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1 Preface

This is the final report of our project for the course Seminar on Case Studies in
Operations Research in Aalto University in 2014. Fortum was the client of the
project. The main objective of the project was to develop a model to predict
heat demand in district heating. A basic introduction to district heating is pre-
sented in section two. Applicable modeling techniques will be introduced and
the results of a literature review on earlier research will be presented. Finally,
the modelling approaches used will be discussed with the results and recom-
mendations.

2 District heating

District heating is the main heating form in Finland, having a market share of
46 % of the total heat production. In the largest cities, it covers over 90 % of
the provided heat [17]. In Europe, the market share district heat has a market
share of some 10 % [16]. District heating is used for residential, commercial
and industrial purposes. It is mainly used for space heating and hot-water
consumption. Its applications also include space cooling, which can be used for
cooling of data centers, for instance.

District heating is based on central production of the heat that is distributed
to the consumers through a network of insulated pipes. Distribution of the heat
is operated in a network covering all the customers. Due to the large size of
the network, there is a lag of a few hours in the transfer from the plant to the
client. The district-heating water can be hot, chilled or in the form of steam.
In Finland and Europe, mainly hot water is in use [2] [10]. The temperature
of the water in the pipes has some dependency on outside temperature [10].
Commonly the water temperature stays between 65 and 115 ◦C.

The district heating water is first heated at the heat production plant and
directed to the distribution network. After that, the water moves to the heat
distribution center of the building where it heats the consumer water. District-
heating water itself is not consumed in the building. Instead, after cooling down
it is directed back to the plant to be reheated. Some water losses can occur
through leaks in the network, and losses in the network need to be replaced
with fresh water.

Building a district-heating network requires big investments in both infras-
tructure and production technology. Heat losses occur, which is why district-
heating is most suitable in areas with high density in both population and
buildings and is mainly used in big cities [2]. Losses and investment costs are
the bigger the longer distances the water needs to be transferred.

Main share of district heat in Finland is based on combined heat and power
(CHP) production, however some heat is generated in separate heat plants as
well [10]. CHP is a form of production where electricity and heat are gener-
ated simultaneously, thus getting better efficiency than if electricity and heat
were generated separately. By the second law of thermodynamics, only some of
the supplied energy can be converted to electricity. The remaining energy can
then be utilized for district heating. In other Nordic countries, incineration of
municipal solid waste is often used as the source of energy for district heating
[14].
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Compared to the methods of heating buildings individually, the capability to
produce heat centrally enables achieving the economies of scale. For example,
the fuel costs are decreased. In addition, many different energy sources can be
utilized in the district heat production. For instance, heat from waste incinera-
tion and industrial processes are sometimes used in district heating. Downsides,
on the other hand, are high investment costs and inefficiency in sparsely popu-
lated districts [11].

3 SARIMA and dynamic regression models

The Box-Jenkins methodology is a common approach to time series modeling
and forecast. Following the notation in [4], the objective is to model the time
series of interest Xt by defining a differenced series Yt

Yt = (1−B)d(1−Bs)DXt (1)

where B denotes a lag operator, s is the length of the season and d and D are
the orders of differences. The differenced series is then modeled as

φ(B)Φ(Bs)Yt = θ(B)Θ(Bs)Zt (2)

where φ,Φ, θ and Θ are polynomials of orders p, q, P and Q (respectively) and Zt
is a white noise process. A model of this type is called a seasonal autoregressive
moving average model and it is denoted by ARIMA(p, d, q)[s](P,D,Q).

The modeling approach consists of three stages : model identification, pa-
rameter estimation and model checking [21]. The model identification stage
consists of selecting the orders p, q, P , Q, d, D and the length of the season
s by e.g. visual inspection of the estimated autocorrelation and partial auto-
correlation functions. The coefficients in the polynomials are estimated using a
chosen method, such as maximum likelihood. The model is validated by using
autocorrelation and partial autocorrelation plots of the residuals and statistical
tests. Ideally, the residuals should be uncorrelated.

The Box-Jenkins methodology can produce several feasible models. These
models can be compared using information criteria and error measures. In
practice,it is possible to fit several models with different p, P , q and Q, and
compute the information criteria and the error measures and do the diagnostic
tests afterwards.

An exogenous variable T can be introduced in the time series model to ex-
plain the variation of XT . The R software package provides routines to estimate
models of the form

Xt = βTt + nt (3)

where the error term nt satisfies the equation

φ(B)Φ(B)(1−B)d(1−Bs)Dnt = θ(B)Θ(B)Zt. (4)

This is a dynamic regression model, or a regression model with ARIMA errors.
The model building can be done in the same way as with ARIMA models, and
the same diagnostic checks and statistical tests can be used. With an exogenous
variable, it is also appropriate to test the cross-correlations of the residuals and
T , which should ideally be close to zero [19].
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4 Static time series models

In contrast to ARIMA and other dynamic regression models, in a static time
series model the present values are not dependent on past values. The four
main assumptions of classical linear regression models are linearity, indepen-
dence, homoscedasticity, and normality. Firstly, the mean dependent variable
is supposed to depend linearly on the independent variable or variables. The
assumption of independence here means that the error terms do not depend on
each other. Homoscedasticity, on the other hand, refers to all error variables
having a constant variance. Lastly, the error terms are assumed to follow the
normal distribution. [29]

4.1 Simple linear regression

Let us follow the notation in [29]. The most straightforward regression model
is the simple linear regression model, where causal behavior of the dependent
variable is explained by one independent variable. The model is typically written
in the form

y = β0 + β1x+ ε, (5)

where y is the dependent variable, β0 is the y intercept, β1 is the slope of the
linear regression line, x is the independent variable, and ε is the random error.
In literature, the dependent variable is sometimes also referred to as the response
variable. Also, the independent variable can be called the explanatory or the
predictor variable.

We can state the simple linear regression model with respect to n pairs of
data in the form

yi = β0 + β1xi + εi, ∀i = 1, 2, . . . , n. (6)

For all εi, we assume that E(εi) = 0, variance is constant Var(εi) = σ2. In
addition, it is assumed that all εi’s are independent.

A commonly used method to find good estimates for coefficients β0 and β1 is
the principle of least squares estimation. For the simple linear regression model,
the coefficients are estimated such that the the sum of the squared distance from
the actual, observed yi and the predicted response yi is minimized. The aim in
this is to determine estimates for the parameters by choosing the regression line
that fits closest to all data points.

4.2 Multiple linear regression

Often the behavior of the response variable cannot be explained by one predictor
only. In a multiple linear regression model, the causal changes in the dependent
variable are explained by several independent variables. The predictor variables
can contain other predictors and their higher-order terms. The multiple linear
regression model can be stated in the form

yi = β0 + β1x1i + . . .+ βkxki + εi, (7)

or in the matrix-format
Y = Xβ + ε. (8)
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If there are only few possible explanatory variables, one can form all possi-
ble combinations of regressors and evaluate them with a help of model selection
criteria. However, as the number of the regressors increases, the method of step-
wise selection can prove to be more efficient. There are three different stepwise
procedures: backward elimination, forward addition and stepwise search.

Backward elimination starts with a model that has all the possible regres-
sors as explanatory variables. Each variable is tested separately with an F-test
through a comparison of the initial model and the model where that particular
variable has been removed. The least significant variable that has the highest
p-value in F-test is removed from the model. This is then repeated until the
p-value of the least significant predictor of the elimination round is lower than
the threshold value and the final model is found. It is also computationally the
fastest procedure [29].

Forward addition, on the other hand, starts with the model that has only the
intercept term. The procedure tests all simple linear models and compares them
to the original null model. The most significant explanatory variable with the
smallest p-value is added to the model if the p is lower than a specified threshold
value. The algorithm continues with identification of the next most significant
predictor to be added and is repeated until a regressor does not qualify to be
added, i.e. has a too high p-value.

The stepwise search is somewhat similar to the forward addition procedure
but after each addition it checks the model for predictors with the p-value higher
than the threshold value and removes them. The stepwise search is meant to
capture the best features from the other two stepwise procedures and is believed
to perform best of the three. [29]

5 Earlier research

There is a lot of research on forecasting the consumption of electricity. Elec-
tricity is sometimes used for heating but serves mainly other purposes. District
heating has seen less treatment in the literature.

5.1 Models for predicting heat demand in district heating

Static linear models and SARMAX models have been used for heat demand
predictions in literature [6] [7] [12] [18]. Some differences between studies arise
from the method of transforming the outside temperature (in degrees) into an
explanatory variable in the model. As the relationship between the temperature
and the heat demand is not linear, polynomials [6] and piecewise linear trans-
formations [7] [12] have been used. The social component is generally included
in the models either as a SARMA process (e.g. [6]) or by adding indicator
variables in model e.g. for each hour of the week (as in [18]).

Most studies use more than one error measure to evaluate the results. How-
ever, time series analysis of the prediction errors and model comparison with
information criteria is often omitted. Most studies note that the social compo-
nent and the outside temperature are the most important explanatory variables,
and that accurate weather forecasts are crucial for the success of the prediction
[6] [7].
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Dotzauer (2002) [7] presents a simple model for predicting loads in district-
heating systems. The heat demand is modeled as a sum of a temperature-
dependent component and a social component. The outside temperature is
transformed using a piecewise linear function with equal numbers of data points
corresponding to each segment. The social component is modeled using one
indicator variable for each of the 168 hours of the week, and the coefficients are
estimated from the data. Dotzauer’s model is static in the sense that neither
the temperature-dependent component nor the social component makes explicit
use of previous inputs and outputs. Data on wind and global radiation could be
included in the model as a correction for the temperature-dependent part instead
of including them as separate variables. A simple model is justified by lack of
measured data and uncertainties in the forecasts, and it is noted that good
temperature forecasts are crucial for making relevant heat-demand predictions.
Due to the similarities between prediction of heat demand and electrical power,
the author suggests that same types of models could be used for both. It is
suggested that one should focus on improving the weather forecasts rather than
developing more advanced load prediction algorithms in order to improve the
predictions.

Grosswindhager, Voigt and Kozek (2011) [12] use a SARIMA model for
short-term forecasting the system heat load in the district heating network in
Tannheim, Austria. The outside temperature is transformed using a piecewise
linear function and subtracted from the heat load, and a SARIMA(2,1,1)(0,1,1)48
model with half-hourly data is used to model the remaining time series. Model
selection is done using the Bayesian Information Criterion, and the autocorrela-
tions of the residuals are tested using the Ljung-Box test. It is mentioned that
calendar effects (Christmas, Easter) should be treated with dummy variables,
but they are not included in their model.

Nielsen and Madsen (2006) [22] present a grey-box model for heat consump-
tion in district heating systems. The prior information about the physical pro-
cesses, such as ventilation and heat transfer through windows is used to reduce
the number of models to consider and to prevent overfitting. The missing values
in the heat consumption data are not replaced. However, missing and outly-
ing data about climate variables are replaced with methods such as time series
decomposition and smoothing. The model is validated with positive results by
examining autocorrelation, partial autocorrelation and inverse autocorrelation
functions of the residuals as well as cross-correlations. Likelihood ratio tests
are used to test the statistical significances of the explanatory variables and the
authors report that wind speed, solar radiation and temperature are significant,
whereas the interaction between the wind and temperature is not. The differ-
ence between holy and half-holy days (including saturdays) is not statistically
significant.

An introduction to heat-load modeling in large systems is presented by Heller
(2002) [13]. It is noted that there are large variations in the significance esti-
mations of different components in literature. The ambient temperature is by
far the most important variable, whereas wind and humidity seem to be less
significant.

Chramcov (2010) [6] applies the Box-Jenkins methodology to forecast heat
demand in district heating in Most-Komořany and Litoměřice, Czechia. The
presented model is a sum of a social component and a temperature-dependent
component. The social component is modeled using SARIMA with daily and
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weekly periods, whereas only the current value of the temperature is included
in the model, not the previous values. A piecewise linear function and a third-
degree polynomial are presented for transforming the outside temperature into
a meaningful explanatory variable. However, no preference is given to one or
the other. The performance of the model is evaluated using the MAPE and
RMSE error measures, and the author reports that the accuracy of predictions
decreases on the weekend days. Again, it is concluded that the accuracy of the
temperature forecasts is crucial.

Lahdelma et al. (2012) [18] use a static time series linear regression model
to predict the heat demand in district heating. The current temperature and a
social component are used as explanatory variables. The temperature is used
in the model without any transformation. The social component is modeled by
using one parameter for each hour of the period, where the length of the period
was either 168 hours or 72 hours. The inclusion of mid-week holidays is found
to have very little effect on the accuracy of the predictions. The predictions are
more accurate for large clients and sums of smaller clients compared to predic-
tions of the consumption by individual small clients. The authors predict that
the performance of different models will improve as more accurate information
about consumption and the climate will be available.

5.2 Other approaches to time series prediction

Other approaches have been used for time series prediction, including artificial
neural networks (ANN) and Gaussian processes. Compared to Box-Jenkins and
static linear regression, these approaches seem to lack the wide availability in
software packages and the easily applicable recipes for model building. Much
research has been done in applying different models for energy and electricity
consumption, whereas studies on district heating are more rare. At the time of
writing, no studies about applying Gaussian processes to heat demand predic-
tion are avalable. Tools for using neural networks are included in the Neural
Network Toolbox for MATLAB and in the neuralnet library for R. Vanhatalo
et al.(2013) [24] have implemented tools for using Gaussian Processes in the
GPstuff toolbox for MATLAB.

Artificial neural networks are used by Bakker et al. (2008) [3] to predict
the heat demand of individual households based on historical heat demand and
weather influences as input. They conclude that neural network techniques can
be used for such predictions and consider the results promising. However, their
prediction horizon is only 24 hours. They suggest that including wind speed
and other factors could improve the predictions.

Another application of ANN is presented by Yalcintas and Akkurt (2005)
[27] for predicting a building’s energy use. They conclude that the method is
suitable for making energy predictions. However, they note that their approach
cannot be considered a generalized method for energy predictions and they list
several issues related to applications, such as the difficulty of determining the
most suitable ANN architecture.

Wang and Meng (2012) [25] combine ARIMA and ANN models to predict
energy consumption in Hebei province in China. They note that ARIMA cannot
deal with nonlinear relationships, while neural networks alone are not able to
handle linear and nonlinear patterns equally well. The RMSE, MAE and MAPE
error measures are used to show that their model performs better than ARIMA
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and ANN models when used separately.
Yan and Malkawi (2013) [28] use a Gaussian process model for predicting

the building cooling and heating consumption. In their application the Gaus-
sian process model produces better predictions than a neural network, although
they note that further comparisons between the methods would be required.
The authors note that the results of Gaussian process modeling express the
uncertainty of predictions, whereas the uncertainty could not be quantified ex-
plicitly with neural networks. Leith et al. (2004) use Gaussian process models
to predict electrical loads in Ireland with promising results. MAPE and MSPE
are used as error measures for evaluating the models. The authors express some
concerns related to difficulties in computation and the use of the models in
long-term prediction.

6 Data

The data we have in our use contains usage data from 2013. The usage is
recorded hourly giving us 8760 data points for every building. Temperature
data is also hourly data collected from one measurement station. The essential
information can be considered to be:

1. The quantity to be forecasted (MWh).

2. Characteristics of each building

• Heated volume (m3)

• Year of construction

• Type of building

3. Temperature from Sepänkylä measurement station in Espoo.

6.1 Omitted data and comments

The original data defines the building volume, floor area and heated floor area
for each building. The heated volume gives a more appropriate estimate of the
building’s heat consumption than the floor area, and the floor area will thus
be omitted. The year of construction surely affects the energy efficiency of the
house and thus also the heat consumption in some way.

The original data also contains information such as the year of restauration
(if any). The year of reconstruction is not reported in all cases. Additionally
the term causes some ambiguity; in some cases even repainting the building is
considered restauration. Thus, the reconstruction year will be omitted.

The temperature measurements contain some blank measurements. In order
to use the data for modeling, these blanks must be filled. Due to the lack of
better knowledge, these values are to be interpolated. When using the model
for real forecasting, forecasts for temperature are also used. Usually forecasts
for every hour should be available.

The same goes for consumption data. This data does not contain blanks,
but it does contain some erronous values. These values too must be replaced
with interpolated values. Automating consumption correction could be a hard
problem, but an important one. Detecting and correcting errors has to be
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implemented. We will describe in the report how erroneous values can affect
the resulting model and give unacceptable results.

6.2 Correcting errors

Temperature data contains some blank cells. To use the data for modeling
blanks must be filled. Without better knowledge, these values are to be in-
terpolated using simple linear interpolation. When using the model for real
forecasting, forecasts for temperature are also used. Usually forecasts for every
hour should be available.

A simple automatic correction for errors in the consumption data can be
constructed the following way. If the maximum possible consumption per hour
is known, values larger than this can be corrected to equal the average of the
preceding and successing values. If the successing value is also too high, the
value can be changed to equal the preceding value only. This simple procedure
should be powerful enough since errors are relatively rare.

A more powerful way to correct errors would be to use forecasted values. For
every value a forecast would be made and this way errors would be corrected
from beginning to end. This, however, would be time-consuming in processing
time even if the forecasting was fully automated. It is not clear if the improve-
ment in results would be noticable enough to justify this method.

Literature concerning error correction is broad. One simple way to detect
erroneous values is Cook’s distance. Cook’s distance measures the effect of
deleting the chosen data point.[26]

A whole field of statistics called data editing is centered around finding and
correcting errors.[5]

7 Building the model

7.1 Outliers

Most data sets have outliers. Examining the individual buildings’ consumptions
reveals that many of the measurements are not updated regularly, meaning that
the value does not change often enough (e.g. only once a month). This brings
problems in understanding the relation between temperature and heat usage
and between time and heat usage. Figure 1 shows the variability of the data.
Examining the data reveals that a minimum requirement that the data varies
every third measurement is appropriate. We can see that tens of measurements
practically are constant throughout the one year long time series.

7.2 Groups

The grouping of building types is based on two fundamental differences between
the buildings: the temporal rhytm of buildings and the relationship between
heating volume and mean consumption. The correlation between the average
consumption for each building in the groups and the building’s volume is shown
in Table 1.

There is a linear relationship between the heating volume and the mean
consumption of the buildings. On closer inspection, it becomes apparent that
some of the outlying data points follow a different relation between the heating
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Figure 1: The variability of the data. The figure shows how often the heat usage
data changes values in average. The data measurements that vary more than
33% in average are utilized in the model building.

volume and the mean consumption. Swimming halls have a very different rela-
tionship between the heat consumption and building volume compared to other
sport halls, as can be seen in Figure 2. The buildings were divided into five
groups: residential, daycare centres/work, commercial centres, swimming halls
and other type of sport buildings. The groups are shown in Figure 3 in a more
narrow interval. The coloring is the same as in Figure 2. Clearly, most of the
residential data regards small residential buildings.

7.3 Lags of temperature

We can consider the temperature as a control variable to a discrete dynamic
system. The step response of this system tells the lag, i.e. how long it takes
before the temperature outside affects the temperature inside and thus the heat
consumption of a building. There are some different ways to estimate the step
response of a linear system. In our case, it is not possible to change the control
variable freely (the control variable is temperature). One way is to use the
correlation analysis algorithm CRA. This method gives a quick insight of the
time constants and time delays of the system. This model assumes that the
input u(t) is uncorrelated with the error in the model e(t)

y(t) =

∞∑
k=0

gku(t− k) + e(t) (9)

This means that the correlation analysis does not produce credible results
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Table 1: The correlations between volume and average consumption for build-
ings in different groups.

Group h
All values 0.63
Residential 0.90
Daily 0.77
General sport 0.70
Swimming 0.89
Centre 0.66

Figure 2: The groups in the data.

in the case of output feedback. In our case this would mean that the use of
central heating affects the future temperature in the measuring station, which
is implausible. The correlation analysis is done with the algorithm CRA as
described in [19]. The input signal is whitened first with an AR-filter.

In order to understand the essential time lags for the temperature variable
in a SARIMAX model, correlation analysis is used. The temperature will be
regarded as the control signal in this model. Correlation analysis relies on the
fact that the control signal is a random variable with a zero mean. In this case
the model error and the filtered control signal will have an expected value of zero
and the correlation between the variables can be seen in the cross-correlation
function. The temperature should clearly not be random; cold weather at hour
t clearly implies cold weather at hour t + 1. It is necessary to whiten the
temperature with a linear filter.

Forecasting the temperature is difficult and it is clear that a linear process
model cannot capture the full dynamics of the process. However, we can create
a linear process model that is sufficiently good that the residuals are white for
a couple of hours forward in time. This will produce a linear filter that can
be used to filter the input signal (temperature) and output signal (heat usage).
The residuals from this model can be tested against the whitened output in
correlation analysis.
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Figure 3: The group separation.

The temperature time series is whitened with a AR(4,1,0)-filter. The cross-
correlation analysis did not produce credible results that suggested that other
lags than 0 could be useful in estimating the heat usage. Other lags can be
credibly motivated.

8 Validating and verifying models

Crossvalidation with real weekly data is used to test the model validity. The
data is divided into two parts: a wintertime model and a summertime model.
The winter week starts with a the date and hour 2013-04-04 09:00 EEST and
ends with 2013-04-11 08:00 EEST. The summer week is validated between 2013-
10-20 03:00 EEST and 2013-10-27 02:00 EEST in the yearly daylight saving time
model.

8.1 Measures of error

Measuring the error in forecast can be done in many different ways. Cumula-
tive Forecast Error (CFE) is the most straightforward way. This is the simple
cumulative sum of all errors. Mean error (ME) is the same but divided by the
number of data points. This is a little more representative way of measuring.
The problem with these is that negative and positive errors can average out
and the measure can be close to zero even if the forecast is not good. Mean
Percentage Error (MPE) is similar to ME but presents the error in percentages.

Mean Squared Error (MSE) is the sum of squared errors. Root Mean Squared
Error (RMSE) is the square root of (MSE). RMSE is calculated as

RMSE =

√∑n
t=1(yt − xt)2

n
, (10)
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where yt is the real value and xt the predicted value for time t.
Mean Absolute Deviation (MAD) is the sum of the absolute values of errors.

Mean Absolute Percent Error (MAPE) is similar to MAD but presents the error
in percentages. MAPE is calculated as

MAPE =
100%

n

n∑
t=1

|yt − xt
yt

|. (11)

Mean Absolute Scaled Error (MASE) is a somewhat new measure of error.
Proposed in 2006 by Australian statistician Rob J. Hyndman MASE measures
scaled absolute errors. The scaling is done by a sum of naive forecasting. The
formula for MASE is

MASE =
1

n

n∑
t=1

yt − xt
1

n−1
∑n
i=2 |yt − yt−1|

=

∑n
t=1 |yt − xt|

n
n−1

∑n
i=2 |yt − yt−1|

. (12)

Another measure of error is the residuals of the forecast. Autocorrelation
with lag of one (ACF1) can be used as a statistic in studying error.

Academians have traditionally had a strong preference for RMSE and it is
frequently used in forecasting. MAPE is perhaps the most widely used unit-free
statistic. [1] MASE is a newer method with a somewhat different approach hav-
ing a simple interpretation.[15] With all different statistics having their strengths
and weaknesses, we will use these three to study the success of the forecast. They
are by no means the only three possible. The choice is somewhat arbitrary.

Maximum Absolute Deviation (MAD) is yet another error measure that tells
how much the forecast has been wrong in the worst case in the forecasted period.
This measure might be especially interesting to get a hint of the accuracy of the
model. The unit for this measure is the same as for the forecasted value, in this
case MW. The positive error measure is

MADp = max
t
xt − yt. (13)

9 Modeling with ARMA

9.1 Building the model

To use a simple SARIMAX model we can do the choice of order automatically
by the means of information criteria. Using the temperature and its third power
as the external variable and Akaike Information Criterion with a correction for
finite sample sizes (AICc) as the information criteria we get the following.

From the beginning of normal time (as opposed to summer time) until the
end of year 2013 we have 1579 hours. We leave 168 hours (a week) of these out
to test our prediction. Estimating an ARIMA(1,1,1)[24](6,1,7) model for the
1411 hours gives us the following.

Figure 4 shows the forecast with model ARIMA(1,1,1)[24](6,1,7). We can
calculate the prediction error for this in many ways. Using MAPE we get MAPE
= 8.229122. This is somewhat big. Calculating MASE gives MASE = 2.05344.
This means that the error is twice as big on average compared to using always
the previous hour as our guess. This does not mean we could use the previous
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Figure 4: Forecast with ARIMA(1,1,1)[24](6,1,7). In red is the real consump-
tion, with black the future real consumption. Blue lines are the forecast and 95
% confidence levels.

hour for the whole week. We can only use it for the next hour since we don’t
know the real values into future.

Figure 4 also shows the confidence intervals. It should be noted that these
are not sensible in the end because the consumption cannot be negative. The
levels are just normal approximations.

9.2 Uselfulness of temperature as external variable

The usefulness of temperature as an independent variable can be questioned
since the cycle of temperature is mainly the same as the 24 hour day cycle. Even
though previously discussed literature showed the importance of temperature,
it is wise to check this with our data.

Figure 5 shows the difference of forecasts with and without temperature with
the same data as before. The differences might seem small.

Table 2 shows the forecast error measures for the two different forecasts. We
can see that the forecast with temperature is consistently better at least with
this data. The table also shows the error measures for forecast with only linear
component of the temperature. It can be seen that it is very much the same
as the forecast with third power though a little better. It is therefore not clear
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Figure 5: Forecast with ARIMA(1,1,1)[24](6,1,7). In red we have the forecast
with temperature and its third power as an independent variable and in blue
without it.

Table 2: Measures of error for different models.

Measure / Model No temperature Temperature Only linear temperature
RMSE 1.002158 0.9312565 0.93962
MAPE 8.760943 8.229122 8.295957
MASE 2.173188 2.05344 2.069228

whether the third power should be included in the model. It is important to
compare the forecast error measures and not the model because the temperature
would always win the model competition due to more variables.

9.3 Computational considerations

Fitting an ARMA model is heavy in computational sense. The choice of the
final model, its parameters p, P , q, Q, d and D can be automated in R with a
function called auto.arima. With this function the choice can be made step-
wise but even so the process can take up to an hour with an average computer.
With this in mind if this timeframe is too much the process could be changed
or a more powerful computer must be used.
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10 Modeling with static linear regression

10.1 Building the model

Static linear regression is an alternative to ARMA model with the advantage
of computational simplicity among other things. Using static linear regression
for modeling and forecasting is slightly different from time series models. The
difference boils down to whether future heat consumption depends on previous
values or not. When using static linear regression previous values are not used.

When using linear regression we have the consumption as the dependent
variable. Independent variables include temperature and an indicator of time.
Temperature can be handled similarly to the ARMA model.

Linear regression can be written in vector form

y = Xβ + ε, (14)

where y is the vector for consumptions, X is the matrix for the independent
variables, β is the vector for the constants and ε the error term.

How to use time in the model is a trickier question. There are three promi-
nent approaches. First is to label every hour of day with a label of their own
and have 24 indicator variables. The second approach uses one indicator for
each day of week and thus has 168 variables. The third approach is something
between these two. It uses 72 variables, 24 for weekdays and 24 for saturdays
and sundays. When doing calculations one of these variables must be dropped
out to avoid linear dependency.

In the case of 24 indicator variables and a linear temperature dependency,
the estimate for a specific hour would be Equation (15):

ŷt = βτ x̂τ +

24∑
i

1(t,24)βixi, (15)

where xi is the mean value of this time slot, x̂τ is the temperature esti-
mate for the estimated time and β are ordinary least squares estimates for the
coefficients. 1(t,24) is the indicator function

1(t,24) =

{
1 t mod 24 = i

0 t mod 24 6= i
(16)

that equals 1 if t is divisible by 24 and 0 otherwise. The errors are assumed
to be Gaussian.

10.2 Temperature

A static linear regression model was estimated for the sum of the heat con-
sumptions in 178 buildings (hourly data in 2013). Using the temperature as
an independent variable without transformation results in R2 = 0.8429. Us-
ing a polynomial of third degree gives R2 = 0.8687 and of fifth degree gives
R2 = 0.8721. Already with this analysis we can see that using more than third
order is not wise and leads to overfits. This is true regardless that we get p-
values lower than 2e-16 for all degrees up to fifth when fitting a polynomial of
fifth order.
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10.3 Structure of the week

Periods of 24, 72 and 168 hours were used to model the seasonality in the data,
as was done in [18]. With more variables fitting the model gives a larger R2.
Therefore we must use something else to study which method is the best.

Using 24 or 168 variables is the easiest choice. When using them we don’t
need to explicitly know which hour is which. With 72 variables we need this
information because the weekend has a special meaning.

Table 3: Error measures when using time periods in forecasting the heat con-
sumption for the last week of 2013.

Measure / Model 24 72 168
RMSE 0.0038004 0.0039487 0.0041116
MAPE 6.5521 6.6046 6.9141
MASE 0.80030 0.80651 0.84002

Table 3 shows the error measures when using the fall time series to forecast
the heat consumption for the last week of the year. The last week of the year
is however a very special week because it includes the Christmas week. Results
for another forecast is shown in table 4. In this case the forecast is for the last
week in the spring before clocks are moved.

Table 4: Error measures when forecasting the consumption for one week in
spring.

Measure / Model 24 72 168
RMSE 0.0068932 0.0051683 0.0072998
MAPE 11.941 8.6720 12.574
MASE 1.5944 1.1400 1.6831

Table 4 shows that in this normal week the forecast with 72 variables is
clearly the best. Forecasts with 24 and 168 variables are equally bad compared
to the one with 72. So far, this result would suggest that using 72 variables in
linear regression is preferable.

10.4 The value of groups

The regression results during a week in autumn are shown in Table 5. This
table shows the results of regressing the past usage data with the temperature
and its third power with different lengths of past data examined. The data is
regressed over a subset of the variables. In column ”All data” all data points
are used. In ”no outliers” all data points that passed the initial requirements for
varibility were used (i.e. not too many equal consecutive measurement values).
The variability test was shown in Figure 1.

In ”combined regression” the data points were separated into five groups and
each group was regressed. The predictions and the realized values were summed
for each day. The error measure was calculated for the summed values.

We can see that forecasting with the combined values generally produces smaller

18



errors than forecasting with all the data. This is because the groups use heat-
ing very differently according to the time of the day. Interestingly, the varying
values regression fares more poorly than the ”all data” regressors. However, the
smallest maximum deviation are usually found by using the ”no outliers” re-
gressor. Regressing the data with the all values produces better error measures
in average than with the ”no outliers” values’ regressor. This is because ”all
data” contains certain values that are largely constant throughout the measure-
ment period. The data does not contain the proper, actual variability in the
consumption.

The maximum absolute deviation (MAD) error is arguably the most impor-
tant error measure. It tells how gravely the forecasting algorithm overestimates
(+) or underestimates (−) the consumption at worst. Forecasting far too much
means that an additional power plant needs to be started in vain. Forecasting
too little means that some building might not get enough heating in the winter.

Table 5: The performance of the combined static linear regression models for the
groups. The lower the error values are, the better. The lowest errors measured
for each h is written in bold characters.

Error measure h All data No outliers Combined regressors
MAPE 24 7.938 8.798 7.724

72 8.826 9.656 8.568
168 7.415 8.591 7.515

MASE 24 1.923 2.148 1.844
72 2.150 2.372 2.054
168 1.797 2.108 1.80

RMSE 24 0.8637 0.8183 0.8135
72 0.940 0.883 0.8827
168 0.863 0.827 0.7931

MAD 24 +2.326,−1.195 +2.137,−1.102 +2.278− 1.404
72 +2.402,−1.148 +2.247,−1.057 +2.382,−1.374
168 +2.639,−1.106 +2.406,−0.9641 +2.20,−1.198

10.5 Temperature trend

We could use the temperature trend to divide the data into a summer/winter
model. In Jaakko Luhtala’s Master’s thesis [20], the heat production at power
plants were piecewise linearly dependent on the outside temperature. Figure (6)
shows this switch. At 16 degrees the heat production basically saturated to a
certain level. At this temperature, houses are not warmed anymore. However,
people will still use warm water in the shower etc. Based on this, the summer
time and winter time was divided into two parts: a winter model is used if
the temperature trend is below 16 degrees and a summer model is used if the
temperature trend is above 16 degrees. The temperature during the year, the
temperature trend and the temperature switch is shown in Figure (7).

The validation period in the winter model is still 2013-04-04 09:00 - 2013-
04-11 08:00. The validation period for summer was 2013-08-05 15:00 - 2013-
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Figure 6: A scatter plot of the dispatch water temperature in from a power
plant plotted against the outside temperature.

08-12 14:00. The results for forecasting on the winter and summer periods are
shown in Table 6 and 7. We can see that the winter model performs much more
favourably when the outliers are removed from the training and validation data.
This is because the correct temperature-consumption relationship is captured
better in the winter model.

All summer models have higher error measures than the winter models. The
one exception is MAD, where the summer tests have smaller deviations. The
reason for this is that the consumption is lower on summer. The maximum
deviations will also remain lower.

The winter models capture the real behaviour better than the summer mod-
els because the effects that temperature has on the consumption are stronger.

When we compare the results to the model where summer time and winter
time are determined using the daylight saving time, we see that the model
with no outliers perfoms better (correct relationships between temperature and
consumption). Comparing the results of the temperature trend models and
daylight saving models reveals that all measurements are of the same size. The
MAPE is in the interval [7.4%, 8.6%] in all tests with 168 variables.

The root mean square error is particularly dependant on outliers. The win-
ter model’s increase in RMSE might be because of including particularly cold
periods in the summer into the winter model.

The mean absolute scaled error reveals that the division of data according to
the temperature is better. If MASE equals one, the forecast one hour ahead is as
good as persistence, i.e. estimating that the value remains unchanged. Larger
values indicate that the estimate is worse. Since MASE has decreased, the
forecasting power one hour ahead has improved in both the summer and winter
model compared to the winter model using the DST. In the winter models, 168
hour models produce the smallest errors.
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Figure 7: The temperature time series and the linear trend of the temperature.
The trend is calculated linearly over 28 hours.

Table 6: The performance of the combined linear regression models for the
winter model. All models use 168 hours in the week for the regression. The
best values for each error measure are highlighted with bold.

Error measure All data No outliers Combined regressors
RMSE 0.9725 0.8767 0.9043
MAPE 8.627 7.741 7.769
MASE 1.396 1.234 1.255
MAD +2.202,−0.658 +2.05,−0.8013 +2.09,−0.7624

10.6 Uncertainty of the temperature forecast / long-term
forecast

The temperature forecasts become more uncertain the farther we look at the
future. As an alternative model to forecasting future values, static linear regres-
sion using the volume of the house as an explanatory variable could be used.

A large part of a demand prediction error is based on the inaccuracy of the
temperature and weather forecasts[8]. The uncertainty in temperature forecasts
is caused through errors in both the weather prediction model formulation and
the initial state and conditions of the model [9]. For instance, the weather and
climate models can have up to O(107) degrees of freedom [23].

Among other reasons, there are economic grounds for predicting the uncer-
tainty lying in the weather forecasts. With a careful assessment of the forecast
uncertainty, the credibility of the weather forecast will increase, and the errors
in the demand predictions based on temperature will decrease, yielding more
accurate demand forecasts. This will in turn decrease the need to reschedule the
heat generation, for example, and thereby make the planning of heat generation
more efficient.

There is not much research on the prediction of the uncertainty of the
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Table 7: The performance of the combined linear regression models for the
summer model. All models use 168 hours in the week for the regression. The
best values for each error measure are highlighted with bold.

Error measure All data No outliers Combined regressors
RMSE 0.2852 0.2874 0.2898
MAPE 9.652 9.733 9.671
MASE 1.669 1.661 1.623
MAD +0.3625,−1.337 +0.3553,−1.34 +0.3581,−1.35

weather forecast in cases of district heating demand prediction. However, there
are studies on how the uncertainty of the temperature forecast impacts electrical
load forecasting [8]. Douglas et al. [1998] study the effect of uncertainty on elec-
trical load forecasts using a recursive prediction algorithm based on Bayesian
estimation. In their case, the difference in normalized errors in load forecasts
can vary as much as 30 to 50 percent between load forecasting with realised tem-
perature and load forecasting with temperature forecasts. On the other hand,
their research shows signs that the impact of the errors in temperature forecasts
can differ greatly with the annual seasons. In the summer, for instance, the
electrical load seems much more temperature-sensitive than in the winter when
the normalized errors were estimated to be of nearly the same size.

11 Case: consumption in the T3 area

We received consumption data from the T3 area that is Tapiola, Keilaniemi and
Otaniemi. The data consists of 796 buildings.

Like before, the data has some problems. Errors in the consumptions had
to be corrected as usual. In addition to that, there were errors in the metadata
concerning the properties of the buildings. This was a nuisance in closer exam-
ination. Of all the buildings 583 were defined to be ”good” meaning that their
measurements were done hourly and had proper variability.

The data runs from March 2013 to February 2014. It was again divided to
three parts according to the daylight saving time. This made the first part much
shorter than the rest, only about 1000 hours. The second part was the summer
and the third the following winter.

A prediction was made for the third part. Using only the good buildings and
predicting for the last week of the third part using the earlier part of the third
part gives the following statistics. The model used in this is the static linear
regression model with 168 hours.

Table 8: Error measures for forecasts with static linear regression in Tapiola-
Keilaniemi-Otaniemi area.

Measure Value
RMSE 4.845
MAPE 8.792
MASE 3.005

We can see from Table 8 that the result is very much like before. Just under
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10 % of the variation cannot be explained by this linear regression model.
The supplied data contained a unique problem. Although the area contained

583 good buildings, only 14 of these buildings were labeled according to the given
groups. Further, 365 buildings (62%) contained no metadata information about
the building type. This creates a huge uncertainty about how to assign group
values. Because the varying values model compared favourably to the combined
regressors model among the temperature trend sensing model, it is reasonable to
use the simpler ”no outliers” model to forecast the demand for the area. Using
the combined regressors model creates additional uncertainty in determining the
groups.

12 Conclusions

In this report, two different approaches for modeling the district heat demand
are studied. Time-series approach is the more general model allowing the au-
toregression and moving averages. When these properties are left out we are
left with static linear regression. In our model we compensate this by using the
hour as an indicator variable.

The result of the modeling was similar in both approaches. Both models had
a decent success in forecasting the heat consumption. When choosing between
these two the choice then comes down to simplicity and other factor. The basic
linear regression method is simple to use and fast to calculate whereas fitting
the time series model automatically can take hours on a normal computer.
Taking all things into consideration the recommended model is basic static linear
regression.

Other things have to be taken care of when using the model for forecasting.
In demand forecasts the temperature must be known in advance and temper-
ature forecasts are used for this purpose. The variance in the temperature
forecasts increases very quickly and usually most of the uncertainty in heat and
electricity forecasts comes from this uncertainty in the temperature. The effect
of uncertainty in the temperature forecasts is difficult to remove or diminish
because it would require better weather forecast and climate models.

Filtering variables according to the data variability is advantageous in the
winter data in Table (6). If the building type data is available, this can also
be used in the forecast. The results were similar for either using the grouped
filtered variables or the filtered variables data. Regressing the raw data during
winter produces poorer results than using the filtered variables. In the summer
data in Table (7) the filtering of the data had no effect on the performance. All
models performed very similarly.
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A Appendix: Self-assessment (in Finnish)

Projektin kulku

Projekti alkoi hyvin. Tapaamiset Fortumin kanssa saatiin järjestettyä nopeasti,
jonka ansiosta projekti lähti hyvin käyntiin.

Periaatteeksi otettiin, että jokainen osa projektista on hyvissä ajoin valmis,
ja tämä onnistuikin hyvin. Projektin laajuus oli suurinpiirtein selvillä jo alussa.
Ensimmäisen seminaaritapaamisen jälkeen projektia tarkennettiin vielä Fortu-
min edustajien kanssa.

Vapun alla ryhmään iski hieman hiljaisempi vaihe. Osittain tämä johtui
työmäärän vähenemisestä; projekti oli lähes valmis. Osittain tämä myös johtui
muiden kurssien työtehtävien kasautumisesta huhtikuun alkuun (koeviikkoon).

Loppuvaiheilla projektiin pohdittiin useita eri lisäyksiä, kuten sääennusteen
epävarmuuden ja auringonpaisteen huomiointi. Nämä otettiin jossain määrin
huomioon projektissa, mutta vaatisivat molemmat vielä lisäselvityksiä.

Työnjako

Virallista työnjakoa ei tehty, mutta projektin kuluessa roolit tulivat selväksi.
Lasse ja Mika keskittyivät enemmän koodipuoleen ja Joona ja Juulia enemmän
kirjallisuuspuoleen. Kirjoitettu koodi ja kirjallisuustutkimus jaettiin, ja kaikki
tutustuivat jossain määrin muiden aikaansaannoksiin. Näistä myös keskusteltiin
tapaamisissa.

Projektin työmäärä oli virallisesti 115 tuntia rivijäsenellä ja 170 projek-
tipäälliköllä. Nämä arviot pitävät jossain määrin paikkaansa, vaikkakin projek-
tipäälliköllä ei kulunut 55 tuntia enemmän aikaa projektiin kuin rivijäsenellä.

Työmääriä tasattiin jonkin verran jakamalla vastuita opponoinnissa ja esi-
tysten laatimisessa.

Fortum

Dataa saatiin Fortumin puolelta mukavasti ja ajoissa, joten ennustaminen saatiin
toteutettua hyvin.

Kun ennustemalli oli saatu toteutettua, ryhmä kysyi Fortumilta, kuinka he
haluaisivat käyttää tätä hyväksi. Se, missä muodossa, jos missään, mallia Fortu-
milla tulevaisuudessa käytetään, ei ole vielä selvää. Mahdollisimman hyvä koodin
ja projektin dokumentointi mahdollistaa mallin helpon jatkokäytön.

Paranneltavaa

Ryhmä tapasi noin kerran kahdessa viikossa. Tapaamisissa keskityttiin tulevien
tehtävien laatimiseen ryhmänjäsenille. Tapaamisissa kerrottiin lyhyesti viime
tehtävistä, tosin jälkeenpäin ajatellen ehkäpä liian lyhytsanaisesti. Tietämättömyys
muiden jäseneiden puuhista osittain jumitti ryhmänjäsenet samoihin tehtäviin.
Näin ollen työtehtävät kasaantuivat eri jäsenille enemmän kuin toisille.

Työtehtävien tasoittamiseksi voisi tehdä enemmän työtä samanaikaisesti
samalla paikalla, jolloin myös jäseneiden taidot siirtyvät paremmin eri jäse-
nien välillä kuin yksintyössä. Tämä tarkoittaa myös parempaa riskienhallintaa
ryhmien jäsenten sairastumisten tai muun käyttämättömyyden varalta.
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Tiheämpi kokoontumisväli ja pidemmät tapaamiset olisivat voineet myös
edesauttaa tiiviimmän ryhmähengen muodostumisessa. Tapaamiset olisivat tällöin
saattaneet olla avoimempia, jolloin esimerkiksi uusia tai vaihtoehtoisia näkökul-
mia olisi esitetty mahdollisesti vielä enemmän ja työtä olisi voitu kehittää vielä pi-
demmälle.

Projektityön rakennetta ja osia olisi voinut yrittää hahmotella tarkemmin jo
projektin alussa. Näin työn suuruutta olisi pystynyt arvioimaan paremmin ja
työvaiheiden valmistuessa seuraaviin siirtyminen olisi ollut selkeämpää. Mon-
esti uusia tehtäviä keksittiin sitä mukaa, kun edelliset tulivat valmiiksi. Myös
tämä olisi voinut auttaa työtehtävien paremmassa allokoinnissa.
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