impacts	were	further	investigated	in	sensitivity	analysis.	As	the	data	consisted	only	of	
one	complete	pair	of	a	CLO	and	 its	underlying	portfolio,	 those	were	chosen	for	use	 in	the	
sensitivity	analysis	to	ensure	better	analysis	on	the	results.	

In	addition	to	the	data	provided	by	the	client,	some	external	data	was	needed	for	the	model.	
As	mentioned	 in	Section	2.4,	Moody's	historical	data	 for	defaults	and	recovery	rates	were	
used.	Not	only	were	 the	values	used	 in	 forming	 the	model,	 the	historical	data	of	 financial	
crises	played	a	notable	role	in	sensitivity	analysis.	Additionally,	the	LIBOR	forward	curve	was	
used	in	the	model	calculations	as	mentioned	in	Section	3.1.	For	validation,	that	LIBOR	forward	
curve	was	also	compared	to	the	estimate	given	by	the	client.	

5 Results		
5.1 Base	case	
The	parameters	of	the	base	case	are	in	Table	1.	In	the	base	case	loans	follow	the	Moody’s	
rating	 based	 marginal	 default	 probabilities.	 For	 example,	 the	 average	 annual	 default	
probability	 for	 B2	 rated	 loans	 is	 4.2%	 in	 the	 the	 base	 case	 (WARF	 of	 the	 portfolio	 is	
approximately	that	of	B2	rated	loans).	

TABLE	1:	PARAMETERS	OF	THE	BASE	CASE.	

Prices	
of	notes	

Average	
𝑅𝑅	

New	loan	
spread	

New	loan	
rating	

Portfolio	
WA	spread		

Portfolio	
WARF	

WA	spread	
of	notes	

Initial	
OC	

100	 60%	 400bps	 B2	 429bps	 2739	 2.38	 109.9%	

	

All	Monte	Carlo	simulations	were	done	using	1000	repetitions.	The	resulting	discount	margins	
of	 the	 lower	tranches	are	presented	 in	Figure	3.	As	can	be	seen	 in	 the	 figure,	all	 tranches	
excluding	the	subordinate	note	have	the	same	discount	margin	in	100%	of	the	runs	(two	runs	
of	BB	had	DMs	6.4%	and	0.4%,	however).	This	means	that	they	do	not	suffer	practically	any	
losses	in	the	1000	runs	and	therefore	the	BB	tranche	clearly	dominates	the	other	tranches	
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with	a	higher	discount	margin.	The	subordinate	tranche	absorbs	all	the	losses	and	therefore	
has	a	wide	distribution	of	discount	margins.	

	
FIGURE	3:	DISCOUNT	MARGINS	OF	LOWER	TRANCHES	IN	THE	BASE	CASE.	

Figure	 4	 illustrates	 the	 discount	margin	 distribution	 of	 the	 underlying	 loan	 portfolio.	 The	
average	discount	margin	of	the	portfolio	is	significantly	lower	than	the	discount	margin	of	the	
BB	tranche.	This	is	because	the	first	tranche	is	distinctly	largest	in	terms	of	par	amount	and	
has	a	low	IRR	and	very	low	risk.	The	portfolio	DM	distribution	is	not	very	wide,	e.g.,	only	in	
two	cases	 the	DM	of	 the	portfolio	 falls	below	1.4%,	and	 in	 this	base	case	the	subordinate	
tranche	absorbs	just	about	all	the	risk.	
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FIGURE	4:	DISCOUNT	MARGINS	OF	THE	LOAN	PORTFOLIO	IN	THE	BASE	CASE	

The	 last	 figure	 for	 the	base	 case,	 Figure	 5,	 presents	 the	 relation	between	 the	BB	 tranche	
discount	margin	and	 the	 relative	number	of	defaults	occurred	out	of	 the	164	 loans	 in	 the	
collateral	portfolio.	The	shading	of	the	points	 illustrates	the	numbers	of	simulation	rounds	
having	the	corresponding	result	(more	realizations	correspond	darker	shading).	Like	observed	
before,	in	most	of	the	cases	the	BB	tranche	DM	is	very	high.	This	figure	illustrates	that	even	
with	an	increase	in	the	amount	of	defaults	the	discount	margin	stays	unchanged.	Only	in	a	
few	cases	with	many	defaults,	the	discount	margin	of	the	BB	tranche	has	dropped,	and	these	
cases	had	approximately	50	defaults	(30%	of	the	loans	in	the	portfolio)	each.	The	decrease	in	
discount	 margin	 was	 larger	 with	 more	 occurred	 defaults,	 so	 there	 is	 some	 correlation	
between	the	number	of	defaults	and	the	BB	tranche	discount	margin.	

	
FIGURE	5:	BB	TRANCHE	DISCOUNT	MARGIN	IN	RELATION	TO	DEFAULT	COUNT	IN	THE	BASE	CASE.	
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5.2 Default	scaling	
The	default	rates	of	the	loans	have	a	large	impact	on	the	CLO	losses.	Our	model	includes	an	
option	to	increase	the	default	probability	per	year,	as	described	in	section		3.2.4.	For	example,	
using	scaling	by	two	means	that	the	marginal	default	probability	is	doubled	for	that	year.	First,	
the	effect	of	general	scaling,	i.e.	increasing	the	default	rate	for	each	year,	was	studied.	Then,	
different	years	were	scaled	with	different	values.	

5.2.1 General	scaling	
First,	a	value	of	1.25	was	selected	for	scaling	the	default	probabilities.	Other	parameters	were	
kept	constant	(as	in	Table	1).	As	seen	from	Figure	6,	the	effect	on	the	BB	tranche	was	minimal.	
In	over	95%	of	the	simulation	runs	the	discount	margin	is	as	high	as	in	the	base	case,	but	the	
tail	 of	 the	 distribution	 extends	 to	 the	 negative	 side	 (up	 to	 -1.1%).	 As	 seen	 from	 the	
subordinate	note	discount	margin	distribution,	the	increased	amount	of	loan	defaults	affects	
the	CLO.	Fortunately	for	the	BB	tranche,	the	subordinate	note	is	still	able	to	absorb	most	of	
the	losses.	

	
FIGURE	6:	DISCOUNT	MARGIN	OF	BB	TRANCHE	AND	SUBORDINATE	NOTE	IN	CASE	OF	DEFAULT	SCALING	(1,25).	

Then,	the	scaling	was	increased	to	1.4.	The	resulting	discount	margins	of	the	BB	trance	can	be	
seen	 in	 Figure	 7.	 With	 this	 scaling,	 some	 impact	 on	 the	 returns	 of	 BB	 tranche	 were	
experienced,	but	still	in	90%	of	the	runs	the	discount	margin	is	as	high	as	in	the	base	case.	The	
effect	of	the	scaling	on	the	realized	defaults	of	loans	is	illustrated	in	Figure	8.	Starting	from	
the	beginning,	the	number	of	defaults	increases	steadily,	but	clearly	faster	than	in	the	base	
case.	
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FIGURE	7:	DISCOUNT	MARGIN	OF	BB	TRANCHE	IN	CASE	OF	DEFAULT	SCALING	(1.4).	

	
FIGURE	8:	DEFAULT	TIMES	IN	BASE	CASE	VERSUS	CASE	DEFAULT	SCALING	(1.4).	
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investigated.	Starting	from	the	year	of	initialization	of	the	CLO,	a	bigger	scale	of	2	was	set	on	
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year	three	and	one	some	effect	and	the	rest	a	smaller	effect,	ever	decreasing	towards	year	
10.	

Then	the	effect	of	scaling	two	consecutive	years	was	compared	to	the	effect	of	setting	a	bigger	
scale	on	one	year.	Scaling	years	two	and	three	with	2	had	a	greater	effect	on	the	losses	of	the	
BB	tranche	than	scaling	the	year	 two	with	a	value	of	2.5,	but	 if	 the	scale	of	year	 two	was	
increased	up	to	3,	then	the	losses	exceeded	those.	Therefore,	a	short	financial	crisis	has	to	be	
very	significant	to	cause	more	losses	than	a	longer	financial	crisis.	

5.3 Crisis	modelling	(high	default	probability	few	years)	
During	the	financial	crisis	of	2008-2009,	there	were	a	lot	more	defaults	and	the	recovery	rates	
were	poor	(Moody's	Investors	Service,	2011).	To	simulate	this	kind	of	a	crisis	as	a	worst-case-
scenario,	the	defaults	of	years	two	and	three	were	scaled	with	2.5	and	the	average	recovery	
rate	was	lowered	to	50%.	

The	effect	of	scaled	defaults	for	years	two	and	three	can	be	clearly	seen	in	Figure	9.	During	
the	first	year	the	amount	of	defaults	is	the	same	as	in	the	base	case.	After	the	first	year,	the	
amount	of	defaults	starts	 increasing	rapidly	until	the	end	of	the	third	year	after	which	the	
amount	of	defaults	increases	at	approximately	the	same	pace	as	in	the	base	case.	At	the	end	
of	the	third	year	30%	of	the	loans	had	defaulted	on	average,	whereas	in	the	base	case	at	that	
point	only	15%	had	defaulted.	

	
FIGURE	9:	DEFAULT	TIMES	IN	BASE	CASE	VERSUS	CRISIS	CASE.	

The	 large	 amount	 of	 defaults	 combined	with	 a	 lower	 recovery	 rate	 lead	 to	 vast	 losses	 in	
tranches	of	the	CLO.	The	effect	of	these	losses	on	the	BB	tranche	are	illustrated	in	Figure	10.	
Now,	only	in	10%	of	the	runs,	the	discount	margin	was	as	high	as	in	the	base	case.	Most	of	
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the	simulation	runs	resulted	in	great	losses	--	more	than	65%	of	the	runs	resulted	in	a	negative	
discount	margin	and	more	than	45%	resulted	in	a	discount	margin	equal	to	or	lower	than	-
7,6%.	

	
FIGURE	10:	DISCOUNT	MARGIN	OF	BB	TRANCE	IN	CRISIS	CASE.	

The	 relationship	between	 the	DM	of	 the	BB	 tranche	and	 the	underlying	portfolio	 is	nicely	
shown	in	Figure	11.	The	figure	presents	the	correlation	between	the	portfolio	discount	margin	
and	the	BB	tranche	discount	margin	in	this	crisis	case.	As	the	BB	tranche	suffers	great	losses	
in	this	case,	there	is	clear	correlation	between	the	discount	margins	of	the	tranche	and	the	
loan	portfolio.	One	can	observe,	 for	example,	that	 in	this	case	the	severe	 losses	of	the	BB	
tranche	require	the	DM	of	the	portfolio	to	fall	below	1.4%,	approximately.	The	range	of	BB	
tranches	discount	margin	 is	 from	-14%	to	7.5%,	whereas	 the	underlying	portfolio's	 ranges	
from	-1.8%	to	2.4%.	

	
FIGURE	11:	BB	TRANCHE'S	DISCOUNT	MARGIN	IN	RELATION	TO	PORTFOLIO'S	DISCOUNT	MARGIN	IN	CRISIS	CASE.	
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Figure	 12	 presents	 the	 same	 comparison	 of	 default	 counts	 and	 the	 BB	 tranche	 discount	
margin	as	Figure	5	in	the	base	case.	This	time,	the	average	amount	of	defaults	is	clearly	bigger.	
The	worse	distribution	of	BB	tranche	discount	margin	is	also	visible	in	the	figure.	With	more	
defaults,	the	BB	tranche	suffers	more	losses	on	average.	The	figure	illustrates	how	the	losses	
increase	when	the	number	of	default	starts	to	approach	50.	

	
FIGURE	12:	BB	TRANCHE	DISCOUNT	MARGIN	IN	RELATION	TO	DEFAULT	COUNT	IN	CRISIS	CASE.	

	

5.4 Over	collateralization	tests	
We	simulate	the	CLO	cash	flows	with	decreasing	portfolio	par	amounts.	This	can	be	thought	
to	 simulate,	 for	 instance,	 already	 realized	defaults.	 Figure	13	 shows	 the	 relation	between	
expected	DM	and	its	CVaR	compared	to	the	lowered	portfolio	par	amounts.	We	see	that	the	
BB	 tranche	 is	well	 protected	 for	 the	 first	 15	 lost	 in	 portfolio	 par,	 but	 the	 CVaR	 is	 greatly	
reduced	after	this.	The	expectation	starts	to	fall	significantly	after	a	loss	of	25.	With	a	portfolio	
par	value	loss	of	40	we	seem	to	be	nearing	the	limit	at	approximately	3%	expected	DM	and	
−10%	 as	 the	 CVaR	 5%.	 The	 selected	 range	 of	 initial	 par	 amounts	 corresponds	 to	 par	
subordination	of	BB	tranche	in	the	range	of	0-9%.	The	corresponding	par	amounts	and	par	
subordination	levels	are	presented	in	Table	2.	
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FIGURE	13:	EXPECTED	DISCOUNT	MARGIN	OF	BB	TRANCHE	AND	CVAR	IN	RELATION	TO	PORTFOLIO	PAR.	

TABLE	2:	INITIAL	PORTFOLIO	PAR	AND	BB	TRANCHE	PAR	SUBORDINATION.	

Initial	portfolio	par	 500 	 495 	 490 	 485 	 480 	 475 	 470 	 465   	 460 	 455 	
BB	tranche	par	sub.	(%)	 9.00 	 8.08 	 7.14 	 6.19 	 5.21 	 4.21 	 3.19 	 2.15 	 1.09	 0.00	
	

5.5 Bad	new	loans		
The	quality	of	the	portfolio	manager	affects	in	the	quality	of	the	new	loans	in	the	portfolio.	
Because	we	do	not	model	the	reinvestment	period,	the	quality	of	the	portfolio	manager	only	
affects	in	the	quality	of	the	20%	of	loans	in	the	portfolio,	that	have	not	yet	been	purchased	
and	instead	will	be	assumed	to	have	a	certain	quality	(see	Section	3.4.1).	

5.5.1 New	loans	spread	200	
To	investigate	the	effect	of	lower	quality	loans	we	first	lower	the	coupon	spread	from	400	bps	
to	200	bps	for	the	newly	 issued	 loans,	which	corresponds	a	drop	of	the	weighted	average	
spread	of	the	portfolio	from	to	427	bps	to	389	bps.	The	effect	is	minimal.	The	portion	of	BB	
tranche	having	0%	losses	moves	from	99%	to	98%	and	the	DM	5%-CVaR	from	6.92%	to	5.97%.	
However,	 this	 clearly	 shows	 that	 changing	 the	 spread	 of	 about	 10%	 of	 the	 loans	 has	 an	
immediate	effect	on	the	profits	of	the	portfolio	and	BB	tranche.	Figure	14	shows	that	as	the	
lower	spread	loans	hurt	the	portfolio	DM,	we	start	to	see	BB	DM	drop	in	the	low	end.	The	
losses	begin	again	after	the	DM	of	the	portfolio	falls	below	approximately	1.4%.	
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FIGURE	14:	BB	TRANCHE'S	DISCOUNT	MARGIN	IN	RELATION	TO	PORTFOLIO'S	DISCOUNT	MARGIN	WITH	POOR	

SPREAD	FOR	NEW	LOANS.	WA	SPREAD	OF	COLLATERAL	PORTFOLIO	389	BPS.	

5.5.2 New	loans	rating	Caa3	
We	lower	the	rating	of	newly	issued	loans	from	B2	to	Caa3	to	see	how	the	rating	of	the	newly	
issued	loans	affects	the	BB	tranche	lowering	the	portion	of	0%	loss	to	96%	and	the	DM	CVaR	
to	4.36%	which	is	worse	than	the	CVaR	for	the	BBB	tranche.	As	expected	and	shown	in	Figure	
15,	the	increased	default	probability	lowers	the	portfolio	DM	and	the	BB	tranche	DM	incurs	a	
larger	hit	in	the	low	end.	This	drop	of	loans	rating	corresponds	to	the	increase	of	weighted	
average	rating	factor	(WARF)	from	2737	to	3753.	

	
FIGURE	15:	BB	TRANCHE'S	DISCOUNT	MARGIN	IN	RELATION	TO	PORTFOLIO'S	DISCOUNT	MARGIN	WITH	POOR	

RATINGS	FOR	NEW	LOANS.	WARF	=	3753	AND	20%	OF	THE	LOANS	ARE	CAA3	RATED.	

5.5.3 Bad	rating	and	low	spread	of	artificial	loans	
To	simulate	a	completely	dreadful	portfolio	manager	we	combine	the	above	cases	of	picking	
bad	quality	loans	in	both	aspects	and	thus	lower	the	spread	to	200	and	the	rating	to	Caa3.	As	
shown	by	Figure	16,	the	effect	is	slightly	larger	than	that	of	the	ratings	alone.	The	portion	of	
0%	loss	has	fallen	to	93%	and	the	DM	CVaR	5%	is	at	3.96%.	
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FIGURE	16:	BB	TRANCHE'S	DISCOUNT	MARGIN	IN	RELATION	TO	PORTFOLIO'S	DISCOUNT	MARGIN	WITH	POOR	

RATINGS	AND	POOR	SPREAD	FOR	NEW	LOANS.	PORTFOLIO	WA	SPREAD	389	BPS	AND	WARF	3753.	

5.6 Bad	liability	structure	
5.6.1 AAA	spread	too	large	
To	investigate	how	a	change	in	the	liability	structure	affects	the	BB	tranche,	we	adjust	the	
spread	of	the	most	senior	tranche	up.	In	practice	this	will	increase	the	profitability	of	the	AAA	
tranche	and	 leave	 less	 cash	 flow	 to	be	 shared	between	 the	 junior	 tranches.	Adjusting	 the	
spread	from	1.65%	up	to	1.95%.	This	has	very	little	effect	lowering	the	BB	DM	CVaR	to	6.70%.	
Increasing	the	spread	further	to	2.5%	results	in	the	CVaR	decreasing	to	5.35%.	This	increase	
corresponds	to	increase	of	weighted	average	spread	of	the	notes	increasing	from	2.39%	to	
2.97%.	Figure	17	clearly	demonstrates	that	the	point	to	witch	the	portfolio	DM	may	decrease	
before	 hurting	 BB	 DM	 has	moved	 up	meaning	 that	 the	 BB	 tranche	will	 be	 hit	 earlier	 (at	
approximately	1.7%	instead	of	1.4%)	in	terms	of	the	portfolio	DM.		
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FIGURE	17:	BB	TRANCHE'S	DISCOUNT	MARGIN	IN	RELATION	TO	PORTFOLIO'S	DISCOUNT	MARGIN	WITH	

INCREASED	AAA	SPREAD.	WA	SPREAD	OF	NOTES	2.97%.	

5.6.2 Narrow	subordinate	note	
We	lower	the	par	amount	of	the	subordinate	note	from	50	to	25	and	increase	the	par	amount	
of	AAA	 tranche	by	 the	 same	amount.	This	effectively	 increases	 the	 risk	of	 the	BB	 tranche	
significantly	 as	 the	 downside	 protection	 provided	 by	 the	 subordinate	 note	 is	 significantly	
smaller	(by	decreasing	the	par	subordination	of	BB	tranche).	This	lowers	the	portion	of	0%	
loss	in	the	BB	tranche	to	88%	and	the	DM	CVaR	to	0.99%.	Figure	18	shows	that	the	BB	tranche	
gets	hit	earlier	(at	2%	as	opposed	to	1.4%)	than	in	the	previous	example	in	terms	of	portfolio	
DM.	

	
FIGURE	18:	BB	TRANCHE'S	DISCOUNT	MARGIN	IN	RELATION	TO	PORTFOLIO'S	DISCOUNT	MARGIN	WITH	

NARROWER	SUBORDINATE	NOTE	AND	THICKER	AAA.	INITIAL	PAR	SUB	104.2%.		
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5.7 Conclusive	table	of	results	
We	conclude	the	results	of	the	analysis	on	effects	of	different	factors	affecting	the	returns	of	
the	junior	mezzanine	tranche	in	the	following	three	tables.	Table	3	presents	different	statistics	
affecting	the	return	of	BB	tranche	and	the	expected	discount	margin.	The	effect	of	different	
changes	to	the	return	of	the	collateral	portfolio	of	the	expected	DM	of	the	BB	tranche	are	
presented	 in	 Table	 4,	 and	 Table	 5	 presents	 effects	 on	 the	 return	 of	 BB	 tranche	 by	
modifications	which	have	no	effect	on	the	discount	margin	of	the	collateral	portfolio.	Table	6	
explains	the	used	abbreviations.	

TABLE	3:	VALUES	FOR	THE	BASE	CASE.	

𝐸[𝐷𝑀©©]	 𝐶𝑉𝑎𝑅¦%[𝐷𝑀©©]	 𝐴𝑣𝑔[𝑁²]	 𝐴𝑣𝑔[𝑁²
?,D]	 𝐸[𝐷𝑀�]	 𝐶𝑉𝑎𝑅¦%[𝐷𝑀�]	 𝑊𝐴𝑣𝑔 𝑠) 	 𝑊𝐴𝑣𝑔 𝑠u 	 𝑊𝐴𝑅𝐹	 𝑃𝑎𝑟𝑆𝑢𝑏©©(0)	

7.00%	 6.92%	 58.4	 15.7	 2.56%	 1.67%	 4.27%	 2.38%	 2739	 9%	

	

TABLE	4:	VALUES	FOR	CASES	WITH	MODIFICATIONS	AFFECTING	PORTFOLIO	DM.	

Modification	 Portfolio	DM	change	 Other	effect	 𝐸[𝐷𝑀©©]	 𝐶𝑉𝑎𝑅¦%[𝐷𝑀©©]	

Default	probabilities	
scaled	by	1.25,	all	
years	

E 𝐷𝑀� = 2.02%	

CVaR¦% 𝐷𝑀� = 1.00%	

Avg 𝑁² = 69.2	 6.87%	 4.49%	

Default	probabilities	
scaled	by	1.4,	all	
years	

E 𝐷𝑀� = 1.78%	

CVaR¦% 𝐷𝑀� = 0.71%	

Avg 𝑁² = 75.2	 6.63%	 1.06%	

Default	probabilities	
scaled	by	2.5,	years	
2&3,	and	
𝐴𝑣𝑔 𝑅𝑅 = 50%	

E 𝐷𝑀� = 0.46%	

CVaR¦% 𝐷𝑀� = −1.00%	

Avg 𝑁²
?,D = 38.6	 -3.99%	 -11.66%	

New	loans	spread	
from	4.00%	to	2.00%	

E 𝐷𝑀� = 2.15%	

CVaR¦% 𝐷𝑀� = 1.20%	

WAvg 𝑠) = 3.89%	 6.95%	 5.97%	

New	loans	rating	
changed	from	B2	to	
Caa3	

E 𝐷𝑀� = 1.92%	

CVaR¦% 𝐷𝑀� = 0.79%	

WARF = 3753	

Avg 𝑁²
?,D = 19.2	

6.86%	 4.36%	

New	loans	spread	
2.00%	and	rating	
Caa3	

E 𝐷𝑀� = 1.74%	

CVaR¦% 𝐷𝑀� = 0.74%	

WAvg 𝑠) = 3.89%	

WARF = 3753	

6.84%	 3.96%	
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TABLE	5:	VALUES	FOR	CASES	WITH	MODIFICATIONS	AFFECTING	FACTORS	OTHER	THAN	PORTFOLIO	DM.	

Modification	 Effect	 𝐸[𝐷𝑀©©]	 𝐶𝑉𝑎𝑅¦%[𝐷𝑀©©]	

Initial	portfolio	par	-10	 𝑃𝑎𝑟𝑆𝑢𝑏©© 0 = 7.14%	 6.96%	 6.34%	

Initial	portfolio	par	-25	 𝑃𝑎𝑟𝑆𝑢𝑏©© 0 = 4.21%	 6.65%	 1.51%	

Initial	portfolio	par	-45	 𝑃𝑎𝑟𝑆𝑢𝑏©© 0 = 0.00%	 0.27%	 -10.62%	

Subordinate	 note	 par	 decreased	
to	$25M	(from	$50M)	

𝑃𝑎𝑟𝑆𝑢𝑏©© 0 = 4.00%	 6.64%	 0.99%	

AAA	spread	increased	from	
1.65%	to	2.50%	

WAvg 𝑠u = 2.59%	 6.91%	 5.35%	

TABLE	6:	MEANINGS	OF	THE	ABBREVIATIONS	USED	FROM	TABLE	3	TO		

Abbreviation	 Meaning	

Avg[𝑁²]	 Average	default	count	during	whole	CLO	lifetime	

Avg[𝑁²
?,D]	 Average	default	count	during	years	2	and	3	

E[𝐷𝑀�]	 Portfolio	expected	DM	

CVaR¦%[𝐷𝑀�]	 Portfolio	DM	CVaR	at	5%	level	

WAvg 𝑠) 	 Weighted	average	spread	of	portfolio	

WAvg 𝑠u 	 Weighted	average	spread	of	the	tranches	

WARF	 Weighted	average	rating	factor	of	portfolio	

𝑃𝑎𝑟𝑆𝑢𝑏©©(0) 	 Initial	par	subordination	of	BB	tranche	

6 Discussion	
6.1 Pricing	ideas	
To	 derive	 a	 viable	 price	 for	 the	 BB	 tranche	 based	 on	 our	 model,	 we	 propose	 using	 a	
combination	of	the	expected	DM	and	the	DM	5%-CVaR	to	derive	a	price	fitting	the	purchasers	
risk	 preference.	 The	 probability	 of	 the	 different	 economic	 circumstances	 could	 also	 be	
considered	to	combine	the	prices	implied	by	different	market	scenarios.	Moreover,	should	
the	initial	state,	such	as	initial	par	subordination,	change,	our	model	gives	useful	information	
in	assessing	the	changes	into	the	distribution	of	the	return	of	the	junior	mezzanine	tranche.	

For	example,	suppose	weights	𝑤½	and	𝑤¾¿ÀÁÂ% = 1 − 𝑤½	given	by	the	risk	preferences	of	the	
purchaser.	Then	the	risk-adjusted	expectation	of	 the	DM	of	a	par	priced	 junior	mezzanine	
note	would	be	E�� 𝐷𝑀©© = 𝑤½E 𝐷𝑀©© + 1 − 𝑤½ CVaR¦% 𝐷𝑀©© .	On	the	other	hand,	
suppose	that	a	pessimistic	 investor	 is	expecting	an	economic	crisis	with	probability	𝑝q�)�)�.	
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Then	the	crisis-adjusted	expectation	of	DM	could	be	calculated	by	the	linearity	of	expected	
value	as	Eq� 𝐷𝑀©© = 𝑝q�)�)�E 𝐷𝑀©©

q�)�)� + (1 − 𝑝q�)�)�)E 𝐷𝑀©©
����q��� .	

6.2 Validation		
The	behavior	of	our	model	was	constantly	validated	during	 the	building	process.	Both	the	
asset	and	the	liability	side	models	were	validated	together	and	separately.	The	validation	was	
done	with	the	help	of	our	client,	by	reflecting	on	earlier	results	from	the	literature,	and	with	
sanity	checks.	

Sanity	checks	were	done	most	frequently.	They	included,	for	example,	making	sure	that	the	
generated	default	and	recovery	rates	were	positive	and	that	the	cash	flows	were	of	sensible	
size.	Default	and	recovery	rates	were	also	compared	against	historical	distributions.	On	the	
liability	side	sanity	checks	included	making	sure	that	the	losses	hit	the	subordinate	note	first	
and	then	the	tranches	from	bottom	up.	The	tranche	behavior	was	validated	by	changing	the	
price	of	each	tranche	on	their	turn	and	then	verifying	that	the	change	in	expected	IRR	was	of	
reasonable	size	and	to	the	right	direction,	i.e.	when	tranche	price	is	lowered,	the	expected	
IRR	increases.	

6.3 Limitations		
6.3.1 Lack	of	modelling	reinvestment	period	
Modelling	 the	 reinvestment	 period	 was	 excluded	 from	 the	 scope	 of	 this	 project.	 Not	
modelling	the	reinvestment	has	two	dimensional	effects	in	the	lifecycle	of	the	CLO.	Firstly,	
the	maturity	of	the	CLO	notes	is	shorter	than	if	reinvestment	period	would	be	implemented,	
because	the	principal	proceeds	received	during	the	reinvestment	period	would	be	used	to	
purchase	 new	 loans	 instead	 of	 paying	 back	 the	 principal	 to	 the	most	 senior	 tranche	 and	
because	 the	 interest	diversion	 test	would	be	 satisfied	by	purchasing	new	 loans	 instead	of	
paying	back	the	principal.	Secondly,	the	possible	unavailability	of	suitable	loans	will	not	be	
modelled.	Shorter	lifecycle	of	the	CLO	naturally	somewhat	reduces	the	risk	of	the	BB	tranche	
(and	other	tranches),	since	payments	are	received	at	a	faster	pace.	

Modelling	reinvestment	period	would	leave	more	impact	on	the	quality	of	the	CLO	manager.	
Our	analysis	only	considered	the	quality	of	the	portfolio	manager	by	the	quality	of	the	new	
issues	in	the	portfolio,	and	this	effect	was	small	with	bad	quality,	but	still	reasonable,	new	
loans.	

6.3.2 Default	correlation		
We	did	not	include	default	correlation	modelling	for	reasons	discussed	in	Section	3.	Positively	
correlated	 default	 times	would	mean	 that	more	 loans	would	 default	 simultaneously,	 and	
hence	the	possibility	of	collateral	portfolio	losses	to	hit	mezzanine	tranches	could	increase.	
While	we	model	the	economic	crises	separately,	our	model	does	not	allow	for	analyzing	the	
probability	of	such	crises	occurring.	

If	 default	 correlation	 were	 to	 be	 included	 in	 the	 model,	 already	 defaulted	 loans	 would	
increase	the	probability	of	more	loans	to	default.	Hence	default	correlation	modelling	would	
make	conducting	analysis	on	the	effect	of	earlier	defaulted	loans	possible.	Note	that	we	did	
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analyze	the	effect	of	par	losses	in	the	collateral	portfolio	(in	Section	5.4),	but	this	analysis	does	
not	take	into	account	the	increased	default	probability	through	correlation	of	defaults.		

6.3.3 Effect	of	loan	prices	small	
Our	model	includes	the	prices	of	the	loans	of	collateral	portfolio	only	by	minor	adjustment	to	
the	recovery	rates	of	the	loans.	If	prices	of	loans	would	be	used	when	calculating	the	default	
probabilities,	 they	 would	 have	 greater	 effect	 on	 the	 returns	 of	 BB	 tranche.	 This	 kind	 of	
adjustment	for	our	model	would	enable	analyses	on	the	effect	of	price	of	portfolio	declining.	
Moreover,	the	distribution	of	loan	prices	(relative	price	of	some	loans	smaller	than	rest	of	the	
loans,	and	hence	these	loans	are	riskier	than	other	loans)	could	be	taken	into	consideration.	

6.3.4 Other	risk	measures	
For	this	project,	no	suggestions	for	the	most	suitable	risk	measure	for	BB	tranche	was	found	
from	the	academic	literature.	This	motivated	the	use	of	a	typical	metric	used	in	risk	analysis,	
the	 conditional	 value	 at	 risk.	 However,	 whether	 this	measure	 is	 the	most	 suitable	 in	 the	
context	of	pricing	remains	debatable.	

7 Conclusion		
In	 this	 report	 we	 have	 reviewed	 relevant	 literature	 on	 CLO	 pricing	 and	 discussed	 our	
methodology	 to	 the	 pricing	 exercise.	Using	 actual	 loan	 and	CLO	data,	we	have	presented	
outputs	from	a	base	case	as	well	as	several	alternative	scenarios,	where	tranche	cash	flow	
performance	sees	varying	 levels	of	 impact.	 In	addition,	we	discussed	 the	validation	of	 the	
modelling	process	and	evaluated	main	limitations	of	the	approach.	

In	 the	 literature	 review,	 both	 a	 static	 and	 a	 stochastic	 approach	were	 evaluated	 and	 the	
stochastic	approach	selected	as	the	appropriate	one.	Existing	default	modeling	and	pricing	
work	were	additionally	reviewed	as	a	basis	for	our	approach.	Recovery	rate	modelling	was	
specifically	reviewed	in	order	to	accurately	represent	the	loan	portfolio's	performance.	

The	 themes	of	 the	 literature	 review	are	 reflected	 in	 the	methodology	section	 that	gives	a	
detailed	characterization	of	the	model's	behavior.		We	derived	the	estimations	for	the	default	
time	 and	 recovery	 rate	 forming	 the	 core	 of	 the	 portfolio	 model	 and	 calibrated	 them	 to	
Moody's	 default	 data.	 We	 described	 the	 liability	 model	 and	 related	 concepts	 as	 well	 as	
motivated	necessary	 simplifications.	We	 implemented	a	Monte	Carlo	 simulator	 to	 sample	
from	the	stochastic	portfolio	model	and	evaluate	the	distributions	of	cash	flows	throughout	
the	wider	CLO	model.		We	also	gave	a	definition	of	the	data	format	used	by	the	model	and	
described	the	process	to	standardize	given	data	to	the	input	format.	

The	 base	 case	 results	 for	 the	 studied	 CLO	 exhibited	 fluctuating	 returns	 only	 on	 the	
subordinate	note,	 implying	the	BB	tranche	to	possess	a	very	attractive	risk-to-return	ratio.	
Several	 alternative	 scenarios	 were	 evaluated	 to	 assess	 what	 economic	 shifts	 alter	 the	
performance	of	the	BB	tranche.	Simply	scaling	up	default	probabilities	or	introducing	inferior	
loans	 to	 the	asset	portfolio	gave	negligible	effects	on	 the	BB	 tranche's	performance	while	
worsening	the	performance	of	the	subordinate	note.	Simulating	a	financial	crisis	similar	to	
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the	one	endured	in	2008-2009	by	increasing	default	intensities	and	reducing	recovery	rates	
however	impacted	severe	losses	on	the	BB	and	senior	tranches.	This	analysis	implies	that	the	
BB	tranche	remains	attractive	so	 long	as	there	are	no	major	upsets	 in	the	economy,	while	
sufficient	trouble	in	the	asset	portfolio	performance	could	cause	a	narrow	junior	tranche	to	
have	a	major	share	of	its	proceeds	and	capital	wiped	out.	

We	have	validated	our	model	both	on	a	per-component	basis	and	from	end	to	end	by	using	
sanity	checks,	the	client's	consideration	and	reflection	on	previous	results	in	the	literature.	
We	identified	two	leading	limitations	in	the	model;	disregarding	correlation	among	the	loan	
portfolio	and	the	CLO's	reinvestment	period	both	potentially	underestimate	the	riskiness	of	
the	tranche	cash	flows,	and	their	incorporation	to	the	model	would	unquestionably	improve	
the	model's	accuracy.	
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Appendix:	Self-assessment		
CLO	are	complex	derivatives	where	the	complexity	is	borne	firstly	of	a	large	loan	portfolio	and	
secondly	of	a	long	list	of	allocation	rules	used	to	ultimately	determine	the	issued	notes'	cash	
flows.	The	project	team	had	no	prior	experience	 in	structured	finance	and	pricing	of	asset	
backed	securities.	 Study	of	 the	problem	domain	was	 therefore	needed	 in	order	 to	deliver	
results,	and	the	team	has	learned	a	lot	about	financial	modelling	and	structured	finance	in	the	
course	of	the	project.	

The	strategy	taken	by	the	team	was	to	first	develop	a	simple	model	in	the	form	of	an	initial	
hypothesis	that	was	to	be	 incrementally	developed	based	on	 internal	validation	and	client	
feedback.	The	approach	possessed	a	number	of	pros	and	cons.	Namely,	delivering	working	
prototypes	to	the	client	already	at	the	early	stages	helped	gather	feedback	and	direct	next	
steps	for	the	team,	mitigating	the	risk	of	failing	to	provide	a	valid	deliverable.	On	the	other	
hand,	the	approach	dictated	that	the	extent	of	the	initial	literature	review	was	limited,	leading	
to	oversight	in	some	steps	of	the	model's	implementation	and	excess	work	done	in	diagnosing	
and	 fixing	 resulting	 bugs.	 In	 addition,	 the	 task	 allocation	 done	 in	 the	 initial	 stages	 was	
substantially	altered	in	the	course	of	the	project,	which	raises	the	question	if	attempting	such	
early	allocation	was	indeed	necessary.	

In	setting	the	project	objective,	the	client	articulated	a	vast	number	of	possible	factors	that	
affect	the	price	of	a	CLO	tranche.	Of	these	factors,	a	subset	was	selected.	Initial	findings	where	
the	junior	mezzanine	tranche's	pricing	was	found	to	be	very	attractive	led	the	team	to	focus	
on	risk	analysis,	assessing	what	which	factors	and	to	what	extent	need	to	change	in	order	for	
the	tranche's	performance	to	deteriorate.	This	shift	of	focus	takes	a	risk-return	view	of	the	
pricing	problem,	meaning	that	it	still	addresses	the	pricing	objective	of	the	project.	

Microsoft	Excel	was	selected	as	the	modelling	tool	in	the	beginning	of	the	project,	since	it	was	
seen	to	be	flexible	and	familiar	to	the	client,	while	being	adequate	in	terms	of	performance.	
By	the	end	of	the	project,	implementing	Monte	Carlo	simulation	and	sensitivity	analysis	in	the	
model	 were	 found	 to	 bring	 Excel	 to	 its	 limits.	 Additionally,	 the	 iterative	 development	
approach	resulted	in	a	model	that	could	be	clearer.	If	developed	further,	it	might	be	beneficial	
to	rewrite	the	model	in	a	language	such	as	R	or	Python.	

In	summary,	the	project	has	exposed	the	team	to	a	new	and	exciting	field,	where	previously	
learned	operations	research	expertise	was	applied.	The	team	learned	a	lot	of	the	field	and	
project	work	in	the	course	of	the	project,	both	from	the	literature	and	from	interactions	with	
the	client.	The	team	would	like	to	thank	Professor	Salo	and	Dr.	Gustafsson	for	their	guidance	
and	feedback,	and	furthermore	wish	Dr.	Gustafsson	the	best	of	luck	in	managing	his	portfolio.	
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