
Mat-2.4177 Seminar on case studies in operations

research:

Generating aesthetically pleasing lattice

structures

Teppo-Heikki Saari // tisaari@cc.hut.fi, project manager
Jarno Leppänen // jarno.leppanen@tkk.fi

Johan Mangs // kmangs@cc.hut.fi
Teemu Mutanen // teemu.mutanen@gmail.com

Antti Savelainen // antti.savelainen@tkk.fi

May 9, 2008

Final Report

1

Contents

1 Introduction 3

1.1 Background . 3
1.2 Project goals . 4
1.3 Project outline . 5

2 Literature review 6

3 Methods 8

3.1 Data structures . 8
3.1.1 Tensor . 8
3.1.2 Directed graph . 8

3.2 Generating lattices . 10
3.3 Visualization . 14
3.4 Linear programming model . 14

3.4.1 Variables . 15
3.4.2 Constraints . 15
3.4.3 Objective function . 18

3.5 Sequential linear programming algorithms 19

4 Results 19

4.1 Realized outcomes of the project 19
4.2 Challenges with the algorithm . 22
4.3 Unrealized outcomes of the project 23

5 Discussion 24

5.1 Mathematical description of aesthetic lattice properties 24
5.2 Possible other approaches . 26

5.2.1 Constraint programming 26
5.2.2 Genetic algorithms . 26

6 Concluding thoughts 28

7 References 29

2

1 Introduction

1.1 Background

Arts have always depicted the phenomena and the issues of contemporary soci-
ety. Since the beginning of mankind arts have always played an important role
in expressing human (sub)consciousness. The scientific and technological devel-
opment of modern society has prepared the way for the convergence of arts and
technology.

The development of proper software and tools for creating something new has
made it possible for arts to expand into digital form, and many of the art forms
that we see today simply did not exist a couple of decades ago. The advances
in software technology has also changed the way artists working in the fields of
traditional arts, painters and sculptors to name but a few, work.

Sculptor Anna-Kaisa Ant-Wuorinen was given the job of designing a sculpture

Figure 1: ”Fuuga”

for supporting structure next to Sandels building – located in Töölö, Helsinki –
for its stock pile. The work is an example of combining architecture and engi-
neering. Named after the musical instrument, ”Fuuga” (see Figure 1) is made
of brushed stainless steel tubes. The scaled model for the piece was designed
with Rhinoceros software and the parts were weld together. Both methods were
needed, because as much as exploring the dimensions of sculpting are about the
final resulting art work, it is about how the sculpture is made.

Professor Ahti Salo at The Systems Analysis Laboratory in Helsinki University
of Technology was contacted by Ant-Wuorinen to elucidate whether the stu-

3

dents had ideas for possible solutions to a problem arising in the process. The
sculpture was to fulfill certain requirements. The methods of creating sculptures
mentioned above were iterative, and the sculptor could not see the result before-
hand. If there was a way of constructing the model fulfilling the requirements
and then evaluating it digitally, the process would become easier. In addition,
during the process several interesting questions concerning the aesthetics of the
sculpture arose:

• What is mathematematcal beauty?

• What is technical beauty?

• What is aesthetical beauty?

• How can the questions above be applied to the sculpting process?

• Can one examine the essence and the fundamental differences and similar-
ities of above concepts through a concrete example like creating a sculp-
ture?

This project tries to provide means and methods of answering the aforemen-
tioned questions by developing a tool for generating lattice structures bearing
a close resemblance to ”Fuuga”.

1.2 Project goals

The goal of the project is to develop a tool for Anna-Kaisa Ant-Wuorinen that
aids her to create aesthetically pleasing lattice structures for her sculptures. The
evaluation of qualitative properties in the sculpture is possible only if the artist
has a chance in conceptualizing the final lattice structure. The visual model pro-
duced by the software is one way of examining the properties of lattice structures
without going through the somewhat tedious process of manufacturing the phys-
ical model by hand.

The developed tool should be able to visualize the generated lattice models.
It is required that the software generates the lattice structures in such a way
that the mathematical minimum requirements are fulfilled. Secondly, the re-
sulting lattices have to be shaped so that they are easily grasped visually. And
thirdly, the user should have a way of influencing the result by giving input to
the software.

The project was divided into two major parts. The first part consists of devel-
oping the algorithm for generating the lattice structures fulfilling the required
constraints. In the second part the resulting lattices are to be examined. By
identifying the properties of the lattices and describing them mathematically,
the algorith is to be made more sophisticated. The user may give input to the
program, and the resulting lattices express various properties demanded by the
user.

Furthermore, the essence of the combination of arts and technology is exam-
ined by comparing the properties of created models. Mathematically aesthetic
solution could be a more simple one than the stable and practical technological

4

approach. Classical artistic solutions could be symmetrical and harmonized. In
that way, measurable properties can be manifested in the language of mathe-
matics and physics, thus creating the shape of a lattice.

1.3 Project outline

We have resorted to examining parallelepiped lattice structures of size 3x4x7.
The structure generated by the software is required to fulfill at least the following
conditions:

• The structure is completely connected and solid.

• There is a junction in every panel point. The structure must maintain the
rectangular parallelepiped form.

• There is not a single node that is connected to only one other node. This
means that there is no bar that has one end point connected to a bar and
the other is not.

• The projection of the structure by all three coordinate axis must form a
complete grid. All of the nodes on the projection plane are connected to
adjacent nodes.

Figure 2: All the possible junction types

The lattice consists of bars that may have two orientations, vertical and hori-
zontal. The cross-section of the bars is rectangular. This gives rise to another
condition: the bars can be connected in only one plane (see Figure 2).

The apparently small size of the lattice structure still permits a vast number
of different solutions, even with all the constraints applied. This poses a great
challenge to the formulation of the algorithm.

5

2 Literature review

In the European culture, systematic studying of the philosophy of arts and aes-
thetics was introduced by Plato around 400 BCE. Plato finds that (within visual
arts) all the pieces of art merely look like the original. If they were perfectly the
same, they would be another examples of the same thing. This theory is easily
applied to our project. During this project we have been interested only in the
shape of the lattice. When the shape is expressed in the language of mathemat-
ics, the expressions are identical - an example of the idea of lattice.

Plato supposes that, in a sense, ”all created things are imitations of their eternal
archetypes, of forms”. Plato sees art to be imitation in a narrower sense; arts
are removed from ”the reality of the forms, on the lowest of the four level of
cognition, eikasia (imagining)”. In this sense, lattices formed by means of math-
ematics could be somehow imitating the essence of the rules and exact truths
of mathematics. Hence, there are utopian solutions which can be solved com-
putationally, and this concrete solution is a rendered ”image” of the original one.

By using mathematical approaches, we are able to uncover a mathematically
perfect and pure solution, but it is subjective. Undefined are questions like
”what is aesthetically and artistically pleasurable?”. It is important to empha-
size this point, because by learning a human being will be able to play with and
utilize this software like an instrument. When these two approaches are both
adopted, one is able to obtain better ’imitations of eternal architypes’.

Elsewhere, mathematical approaches within arts have been used at least in ar-
chitecture. In St. Louis a famous monument called Gateway Arch (see Figure 3,
[7]) was built in 1965. It is designed by Eero Saarinen. This curvilinear structure
is known for its shape, that of which a free-hanging chain takes when held at
both ends.

Figure 3: Gateway Arch in St. Louis designed by Eero Saarinen

6

The golden ratio is defined between two qualities ”if the ratio between the sum
of those quantities and the larger one is the same as the ratio between the larger
one and the smaller”. It has been used widely in arts since the renaissance. A
famous example of the application of the golden ratio is Mona (Figure 4, [6])
Lisa. ”Mona Lisa’s face is a perfect golden rectangle, according to the ratio of
the width of her forehead compared to the length from the top of her head to
her chin.”

Figure 4: The golden ratio used in Leonardo Da Vinci’s Mona Lisa

In academic literature the connection of art and mathematics is scattered and
varied. The viewpoints from which the mathematics may be analyzed in art are
numerous. These are for example how mathematics inspires art, how mathemat-
ical patterns or transformations can be seen as art, or even how mathematics
itself can be seen as art. Some of the themes close to our work are studies in sym-
metry and projection. For example Doris Schattschneider discusses in [1] how
mathematics itself generates art. Schattschneider presents how the patterns in
mathematics can generate artistic patterns. Schattschneider discusses also the
reserve effect, where art illuminates mathematics. These viewpoints include the
idea that there is a concept called art which is in focus. In our work we focus
on the tools to aid artistic design process. Today with digital technology these
tools are becoming more sophisticated and thus more helpful to ordinary artists.

In literature there are very few studies on mathematical tools to help artis-
tic design process. One previous study is presented by Sara Robinson [2] where

7

she discusses about the application of existing tools. The drawback in academic
viewpoint is that in this case that it does not involve any new mathematics. The
research viewpoint for the tools is also different, already made art is analyzed
by mathematical tools and the question is what do the tools highlight. Joseph
Malkevitch [3] discusses the associations between mathematics and some of the
chosen arts (i.e. music, dance, painting, architecture, sculpture). His discussion
focuses on projection and how some objects are seen in perspective. This is close
to our work, although we view the projections as restrictions.

3 Methods

3.1 Data structures

3.1.1 Tensor

The need for applicable data structure for the lattices is self-evident for the
algorithm to be able to present adequately the lattices and to compute different
properties. The first data structure used was four dimensional tensor. Each of
the lattice points is represented by four variables. Three of the variables are the
coordinates x, y and z of the lattice point. The fourth variable represents the
orientation of the bar. The possible values of the fourth variable are (see Figure
5):

• -1, the normal vector of the wider side of the bar points towards the next
dimension in order, the order of the dimensions being x → y, y → z, z →
x

• 0, there is no bar

• 1, the normal vector of the wider side of the bar points towards the pre-
vious dimension

and the values are mapped to orientations according to Figure 5. If the dimen-
sions of a lattice are (a, b, c) (corresponding x, y, and z respectively), the data
structure for a lattice of above size is of size (a+1, b+1, c+1). This leaves us
with ab + bc + ca extra lattice points that all have value 0.

3.1.2 Directed graph

After having created the tensor data structure it was time to develop the routines
for checking whether the lattice fulfills the requirements. Some of the required
properties were fairly easy to implement, but the need for the structure to be
connected turned out to be extremely challenging. A different approach was
needed. After examining our options, graph theory was found out to be the
most suitable for the purpose.

Graph is a more simple object than tensors. In addition, Matlab is tailor-made
for vector handling. First a lattice is divided to nodes and directed edges from
an exactly numbered node to another. Then, a matrix M (’number of nodes’-
by-’number of nodes’) is composed and set full of nulls. In case a bar goes from
a row (m) to a column (n), set M(m,n) = 1. The orientation is determined by
the order of m and n. If m ¡ n, the orientation is 1 and -1 otherwise.

8

Figure 5: Different orientations of bars. The lower bars have value 1 using the
tensor representation. The bars above have a value of -1.

The lower bars have value 1 using the tensor representation. The bars above
have a value of -1. Figures 5 and 6 try to clarify the situation. Suppose we have
a lattice of size (2, 2, 2). First, the values for the orientations of different bars
needs to be agreed upon. This is shown in Figure 5. The lower three bars have
value 1 in the tensor representation. The upper bars have value -1.

Because the graph is represented by a two-dimensional matrix, we need to fix a
certain way of indexing the nodes, otherwise we would not be able to distinguish
between the nodes. The formula for indexing is

index = i + (j − 1) · a + (k − 1) · a · b, i ∈ [1, a], j ∈ [1, b], k ∈ [1, c], (1)

where i, j, k are the 3-dimensional coordinates for the node, and a, b, c are the
dimensions of the lattice. There are as many indices as there are lattice points,
that is a × b × c.

Now we have indices for the graph that is represented by so-called ’adjacency
matrix’. The direction in the adjacency matrix is represented in the same way
as we would represent transfers between states in stochastic processes. Figure
6 shows how the arcs in the adjacency matrix are indexed corresponding to the
bars in Figure 2. The elements in the matrix correspond to bars. For example,
the bar going in the direction of z-axis from node 1 to node 5 is shown in Figure

9

Figure 6: The arcs corresponding to the bars in Figure 5

5 by having a certain orientation. In the adjacency matrix the node is found
in the first row, fifth column. If we were to have the same orientation as the
bar connecting nodes 4 and 8, the number one would have been found from the
fourth row and first column. The adjacency matrix corresponding to Figure 6 is

0 1 1 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 0

When we have big structures, the adjacency matrix is sparse.

3.2 Generating lattices

In the previous chapter the adjacency matrix was presented. This chapter will
explain how the adjacency matrix is used when the tool generates structures.

10

The basic idea is simple, the method starts from one simple structure and edges
are added to the existing structure in each step. The method is described in the
following in more detail.

For the structure to be complete, the lattice is required to fulfill the condi-
tions presented in the chapter 1.3. The first requirement, i.e. the structure is
completely connected and solid, is taken into consideration by the method dur-
ing the process. In graph theory there are available methods which can check
for example if all the nodes are connected in a given graph [5]. There is no need
to use any of these methods here because the method presented here is iterative
in nature, thus the lattice is solid and connected if the base structure is solid
and connected. The lattice is generated iteratively as follows:

Figure 7: Four different lattices to represent the idea of the lattice generation
process. In each step a lattice is added to the existing structure if the structure
remains solid and connected after the lattice addition.

The method generates randomly two connected circular lattices. There is an ex-
ample shown in the Figure 7. The Figure 7 shows four steps from the iterative
process. These two connected lattices can be seen in the upper left corner in
the Figure 7. Each of the following steps includes an addition of one randomly
generated lattice to this existing lattice. This can be seen in the upper right
lattice in the Figure 7. The two bottom lattices in the Figure 7 shows the two
following lattice additions in the process.

There are two ideas implemented in the process which keep the structure solid
and connected. The first one is that each edge can only be added to the existing
lattice in correct orientation. This is needed to fulfil the second condition of a
given lattice, i.e. there is a junction in every panel point. When each edge is
added in correct orientation there is no need to revise the structure afterwards.
The second idea implemented in the process is to formulate the lattices possibly
added as such that the structure is solid and connected at all times.

11

Figure 8: A diagram representation of the lattice generation process. The gen-
erated lattice ends up to itself, i.e. the edge 6 connects to the node connecting
2 and 3. The lattice is added to the existing structure.

Figure 9: A diagram representation of the lattice generation process. The gen-
erated lattice ends up to the existing structure, i.e. the edge 5 connects to the
existing structure. The lattice is added to the existing structure.

This second idea can be illustrated by Figures. In the Figures 8, 9, and 10 is
presented simplified version of the lattice addition. The solid black edges in each

12

figure represent existing structures and the dotted edges represent possible ad-
ditions. The dotted edges are numbered to represent the addition order. Because
the added edges are selected randomly, and generated as long as there are possi-
bilities to add another, there are three types of lattices that may be considered.
In the first scenario, presented in the Figure 8, the lattice is considered added in
the corner of the existing lattice, and the edges are randomly generated until the
lattice ends up to itself: the edge 6 connects to the node connecting edges 2 and
3. This will stop the generation process and the lattice is added to the existing
structure. The second type, presented in the Figure 9, represents the situation
where the added lattice ends up to the existing structure: the node 5 connects
to the edge in existing structure. The third type, presented in Figure 10, repre-
sents the situation when the last edge in the generated lattice is connected in
only one other edge: the edge 5. If this case happens then the generated lattice
is discarded and another lattice is generated.
The method adds lattices to the existing structure as far as no additional edge

Figure 10: A diagram representation of the lattice generation process. The gen-
erated lattice is blocked, i.e. the edge 5 connects to only one other edge and no
other edges can be added. The lattice is discarded.

can be added to the structure. All of the additions must fulfill the two require-
ments, solid and connected structure and orientation of the edges.

After the iterative process is finished and the structure is complete, the two
other conditions are revised. The method to check if all of the corners of the
structure have edge is simple. The other condition to be revised is the projec-
tion from each perspective. The lattice is generated in three-dimension space, by
projection the lattice can be interpreted as two-dimensional lattice and viewed
from three different viewpoints. The viewer in each of these viewpoints must see
the lattice as whole otherwise the structure is not complete. If the generated
structure does not fulfill this projection and viewpoint condition, the structure
is discarded and another structure is generated.

13

The method does not guarantee the projection and viewpoint condition to be
fulfilled. The method allows an implementation during the edge generating pro-
cess that the projection conditions would more likely to be realized. This is
possible to implement in the process such that before adding an edge the lattice
is calculated in a way that the directions in which the edge can be added are
scored. This scoring method would then tell which one of the directions will add
most to the probability of the projection conditions to be fulfilled. This scoring
function may also be implemented as probabilities for the directions.

3.3 Visualization

An essential part of the project was to develop a functional visualization rou-
tine. Not only because this was a requirement for the tool under construction,
but because it would also serve as an excellent aid in developing the tool itself.
Thus, some type of visualization routine had to be developed early on. However,
as early versions of this routine would be exclusively for internal use, little effort
was placed on making these early visualizations aesthetically pleasing.

Since Matlab is used to develop the algorithm itself, a logical consequence was
to also produce the visualizations using Matlab. The first version of this routine
visualized the lattice structure as a simple 3-dimensional wire-frame. This gave
us a rough idea of what could be achieved and how it could be used. However,
this wire-frame method was unable to visualize the bars as 3-dimensional ob-
jects, and thus unable to correctly reflect the true appearance of our lattice
structures. Nevertheless, the visualization method itself was found to be a vi-
able solution and this lead to the development of our next version. This version
was able to correctly visualize the bars as 3-dimensional objects, and thus it
was of great help when checking the correct functionality of the algorithm and
evaluating its results. The next step was to complete this routine, because at
the moment, this code was still unable to determine the correct lengths of the
bars. Consequently, this resulted in unwanted gaps between some of the junction
types. After correcting this last inaccuracy an accurate visualization routine had
been produced. However, to further enhance the visual representation of our so-
lutions, a script was created for transferring our solutions into a format that
could be read by Blender - a free 3D graphics program.

3.4 Linear programming model

The problem may also be described as an integer linear programming problem
(ILP) or, more precisely, as a 0-1 or binary integer programming problem (BIP).
In this formulation the existence of bars in the structure is described as a set of
binary decision variables and a set of linear constraints denote the set of feasible
structures. We then try to optimize the structure by minimizing a linear objec-
tive function which tries to measure the ’beauty’ of the structure. This function
may be trivial, such as the number of bars in the structure, or a weighted com-
bination of linear measures of the structure’s ”aesthetic properties”.

Although the number of variables and constraints becomes rather challenging
especially in case of targeted problem size (1000 variables and 4000 constraints,
not including connectivity constraints), the problem may be solved in minutes

14

with certain objective functions and by relaxing some constraints. The problem
formulation is also quite natural, as we may describe some holistic constraints
which cannot be addressed easily in iterative generative approaches, such as
projection constraints. What is more, by studying the set of feasible structures
we may determine which structure sizes do not have feasible solutions under
certain set of constraints.

3.4.1 Variables

Let us assume that the structure is of width W, depth D and height H. For
the purpose of presenting the decision variables, it is helpful to assume that the
structure grid is defined by the nodes xi,j,k, i = 1,...,W+1, j = 1,...,D+1, k =
1,...,H+1.

wm
i,j,k = 1,⇔ there is a bar from xi,j,k to xi+1,j,k with orientation m

dm
i,j,k = 1,⇔ there is a bar from xi,j,k to xi,j+1,k with orientation m

hm
i,j,k = 1,⇔ there is a bar from xi,j,k to xi,j,k+1 with orientation m,

where m = 0 implies an orientation of 1 as described by the tensor descrip-
tion and m = 1 implies orientation of -1.

This notation may further be compacted with the following variable analogous
to the tensor description:

zi,j,k,l,m =

wm
i,j,k if l = 1

dm
i,j,k if l = 2

hm
i,j,k if l = 3,

but we use the preceding formulation for the sake of intelligibility.

3.4.2 Constraints

Overlapping bars constraints For each bar we need to forbid overlapping.
The following constraints forbid overlapping bars:

w0
i,j,k + w1

i,j,k ≤ 1 ∀j, k, i = 1, . . . ,W

d0
i,j,k + d1

i,j,k ≤ 1 ∀i, k, j = 1, . . . ,D

h0
i,j,k + h1

i,j,k ≤ 1 ∀i, j, k = 1, . . . ,H

So there is one constraint for each possible bar in the structure.

Junction constraints The forbidden junction types may be barred by pair-
wise comparisons on bars attached to the same node. Because there exists a
forbidden bar type in every direction for every bar in a junction and we don’t
want to include redundant constraints, we have a total of 2

(

n

2

)

constraints for

15

each node having n bars attached. The following constraints capture the forbid-
den junctions:

w0
i,j,k + w1

i−1,j,k ≤ 1 ∀j, k, i = 2, . . . ,W

w1
i,j,k + w0

i−1,j,k ≤ 1 ∀j, k, i = 2, . . . ,W

d0
i,j,k + d1

i,j−1,k ≤ 1 ∀i, k, j = 2, . . . ,D

d1
i,j,k + d0

i,j−1,k ≤ 1 ∀i, k, j = 2, . . . ,D

h0
i,j,k + h1

i,j,k−1 ≤ 1 ∀i, j, k = 2, . . . ,H

h1
i,j,k + h0

i,j,k−1 ≤ 1 ∀i, j, k = 2, . . . ,H

wm
i,j,k + dm

i,j,k ≤ 1 ∀m, k, i = 1, . . . ,W, j = 1, . . . ,D

wm
i,j,k + dm

i,j−1,k ≤ 1 ∀m, k, i = 1, . . . ,W, j = 2, . . . ,D + 1

wm
i,j,k + hm

i,j,k ≤ 1 ∀m, j, i = 1, . . . ,W, k = 1, . . . ,H

wm
i,j,k + hm

i,j,k−1 ≤ 1 ∀m, j, i = 1, . . . ,W, k = 2, . . . ,H + 1

wm
i−1,j,k + dm

i,j,k ≤ 1 ∀m, k, i = 2, . . . ,W + 1, j = 1, . . . ,D

wm
i−1,j,k + dm

i,j−1,k ≤ 1 ∀m, k, i = 2, . . . ,W + 1, j = 2, . . . ,D + 1

wm
i−1,j,k + hm

i,j,k ≤ 1 ∀m, j, i = 2, . . . ,W + 1, k = 1, . . . ,H

wm
i−1,j,k + hm

i,j,k−1 ≤ 1 ∀m, j, i = 2, . . . ,W + 1, k = 2, . . . ,H + 1

dm
i,j,k + hm

i,j,k ≤ 1 ∀m, i, j = 1, . . . ,D, k = 1, . . . ,H

dm
i,j,k + hm

i,j,k−1 ≤ 1 ∀m, i, j = 1, . . . ,D, k = 2, . . . ,H + 1

dm
i,j−1,k + hm

i,j,k ≤ 1 ∀m, i, j = 2, . . . ,D + 1, k = 1, . . . ,H

dm
i,j−1,k + hm

i,j,k−1 ≤ 1 ∀m, i, j = 2, . . . ,D + 1, k = 2, . . . ,H + 1

Dead end constraints The structure must not contain a ”dead end”, ie. a
node, whose degree is 1. Node may however be empty, ie. having a degree of
0, or have more than one bars attached to it, ie. having a degree of 2 or more.
More formally for all nodes x, it must hold that deg(x) = 0 ∨ deg(x) ≥ 2.

In linear model we may express this constraint by introducing a new binary
variable e for every node and by defining the following constraints. Let y be the
number of bars attached to node x:

yi,j,k =

1
∑

m=0

(

wm
i,j,k + wm

i−1,j,k + dm
i,j,k + dm

i,j−1,k + hm
i,j,k + hm

i,j,k−1

)

.

Here the terms are only included in the expression if they are defined. That
means that for nodes on the edge of the structure only those bars that may
really exists are considered. Now the constraints are defined as

2 − yi,j,k ≤ Mei,j,k

yi,j,k ≤ M(1 − ei,j,k),

where M is a large number. The variable ei,j,k denotes the emptiness of node
xi,j,k. This construct introduced 1 new variable and two constraints per each

16

node in the structure.

Because the junction constraints effectively limit the maximum number of arcs
attached to a node to 4, the large number M need not be larger than 4.

If empty nodes are not allowed, the previous constraints may be relaxed and a
simpler constraint placed instead:

−yi,j,k ≤ −2

This doesn’t introduce new variables and creates only onw new constraint per
each node.

Projection constraints Each side of the structure must form a complete
grid when viewed along all three axis. This may be described as the following
constraints:

−
2

∑

m=1

W+1
∑

i=1

dm
i,j,k ≤ −1 ∀k, j = 1, . . . ,D

−

2
∑

m=1

W+1
∑

i=1

hm
i,j,k ≤ −1 ∀j, k = 1, . . . ,H

−

2
∑

m=1

D+1
∑

j=1

wm
i,j,k ≤ −1 ∀k, i = 1, . . . ,W

−

2
∑

m=1

D+1
∑

j=1

hm
i,j,k ≤ −1 ∀i, k = 1, . . . ,H

−
2

∑

m=1

H+1
∑

k=1

wm
i,j,k ≤ −1 ∀j, i = 1, . . . ,W

−

2
∑

m=1

H+1
∑

k=1

dm
i,j,k ≤ −1 ∀i, j = 1, . . . ,D

This introduces a total of (W + 1) · D + W · (D + 1) + (D + 1) · H + D · (H +
1) + (H + 1) · W + H · (W + 1) new constraints.

Corner constraints The corners of the structure must not be empty. This
can be simply described with the following constraints:

−yi,j,k ≤ −2 ∀{(i, j, k) | xi,j,k is a corner point }

Connectivity constraints For the structure to be connected and realizable,
there must be a path between each nonempty node of the structure. For the pur-
pose of describing the connectivity constraint in the form of linear constraints,
we may instead consider the connectivity of connected subgraphs of the graph
structure — the structure is connected, if every connected subgraph and its
complement in the graph has a bar between them.

17

Let the set of nodes in the grid graph be V. Let us define the set of edges
of the subset of nodes U ⊂ V consisting of bars z that are attached both to the
set U and its complement V −U as E(U) = {z|z is attached to both u ∈ U and
v ∈ V − U}.
Now the constraints may be defined as

∑

z∈E(U)

z ≥ 1 ∀{U | U ⊂ V,U is connected, |U | ≥ 4}.

The limitation |U | ≥ 4 is a trivial effort to remove some redundancies which are
implied by the junction constraints. They implicitly forbid connected blocks of
less than 4 nodes.

These constraints however also effectively forbid connected empty blocks of 4 or
more nodes, since such blocks do not have a connection to the complementing
graph. We do not know how overcome this limitation through linear constraints.

There are also unnecessary constraints due to infeasible forms of connected
subgraphs that would not have to be tested. This could be overcome by stat-
ing that the subset V be such that it can be implemented despite the junction
constraints. For example, it is trivially clear that the only feasible form of four
connected nodes is a square, which implies that connected subgraphs in the
shape of the letter ’L’ would not have to be tested.

The connectivity constraints are drastically different from other constraints
presented above in terms of complexity: the number of other constraints was
polynomial regarding structure dimensions whereas the number of connectiv-
ity constraints is exponential. Additionally, describing these constraints for the
purpose of numerical calculation is somewhat difficult. However, as there are
efficient ways to enumerate all connected subgroups, the task is not impossible.
Still, due to the aforementioned difficulties the connectivity constraints were
never actually implemented. For a target size problem where the number of
nodes is 160, the number of connected subgraphs becomes quite astronomical.

3.4.3 Objective function

In the optimization model we are maximize or minimize an objective func-
tion with which we try to measure the amount of aesthetic satisfaction of the
structure in whole. This is subjective in the sense that individuals may have
differing conceptions on the ”beauty” of the structure. The subjective function
is built by linearly combining measures of the structure’s visual features that
aspire to measure such properties of the structure that describe the appear-
ance of the structure but are objective in the sense that they are interpreted
approximately similarly by everyone. These features are weighed according to
the subject’s preference. These features and their combinations are discussed
further in ”Mathematical description of aesthetic lattice properties”.

A trivial linear objective function whose coefficients are all ones measures the
number of bars in the structure. If the dead end constraint is not relaxed, it
also puts weight on the number of empty nodes, because we had to introduce a
variable desribing whether a node was empty or not per each node. Minimizing

18

this type of objective function turned out to be quite efficient for numerical
calculations and it was used for most of our optimization calculations.

3.5 Sequential linear programming algorithms

Because of the difficulties arising in describing the connectivity constraints, a
sequential approach, where unfeasible solutions to the linear programming prob-
lem with relaxed connectivity constraints are constrained and the problem is re-
iterated, was also considered. This approach was not however explored further
due to resource limitations.

4 Results

During the project we formulated several different methods of creating lattice
structures. Because of the tight schedule, we managed to implement only two of
the methods. When the coding of verification routines for the constraints was
finished, creation by randomly generating the lattice structures was examined.
This method created the lattice structures by drawing the orientations and loca-
tions for the bars at random, whether the lattice fulfilled the given constraints,
was only checked afterwards. However, this algorithm was unable to find any
solutions in decent time. A more intelligent generating routine was needed.

In the next phase, an algorithm based on graph theory was developed. This
method proved to be much more effective as it was able to generate solutions
within a reasonable time frame. The resulting lattices were found to be too sim-
ilar, though. The structures lacked variation. Because the interesting solutions
are extreme cases and they look very different from each other, we needed to
find a new approach in order to fully investigate the limits of possible structures.
To solve this problem a linear integer programming method was developed.

4.1 Realized outcomes of the project

As mentioned above, some of our initial ideas had to be disregarded in order
to bring the project to a closure within the set timeline. However, these cut-
backs in workload were mostly due to overoptimistic views of available resources
and an aspiration to produce a functional tool for solving the problem at hand.
However, even though these ideas were not developed further, they are still an
integral part of the project and its solution. These unrealized ideas will be listed
and examined in a later section.

We begin this overview of the realized outcomes by stating a somewhat obvi-
ous, but still very fundamental result; the fact that we are able to produce and
display feasible lattice structures of preferred size. This alone stands as a proof-
of-concept that it is possible to generate feasible lattice structures utilizing our
current method based on graph theory. Moreover, our current results showcase
ways in which we are able to create visualizations of produced lattice structures.
These results by themselves complete two of the three main goals of the project.

To summarize the results concerning the visualization routine, we can conclude

19

that two different ways to illustrate the lattice structures were implemented.
Both methods are able to correctly depict the structure, thus giving an accu-
rate view of what the final lattice would look like if was constructed. The first
method implemented is a somewhat simpler version, as it only utilizes Matlab’s
internal plotting routines to create a virtual model of the structure on hand
(Figure 11). This technique requires little effort and makes it easy to use since
both generation and visualization are made with Matlab. Nevertheless, as men-
tioned earlier we have also implemented a procedure that enables the user to
export these lattice structures to a 3D animation program (Blender). Conse-
quently, giving the user complete freedom to depict and examine the structures
in any setting imaginable. Moreover, this program can easily be used to render
striking images of completed structures for closer evaluation and comparison,
thus assisting the user to single out the best possible lattice structure from a
larger group.

Figure 11: A feasible (3,4,7) structure

Visualizing the lattice structures has also given us a better understanding of
how the current algorithm works and how it tends to create new structures.
It has been discovered that, even though every structure (path) created is in
fact random, the final outcomes still tend to look somewhat similar (e.g. many
small loops, crowded lattice structures). The reason for this phenomenon can

20

be explained by the way our algorithm functions as a whole. Thus, further work
is needed in order to move away from these similarities. A closer look at these
challenges will be made in the next section. Nonetheless, visual evaluations have
been able to yield new insights into structural features that might appear un-
desirable and awkward. Hence, enabling us to address these issues by designing
algorithm updates that, either removes or minimizes the occurrence of such fea-
tures.

Figure 12: A connected (2, 2, 2) solution minimizing the object function

As designed, the algorithm can be launched from an existing structure, hence
enabling the user to influence the final, feasible, lattice structure. However, this
existing structure needs to be connected in order to guarantee connectivity of
the final lattice.

Since the algorithm is unable to find extreme solutions, an entirely different
approach was developed in order to address this issue. By converting the en-
tire problem into a linear integer programming problem enabled us to define an
object function to control the outcome. Then by either minimizing our maxi-
mizing this function we were able to yield feasible structures that represented
extreme cases of what was possible within the given constraints. In this case the
objective function was defined as the number of bars in the structure. A feasible
lattice structure of size (2, 2, 2) that minimizes this objective function is shown
in Figure 12. Solving this linear integer programming problem was found to be
very computationally intensive. Thus, to speed up the process, the problem was
calculated with Xpress-MP, as it turned out to be much more efficient than
Matlab (using either Matlab’s bintprog-routine or the GLPG-package [4]) in
producing solutions.

Linear programming formulation gave further insights into the properties of the
lattice structures. By inspecting the polytopes formed by the linear constraints,
it was discovered that the smallest possible structure size which has a feasible

21

Figure 13: A non-connected (3, 4, 7) solution minimizing the object function

solution is 2x2x1. If corner constraints are relaxed, even a 1x1x1 structure has
a feasible solution.

4.2 Challenges with the algorithm

Although the current algorithm is able to produce feasible solutions within a
satisfactory time frame, there are still a number of issues that need attention
in order to meet all our goals. Primarily, these issues are consequences of the
way the code is constructed, or more specifically, the way it finds new paths.
So, albeit the algorithm itself works, adjustments should be made in order to
insure improved results, e.g. wider variety of solutions and more possibilities to
influence the lattice structure’s appearance.

As already established, the current algorithm is unable to produce a wide va-
riety of solutions. This in return means that we are unable to investigate and
produce feasible solutions that are interesting in a sense that they embody ex-
treme features (e.g. minimum amount of bars) of what is possible within the
give limitations.

Moreover, the algorithm is unable to guarantee that we will find a feasible so-
lution once it has launched. The reason for this is twofold. First, the algorithm

22

does not check the projection requirements until it has completed the whole
lattice (i.e. when no more bars can be placed inside it). Second, the algorithm
is unable to guarantee that all the 8 corner points will be used, hence requiring
that we also check these afterwards. Thus, if we want to find feasible solutions,
we need to run the algorithm multiple times. On the other hand, this second
issue could be circumvented by launching the algorithm from a structure that
occupies all the corner points.

Concerning the linear integer programming problem, there is one issue that
needs to be addressed. As of now, the method lacks a check for connectivity.
Thus, when finding solutions for big structures, the probability for it to be non-
connected is very large. An example of this is shown in Figure 13, the solution
minimizes the objective function but is clearly not connected at the base.

4.3 Unrealized outcomes of the project

Projects are complicated constructs that require certain devotion from all the
participating parties. To make things happen, things need to be scheduled so
that the project goals are reached. We might have overestimated the resources
in this case. A lot of ideas that were to be implemented were scrapped due to
the lack of resources. The following paragraphs try to elaborate on certain ideas
we had in mind that we did not implement.

First, the problem of generating suitable lattices was seen as an integer op-
timization problem. General linear integer model consists of target function (to
be minimized/maximized) and linear constraints. The linear integer model was
examined, but not implemented in the algorithm. The resulting lattice struc-
tures could be variated by using different object functions.

In an optimization approach, the value of every variable representing a bar
is restricted to be either 0 or 1. Then those variables are chosen to minimize
the cost function, subject to set of linear restrictions (see project outline). The
requirement for connectivity is not linearly formulable, which requires one to
check the connectivity of the solution afterwards. Theoretically, it is possible to
optimize properties of the lattice. In practice, the general linear integer model
formulation requires some 4500 different constraints for a lattice structure of
size 3x4x7. The problem is a really complex one, and even if a feasible solution
is found, it’s still doubtful that the connectivity requirement will be realized.

Objective function consists of bar variables. Their sum of them can be mini-
mized or maximized, which would make the lattice structure lighter or heavier.
If we maximize the sum of bars next to each other, we make more turns and
vice versa. We managed to create an optimization program, which is able to take
linear and quadratic object functions as an input. The problems appear when
the size of the lattice grows and the objective function is not linear or quadratic.
The current algorithm works independently without any input, except the di-
mensions. It generates lattices that fulfill the requirements despite the fact that
there is no cost function affecting the result. When a cost function is applied,
the algorithm could generate lattices with certain properties. For example, the
properties could be the number of bars or junctions.

23

Objective function could be given as an input in some form to the random
path algorithm. For example, the number of junctions could be maximized ei-
ther by steering the generating algorithm by supporting the junctions or by
a brute-force back-tracking technique. With back-tracking the algorithm could
generate loops, and when the algorithm is stuck in a dead-end it would take a
couple of steps backwards. The back-tracking would demand a data base, which
would contain all the possible paths or taken steps in case steps are wanted to
take backwards.

There is also another way to generate lattices that was thought about. Ev-
ery small-sized layer could be generated one by one, and the different layers
would be connected to each other to form a connected structure. This would
be a totally different execution, because the software should be in collaboration
with user. Though, the existing software could be used, because the constraints
should be checked every time when a layer would be added.

5 Discussion

5.1 Mathematical description of aesthetic lattice proper-

ties

In this section it is time to recognize some repetitious characteristic of the forms
of the lattices and how they can be produced. These methods to produce lat-
tices with some features introduced below are just examples. In our framework,
the lattices’ properties can be influenced in two ways: by changing the objective
function on the one hand, and by revising the random lattice constructor on the
other.

The optimization is separated in linear and non-linear parts. The constraints
are in linear form in the optimization program presented above. The program
is able to solve linear and quadratic objective functions. However, within this
approach the constraints will remain linear and the objective function will range
between linear and quadratic. To be exact, the sum of bar variables yields linear
functions, whereas the product of the bar variables yields quadratic functions.

An intuitive example of the characteristics of lattices is the number of bars.
This can be regarded as the total weight or the total cost of the lattice. In an
optimization approach, this could be applied by setting the objective function
as the sum of the bars.

One usual feature of the lattices produced by the random path algorithm, is
plenty of 1 by 1 by 1 sized loops (shown in Figure 14). This often makes the
lattice fore-seeable and divided to layers. Automatically, when loops start to
accumulate somewhere, there is no other way to continue the existing structure
because of the conditions presented above.

However, in the linear optimization approach, the number of loops can be easily
controlled by fixing the objective function. In this approach, one has to de-

24

Figure 14: A lattice solution showing small loops

termine where either the long canes or the frequent loops could be, and then
maximize the sum of those bars one by one. In this way, the construction will
become more elongated, but within the limits of conditions.

Secondly, in the non-linear optimization approach there could be the products
of the opposite bars in the objective function. See, if another one of them was
missing, it would product null. In this way, the bar variables can easily get de-
pending on each other.

In the random lattice constructor approach, the algorithm should be revised. If
the algorithm would remember the previous turn, the next selection could be
weighted not to select the same and vice versa.

Symmetrical lattices could be generated by the optimization method. In the
objective function the possible symmetrical bar variables should be multiplied
by each other. By maximizing the sum of products, symmetrical lattices could
be produced.

Not only 1 by 1 by 1 sized loops, but also broadly cyclical structures can be
favoured. In an optimization way, the critical bar variables of cycles must be
multiplied by each other and then they all have to exist to turn a profit in the
cost function. The algorithm could remember an exact number of previous turns

25

and then weight the next one according to the preceding steps. In this way, there
could be cyclical behavior in the lattice.

5.2 Possible other approaches

5.2.1 Constraint programming

In constraint programming framework we describe the relations of the variables
in terms of logical or agebraic constraints. After the formulation solutions to
the constraints can be enumerated. This differs from the linear programming
approach mainly in that we are not trying bto optimize any objective function.
[8]

Utilizing constraint programming as a generative approach would have been
interesting to explore further since the constraints can be expressed quite nat-
urally by means of logic constraints. However, the connectivity problem is also
very evident here and cannot be solved trivially.

5.2.2 Genetic algorithms

During the course of the project, there were talks about different approaches of
how to integrate the interactivity brought in by user input into the software.
Also different methods of creating various lattice structures were needed. Had
we had more time, we probably would have implemented a GA based algo-
rithm also. It would have been interesting to compare the results of different
approaches.

Genetic Algorithms (GAs) are adaptive heuristic search algorithm based on
the evolutionary ideas of natural selection and genetics. As such they represent
an intelligent exploitation of a random search used to solve optimization prob-
lems. Although randomised, GAs are by no means random, instead they exploit
historical information to direct the search into the region of better performance
within the search space. The basic techniques of the GAs are designed to simu-
late processes in natural systems necessary for evolution, specially those follow
the principles first laid down by Charles Darwin of ”survival of the fittest.”.
Since in nature, competition among individuals for scanty resources results in
the fittest individuals dominating over the weaker ones.

GAs simulate the survival of the fittest among individuals over consecutive
generation for solving a problem. Each generation consists of a population of
character strings that are analogous to the chromosome that we see in our DNA.
Each individual represents a point in a search space and a possible solution. The
individuals in the population are then made to go through a process of evolution.

GAs are based on an analogy with the genetic structure and behaviour of chro-
mosomes within a population of individuals using the following foundations:

• Individuals in a population compete for resources and mates.

• Those individuals most successful in each ’competition’ will produce more
offspring than those individuals that perform poorly.

26

• Genes from ‘good’ individuals propagate throughout the population so
that two good parents will sometimes produce offspring that are better
than either parent.

• Thus each successive generation will become more suited to their environ-
ment.

A population of individuals is maintained within search space for a GA, each
representing a possible solution to a given problem. Each individual is coded as
a finite length vector of components, or variables, in terms of some alphabet,
usually the binary alphabet 0,1. To continue the genetic analogy these individu-
als are likened to chromosomes and the variables are analogous to genes. Thus a
chromosome (solution) is composed of several genes (variables). A fitness score
is assigned to each solution representing the abilities of an individual to ‘com-
pete’. The individual with the optimal (or generally near optimal) fitness score
is sought. The GA aims to use selective ‘breeding’ of the solutions to produce
‘offspring’ better than the parents by combining information from the chromo-
somes.

The GA maintains a population of n chromosomes (solutions) with associated
fitness values. Parents are selected to mate, on the basis of their fitness, pro-
ducing offspring via a reproductive plan. Consequently highly fit solutions are
given more opportunities to reproduce, so that offspring inherit characteristics
from each parent. As parents mate and produce offspring, room must be made
for the new arrivals since the population is kept at a static size. Individuals in
the population die and are replaced by the new solutions, eventually creating a
new generation once all mating opportunities in the old population have been
exhausted. In this way it is hoped that over successive generations better solu-
tions will thrive while the least fit solutions die out.

New generations of solutions are produced containing, on average, more good
genes than a typical solution in a previous generation. Each successive gen-
eration will contain more good ‘partial solutions’ than previous generations.
Eventually, once the population has converged and is not producing offspring
noticeably different from those in previous generations, the algorithm itself is
said to have converged to a set of solutions to the problem at hand.

How would a GA be used to generate the lattices?

1. randomly initialize a population of lattices

2. determine fitness of population using a suitable fitness function

3. repeat

(a) select parents from population

(b) perform crossover on parents creating population

(c) perform mutation of population

(d) determine fitness of population

4. until best individual is good enough

27

In order to get the algorithm working, we would need a fitness function to eval-
uate the fitness of a lattice. If the iteration is supervised by the user, that is, the
user selects the parents from the population, a fitness function is not required.
Furthermore, the crossover method is needed. In case of a lattice structure re-
quired to fulfill certain qualifications, designing such a method is not a trivial
task at all.

6 Concluding thoughts

The project has been a long process of generating something of real value, some-
thing that does not exist prior to the beginning of the project. During the course
of the process, managing the productivity and schedule becomes of extreme im-
portance. Successfully project managing is a skill that is learned by doing. With
it comes also a great responsibility.

Let us begin with the downsides. The partitioning and scheduling of the project
was not done properly. We could have achieved a whole lot more with greater effi-
ciency had the project been partitioned to smaller and more meaningful pieces.
This way a more precise distribution of work between group members would
have been possible. It would also have balanced out the seemingly mismatched
tasks. In the end we had one member doing the coding and the rest of the group
doing something that was not really exactly specified.

Although the means of communication were exeptional compared to other project
groups (ie. wiki), communication was somewhat tangled. People had their own
schedules and a couple of project group meetings were held with only some
two members present, the other being the project manager every single time.
It seemed that people were somehow expecting them to be given specific tasks,
despite the fact that a list of tasks what a member could do with his spare
time existed. This policy always leads to a situation where the tasks are taken
care of just moments before the deadline. And thus the role of project manager
becomes even more emphasized.

There were times when nothing particular was done to advance the project.
Perhaps this was due to the mismatched tasks. Some might have thought that
there is nothing else to be done, as the coding was mostly done by one person.
Constructing complex data structures and programming requires some experi-
ence and knowledge, and it is easier to let one person with a clear picture in
his mind to handle the situation, than to interfere the process by dividing it to
tasks that require enormous effort from less experienced members.

The estimated risks realized to a certain degree. The schedule was lagging
behind, but delays were not severe in reality. We were unable to extend the
functionality of the program by adding features to it that would take user input
to consideration when generating lattices. The currect version of the algorithm
is only usable within MATLAB computing package. Requiring one to buy very
expensive software in order to make other applications work is not that elegant
of a solution.

28

But when the upsides are taken into account, the project was a success. We
managed to create what we were supposed to, a tool for sculptor to aid her
designing and evaluating lattice structures. We managed to do some research
on the future prospects of studying the lattice structures, and we managed to
get some insight and inspiration for future development. The research continues,
and the results and ideas can be applied in the future when developing the algo-
rithm further. It was also delightful to experience sudden break-throughs during
the final moments of the project. The formulation of the integer optimization
problem and its results gave a whole lot of new information for further analyzing.

One thing exceeds all the other matters. It must be clear to every one par-
ticipating in the project that the results must satisfy the needs of the client.
This was the case in our project.

7 References

1. Doris Schattschneider, Mathematics and Art - So Many Connections,
Math Awareness Month - April 2003. Mathematics and Art - So Many
Connections.

2. Sara Robinson, Can Mathematical Tools Illuminate Artistic Style? Society
for Industrial and Applied Mathematics, March 2005. Can Mathematical
Tools Illuminate Artistic Style?

3. Joseph Malkevitch, Mathematical tools for artists. AMS, Feature Column
from the AMS, April 2003. Mathematical tools for artists

4. GLPK (GNU Linear Programming Kit), http://www.gnu.org/software/glpk/

5. R. Diestel: Graph Theory (3rd ed.), Springer

6. http://library.thinkquest.org/trio/TTQ05063/monalisa.gif, picture retrieved
May 9th, 2008

7. http://www.visitingdc.com/images/st-louis-arch-address.jpg, picture retrieved
May 9th, 2008

8. http://en.wikipedia.org/wiki/Constraint programming

29

	Introduction
	Background
	Project goals
	Project outline

	Literature review
	Methods
	Data structures
	Tensor
	Directed graph

	Generating lattices
	Visualization
	Linear programming model
	Variables
	Constraints
	Objective function

	Sequential linear programming algorithms

	Results
	Realized outcomes of the project
	Challenges with the algorithm
	Unrealized outcomes of the project

	Discussion
	Mathematical description of aesthetic lattice properties
	Possible other approaches
	Constraint programming
	Genetic algorithms

	Concluding thoughts
	References

