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1 Introduction 

This is the project report for the case study Optimization of Variable 

Proportion Portfolio Insurance (VPPI) strategy. The paper presents the use of 

VPPI with different constraints to optimize the returns of a portfolio with a 

given risk limit. The study is conducted for Sampo Bank as a part of the 

project seminar in operations research in Helsinki University of Technology.  

Throughout history, investors have sought after strategies to hedge their 

portfolios against downturns. One of the simplest methods to avoid risk is to 

divide the portfolio into two parts, risk-free and risky asset. When the time 

evolves and market conditions change, the proportions of risky and riskless 

assets in the portfolio are adjusted according to a chosen strategy. The 

adjustment is done to maximize the returns of the asset portfolio. The choice 

for a strategy is mostly based on the investor's risk attitude and objectives of 

the investment.    

In chapter one, we introduce the case company as well as the research 

problems and project objectives. In chapter two, a thorough literature review 

is conducted. The literature review consists of some of the most common 

asset allocation strategies and the advantages and deficiencies of each 

strategy. We start chapter three by representing the setup of the model, that 

is, how the market data can be simulated with the help of geometric 

Brownian motion and jump diffusion. After that, three different VPPI 

strategies are suggested and also different kinds of risk control methods are 

represented and the implementation of each one is regarded. In chapter four 

we represent the results of the project. The performances of different VPPI 

strategies with different parameters are tested, using both real and simulated 

market data. Finally, we represent the most important conclusions of the 

project. 
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1.1 Case company: Sampo Bank 

Sampo Bank is the third largest bank in Finland and a part of Danish bank 

conglomerate Danske Bank. The 'Sampo Bank' name is used as a trading and 

brand name for the parent company's Finnish and Baltic operations. Previous 

to 2007, Sampo Bank was part of the Finnish banking and insurance group 

Sampo.  

Danske Bank's home markets consist of Denmark, Finland, Sweden, Norway, 

Estonia, Latvia, Lithuania, Ireland and Northern-Ireland. However, the bank 

has offices also in the UK, Germany, Poland, Luxembourg and Russia.  

The financial result for the Finnish branch was 274 million euros in 2007 and 

it had 1,1 million banking customers.   

1.2 Research problems and objectives 

From a wide set of different asset allocation strategies our focus is on 

Variable Proportion Portfolio Insurance (VPPI). The logic behind VPPI is to 

invest certain percentage of the portfolio to risky assets. This follows a 

formula: 

                                             

where E is the exposure to the risky asset, m is a time-variant multiplier and 

C is the cushion, the difference between the portfolio value V and the floor F.  

The objective of the study is to come up with an applicable rule for 

determining the multiplier m against time. All the essential variables 

considering financial market fluctuations must be included for the model to 

best optimize gains in different situations. The rule must consider both 

typical fluctuations under normal market conditions and extreme events less 

frequent, but typical to stock markets. 

 With these words, the following research questions have been identified: 
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 What method should be used in choosing the multiplier to maximize 

expected value of the portfolio?  

 What methods are used in choosing the multiplier?  

 What are the main benefits and downsides of VPPI compared to other 

portfolio insurance strategies?  

1.3 Methodology  

In the beginning, a set of project phases was determined. The critical action 

points in the project were following: 

1. Conducting literature review 

2. Deciding on the optimal allocation mechanism  

3. Model implementation with Matlab 

4. Testing the model with real market data 

First, a literature review concerning different asset allocation strategies is 

conducted. Special considerations are put on dynamic strategies and 

especially on VPPI. University libraries and databases as well as student 

research projects will be utilized to find relevant literature and articles. In 

order to thoroughly understand the optimization problem, each member of 

the project team will carefully study the relevant material.  

The objective of the project is to find an optimum rule for choosing multiplier 

and rebalancing frequency with regards to VPPI in such way that the 

expected return is optimized. When all the relevant aspects have been 

identified, the optimization problem will be developed. There are some 

constraints that must be taken into account. For example, risky asset 

exposure must be in range 0-100% and multiplier can only change 1 unit at a 

time step due to limited liquidity. Also the risk mustn't exceed a certain level.  

It is possible to give the multiplier a certain fixed, optimized value. In this 

case, a variable multiplier is chosen and an optimum strategy for changing it 

will be developed. The multiplier can be chosen by using different criteria. 
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For example, (historical or implied) volatility can be applied. Other possible 

criteria include: current risky asset value, market trend (bear/bull market), 

risky asset change and trend of the risky asset value. An optimal rule for 

multiplier selection is developed by carefully considering each of these 

possibilities.  

The rebalancing frequency can be chosen to be fixed e.g. weekly. Or 

alternatively, a rebalancing might occur after an adequate change in the risky 

asset value. Also other strategies will be considered. In essence, the 

rebalancing strategy must react to market changes quickly enough. On the 

other hand, the shorter the rebalancing period, the higher the transaction 

costs will be.  

When the optimal allocation mechanisms have been found, they will be 

programmed using Matlab. The constructed models will be tested using real 

market data delivered by project contact persons at Sampo Bank. Sufficient 

amount of data is promised to be available. If necessary, additional data can 

be produced by simulating Brownian motion with occasional jumps. The 

models will be tested with different kind of data to ensure success in 

different kind of situations.  

This kind of optimization problem has several possible solutions. Different 

solutions perform very differently depending on the market behavior. VPPI 

typically performs poor in an oscillating market. The aim is to find a 

mechanism that could perform well during all kind of market fluctuation. The 

results of the project will be viewed critically and possible flaws of the 

constructed model will be identified. 

2 Literature review 

Commonly investment decisions are made on the basis of efficient markets 

hypothesis (EMF) [6]. This hypothesis states that it is impossible to “beat the 

market” in the long run as current market prices reflect all relevant 

information. Therefore, it is unattainable to do better than the market 
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through maneuvers of market timing or expert stock selection. Although EMF 

is a foundation stone for investment theory, it has raised a degree of 

contradictions. [7] 

There have been studies (e.g. Lo and MacKinlay 1988) that contain 

implications on risky assets (shares) not following a random walk on which 

EMF bases on.  In their research Lo and MacKinlay (1988) drew a conclusion 

that even a reserved ability to forecast the stock market is highly 

advantageous.  

Research on finance has traditionally used mathematical and statistical tools 

to develop optimal investment strategies. The techniques of genetic 

algorithms and programming have been increasingly employed in this field. 

The objective is, and has been to come as close to perfect foresight as 

possible [6]. In reaching this objective, there has emerged several asset 

allocation strategies that determine the proportions of the portfolio invested 

in risky and risk-free assets.    

2.1 Asset Allocation Strategies 

When considering asset allocation strategies the two most referred terms are 

strategic and tactical asset allocation. Strategic asset allocation takes an 

overlook on a portfolio’s robustness to achieve long-term objectives. Tactical 

asset allocation, on the other hand, concentrates on the short-term and aims 

to respond to market borne deviations from the objectives set in strategic 

asset allocation. There are several ways to control this deviation in aiming to 

maximize investor’s gains. That is, the investor must decide on a set of rules 

which determine the reaction on market fluctuations that affect the portfolio 

value. These rules are called asset allocation strategies. [1] 

A strategy is chosen on the basis of investor’s risk tolerance. In a fluctuating 

market different strategies lead to different outcomes. There are no “good” or 

“bad” strategies for asset allocation. The chosen strategy should always be 

evaluated against current market conditions. One strategy may perform 

better in certain conditions as the other one could be stronger in different 
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situation. Furthermore, some investors are willing to take larger risks than 

others with their choices of asset allocation strategies. In the end, the feasible 

investment strategy is determined by those bearing the risk and enjoying the 

gains from investments. [2] 

There are certain terms used to describe different market conditions. A bull 

market is linked with increasing investor confidence and raising stock 

market prices. A bear market is a prolonged period during which stock prices 

fall. Prices fluctuate constantly on the open market; a bear market is not a 

simple decline, but a substantial drop in the prices of a range of issues over a 

defined period of time. Bear market is usually accompanied with economy 

recession as on the other hand, bull market is experienced during economic 

boom. [4] 

Strategies that sell and buy risky-assets on the basis of market fluctuations 

are called portfolio insurances (PI). Constant proportion portfolio insurance 

(later referred to as the CPPI), popularized by Black and Jones [3], is one of 

the most commonly used PI-method. It consists of two features: the ability to 

guarantee initial investment and the ability to provide participation to the 

market performance. Portfolio insurance strategies have better down-side 

protection and better upside potential than buy-and-hold strategies [2].  

In this paper, we next take a closer look on three common asset allocation 

strategies and then go on to viewing the most interesting one: variable 

proportion portfolio insurance. The three strategies presented next are: buy-

and-hold; constant-mix and constant-proportion portfolio insurance. 

2.1.1 Buy-and-hold 

Buy-and-hold strategy is a ‘do-nothing’ strategy. An initial mix of risky and 

risk-free asset is bought and then held. In buy-and-hold strategy no 

rebalancing of the portfolio is required which neglects the need for constant 

monitoring. As a consequence, buy-and-hold strategy has low management 

costs.  

Reproducing Perold and Sharpe (1988), let’s consider an example where you 

have $60 in shares (risky) and $40 in cash (risk-free). The difference $60 – 
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$40 = $20 represents a ‘cushion’ and the risk-free position $40 stands for a 

‘floor’. Portfolio value will never drop below this floor. On the other hand, the 

upside potential in buy-and-hold strategy is unlimited.  That is, the value of a 

portfolio can rise indefinitely along with the escalating stock market.  

Some characteristics of the strategy are: 

 Risky and risk-free asset weightings alter according to market 

fluctuations. 

 The portfolio value is linearly dependent on stock market value. 

That is, buy-and-hold portfolio increases in relative value by the 

share of shares (risky assets) in the mix.   

 The portfolio will do at least as well as the floor. That is, its value 

will never go below the initial investment in risk-free asset.  

 Upside potential is unlimited.  

To sum, buy-and-hold strategy poses largest potential for reward and loss. 

The larger the initial percentage invested in shares the larger the reward 

from buy-and-hold strategy during bullish market. The opposite goes for 

bearish market.   

 

Figure 1: Payoff diagram for 60/40 buy-and-hold strategy. Adapted 

from Perold and Sharpe (1988). 
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2.1.2 Constant-mix 

In constant-mix strategies a constant proportion of portfolio is invested in 

risky assets (shares). When the values of assets in the portfolio change, the 

investor buys and sells a mix determined by some constant ratio. That is, 

there is a rule that forces the investor to buy and sell stocks along with 

changing market conditions in order to keep the portfolio on the constant 

mix.  

In following Perold and Sharpe’s (1988) illustration, let’s take an overlook on 

an investor who is managing a 60/40 constant mix portfolio. That is, $60 of 

the portfolio value is in risky assets (shares) and $40 in risk-free assets. Now 

the investor faces a decline of 10% in the value of shares. As a consequence, 

the shares drop to $54 in value and the whole portfolio to $94. The 

proportion of shares in the portfolio is now 54/94=57.4% which is below the 

chosen mix proportions. To get back to 60/40 mix, the investor must now 

purchase new shares. If the stock market had gone up, the investor would 

have sold some portion of the shares.  

Figure 2 illustrates constant-mix strategy versus buy-and-hold. Each black 

 

Figure 2: Payoff diagram for constant-mix and buy-and-hold strategies. 

Adapted from Perold and Sharpe (1988). 
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box corresponds to one of 2000 possible results for an investor who 

rebalances his portfolio after any 10-point move in the stock market [2]. 

The timing for rebalancing differs by investors. Some portfolios are 

rebalanced at certain time intervals but more often the action will be 

undertaken when there has been a change of a specified percentage in the 

value of the portfolio. In concrete terms, the rebalancing implies buying of 

shares as their value declines and selling shares when they are rising.  

In sum, the main characteristic of constant-mix strategy is its 

underperformance during upward going share market. Similarly, the strategy 

is winning when the market is down sloping.   

2.1.3 Constant Proportion Portfolio Insurance (CPPI) 

As we saw constant-mix selling shares when they rose, CPPI strategy does 

the opposite. In applying CPPI, a floor must be selected. As noted earlier, this 

floor represents the minimum value under which the portfolio cannot go. As 

we denote the difference between the floor and the portfolio value as the 

cushion, CPPI strategy is simply a rule that keeps the weight of risky assets in 

our basket as a constant multiple of the cushion [9]. Let’s look this little bit 

closer. 

Again, we have a good illustration of CPPI in action in Perold and Sharpe 

(1988). We have a portfolio of $100 value with the floor set on $75 and the 

multiplier fixed at 2. As a consequence, the initial investment in shares is $50 

and the cushion equals $100-$75=$25. Now let’s consider the stock market 

declining by 10%. We see risky assets decreasing from $50 to $45 resulting 

in $95 for the total portfolio value. Further on, the floor was set on $75 so our 

new cushion is now $95-$75=$20. According to CPPI strategy our exposure 

to risky assets (shares) should be multiplier times the cushion which is $40. 

As a consequence, we have to sell $45-$40=$5 worth of shares to satisfy our 

investment rule.  In sum, with CPPI shares are sold when they fall in value 

and bought when their value is rising.  

Figure 3 (adapted from Perold and Shapiro 1988) illustrates CPPI strategy 

versus buy-and-hold. The black boxes each stand for an outcome of 2000 
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possible results in the case where the investor is rebalancing his portfolio 

after any 10-point move in the market. [2] 

As noted earlier, genetic programming has been used increasingly in deciding 

on the multiplier [3]. Genetic algorithm, on which the programming builds, is 

a computing technique to find or approximate solutions to optimization and 

search problems [8]. The approach is composed of several genetic operators 

such as mutation, selection of the fittest and crossover [3].  

CPPI strategy’s deficiency is evident. The allocation multiplier is fixed and 

doesn’t adjust according to fluctuations in market. It contains only data from 

historical volatility and is therefore vulnerable to sharp fluctuations in the 

market volatility [5]. As a consequence, there is demand for strategy that 

takes also this side into consideration.  

 

2.2 Modifications of CPPI 

We now introduce some extensions that can by applied to CPPI. The strategy 

described above is so called constant floor CPPI, the floor grows at constant 

 

Figure 3: Payoff diagram for CPPI and buy-and-hold strategies. Adapted 

from Perold and Sharpe (1988) 
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rate through investment period. J-F Boulier and A Kanniganti [15] present 

two variable floor strategies. 

The problem with a fixed growth rate floor is that the cushion can become 

too small to provide exposure when market is performing very well, 

especially when t approaches T. And there is also a problem of portfolio to 

become too exposed throughout a rising period. A highly exposed portfolio is 

very vulnerable in case of a downturn. Boulier and Kanniganti introduced so 

called ratchet strategy and margin strategy to solve these problems. 

Ratchet strategy The idea is to increase level of insurance by putting 

"excess" cushion into the floor. The floor is increased if  

                                                       

 

where constant p > 0, Vt is the value of the portfolio, cushion Ct = Vt-Ft and Rt = 

Vt-Et.. Now we have a new floor and a new exposure 

                                      

This strategy is meant to be used in discrete time. 

Margin strategy Now we use an extra floor to limit exposure. The idea is to 

set the initial floor at a value higher than the minimum. Later this "margin" 

floor can be used to augment the exposure if it falls too low. Let us denote the 

margin by M0. We now define the floor as follows 

                                                   

Various methods can be used with the margin but usually it is reduced 

portion by portion when exposure goes under predetermined level. 

In sum, CPPI is a strategy where the multiplier m is constant. What happens if 

we let the multiplier to change in relation to fluctuating market? This would 

be VPPI strategy. 
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2.2.1 Variable Proportion Portfolio Insurance (VPPI) 

Variable proportion portfolio insurance, often referred as dynamic portfolio 

insurance (DPI), is an extended version of CPPI. How it differs from CPPI is its 

varying multiplier on deciding the proportions of risky and risk-free asset in 

the portfolio. Since the market is constantly changing there is no reasoning to 

keep this multiplier fixed like in CPPI strategy (Chen and Chang 2005).  

In VPPI, the allocation between shares and risk-free assets is operated 

dynamically in aiming to maximize the portfolio return also taking into 

consideration the constraints set by the investor [5]. For example, the 

investor might want to bind the multiplier to reach values only from a certain 

interval to match his or her risk attitude.  

There are both qualitative and quantitative methods for deciding on the 

multiplier. Qualitative methods could be such as the investor’s forecast 

profiles on risks and return. Quantitative approaches usually incorporate 

market volatility measures. These could be historical, current and/or implicit 

volatilities. Some of the other factors used are the expected return of the 

risky asset and effective interest rate levels. [5] As proposed already in 

discussion on CPPI, a high multiplier is beneficial during market growth and 

the adverse during falling stock market.  

Case example of VPPI Now let us take a closer look to VPPI in the case with 

zero interest rate for asset without risk. Rebalancing of the portfolio is done 

either periodically or when the value of the risky asset changes a certain 

predefined percentage. For example, let assume a portfolio of V=100, a floor 

value of F=75 and a multiplier of m=2. Now using equation 1 gets the 

proportion, which goes to risky assets is in this case E=50. 

Thus, the initial mix is 50/50 risky asset/cash. Suppose the risky asset 

depreciates 10%, so the investor's shares will fall from 50 to 45. The total 

value of the portfolio then V=95, and the cushion is C=20. According to the 

VPPI rule m=2, the new stock position is E=40 assuming the multiplier stays 

the same. This requires the sale of 5 of shares and investment of the proceeds 

in cash. 
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2.3 Theoretical consideration 

In this section, some factors that should be considered when drafting asset 

allocation strategy are discussed. First, we will review volatility factors as 

they have been treated in the relevant literature. From there we move on to 

discuss jump-diffusion process which holds an importance when generating 

realistic data to be analyzed. 

Black-Scholes model for stock market returns embraces certain shortcomings 

which lessen its use in real life situations. One of these is its deficiency in 

taking into account abrupt crashes and upsurges that are well expected in the 

stock market. [11] 

An alternative for Black-Scholes model is provided by jump-diffusion 

processes, which are widely used to simulate price development different 

assets (e.g. options [12]). Jump-diffusion is a combination of geometric 

Brownian motion and Poisson process controlled jumps [11]. The former 

stands for the general diffusion or fluctuation experienced in stock market 

returns, and the latter aims to model above mentioned changes which are 

more sudden by nature.  

Thus, the model for the asset price is following: 

 

 

 

Here W(t) is a standard Brownian motion, N(t) is a Poisson process with rate 

λ, μ is the drift, σ is the volatility and Vi is a sequence of independent 

identically distributed nonnegative random variables, such that Y=log(V) has 

an asymmetric double exponential distribution. 

The stochastic differential equation has an analytical solution: 
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To conclude, different asset allocation strategies were presented as discussed 

in literature. Based on this, we move on to set up our model for determining 

an optimal rule for determining the multiplier m in VPPI strategy.   

3 Model 

The selection of the multiplier defines the degree of the performance 

preferred by the investor. Let us denote the multiplier by m and the floor by 

F0. The investment is allocated between risk-free assets R0 and risky assets 

E0=mC0. Under continuous trading we have the following equation: 

                                                    

 

where Vt is the value of the portfolio, cushion Ct = Vt-Ft and Rt = Vt-Et. Risk-free 

assets (bonds) Bt are assumed to have constant interest rate r and therefore 

the floor is Ft = F0ert. For Bt we have an equation: 

                                                  

 

where μ is the expected rate of growth of stocks, σ is the standard deviation 

and Wt is standard Brownian motion. 

Consider time period [0,T] for the investment. For a capital guarantee 

derivate security that guarantees the initial amount at the end of maturity T 

we clearly have F0 = V0e-rT. The investor can also choose his risk profile by 

altering the floor as well as the multiplier. 
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3.1 Measuring portfolio performance 

We now introduce a common portfolio performance measure Sharpe ratio 

that we are about to use to determine relative performance between various 

strategies. The Sharpe's measure is defined as follows: 

                                                      

 

where rp is the expected return of the portfolio, rf is the risk-free interest rate 

and σp is the standard deviation of the portfolio. The Sharpe ratio measures 

the reward to volatility trade-off. 

3.2 Model constraints 

The rule for asset re-allocation dynamics that maximizes the expected return 

of the portfolio must respect the following constraints: 

 Multiplier cannot change more than 1 unit at any one time step 

due to limited liquidity  

 Multiplier must be in the range 1-5  

 Risky asset exposure must be in range 0% - 100% 

 Maximum risk limit: 95% CVaR must be less than 2% from the 

notional amount 

 Rebalancing costs (fixed amount 0.01% of notional amount + 

0.05% of rebalancing notional) 

3.3 Volatility-based strategy 

The multiplier can be defined by calculating the 20-day annual historical 

volatility of the stock market. The basic principle is to decrease m when 



 

 

 
Kunnas, Helander, Mikola, Sarjala, Soinio 

18 Optimization of Multiplier and Rebalancing in VPPI strategy 

market is very volatile and increase m when there is less volatility. Thus the 

possibility of making heavy losses when the stock market is going down 

rapidly is eliminated. On the other hand, we cannot exploit any quick 

increases in the market value. 

When using real market data, implied (instead of historical) volatility is used. 

The multiplier (m) will be determined in the following way (Table 1). Here 

volt-1 denotes the 20-day historical annual volatility of the risky asset on the 

previous trading day. 

 

Additionally, the multiplier will not be increased unless it has been the same 

for at least 5 business days. Thus, the multiplier won't be increased too 

quickly if there is only a short upward movement in the stock market value. 

When calculating the volatility we have used a Matlab m-file called "Moving 

variance" from Aslak Grinsted (2005).  

3.4 Trend-based strategy 

In trend based strategy the multiplier is changed according to market 

performance. The multiplier is increased by 0.5 when market is in uptrend 

and reduced by 0.5 when market is in downtrend. The trend is defined with 

moving averages.  We used Exponentially Weighted Moving Averages 

(EWMA) with leading 9 days average and lagging 26 days average. EWMA 

uses exponential weights giving much more importance to recent 

observations. We use 10 consecutive observations after lagging and leading 

averages crosses to determine the trend change. Consecutive observations 

are needed to decrease sensitivity to the market changes and to avoid 

unnecessary multiplier changes. 
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3.5 Strategy based on volatility and trend 

We have considered strategies that define the multiplier with the help of 

volatility or current trend of the stock market. Now we develop a strategy 

that combines these two methods, that is, we use both volatility and current 

trend to determine the multiplier.  

If the market is in downtrend, the multiplier is decreased by 0.5 regardless of 

the current volatility. If the market is in uptrend, the multiplier is changed 

according to the current volatility: 

 volatility > 30%, m remains the same 

 25% < volatility < 30%, m is increased by 0.2 

 15% < volatility < 25%, m is increased by 0.4 

 volatility <15%, m is increased by 0.6 

The risk of the portfolio can be measured in several ways. In this report we 

concentrate on using Value at Risk (VaR). However, we also consider often 

used measurement Conditional Value at Risk (CVaR) from the theoretical 

point of view even though it was left out of the model due to convenience 

reasons. Next, we briefly provide the theory of these risk measures and after 

that we move on to considering how these risk measures should be applied in 

this project. 

3.6 Value at Risk 

Value at Risk (VaR) is a common method that is broadly used by security 

firms and investment banks to measure the market risk of their asset 

portfolios. VaR measures the worst expected loss over a given time horizon 

under normal market conditions at a given confidence level. Thus, a bank 

might state that the daily VaR of its trading portfolio is USD 10 million at the 

95% confident level. This would indicate that there is a 5% probability that 

the daily loss would exceed USD 10 million. 
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Let us assume that we use a confidence level c and the probability 

distribution of the future portfolio value is f(w). To determine VaR, we have 

to find the worst possible realization W* such that the probability of 

exceeding this value is c: 

 

On the other hand: 

   

Thus we have a probability of p that the portfolio value is less than W* which 

equals to Value at Risk at a confidence level c.  

The problem with VaR is that it gives no information on the possible loss if 

we hit the lower tail p (p=1-c, where c is the confidence level). Conditional 

Value at Risk (CVaR) is a risk measure that repairs this deficiency. 

3.7 Conditional Value at Risk 

CVaR at a confidence level c is the expected return on the portfolio in the 

worst p% of cases. Thus, CVaR is always worse than (or equal to) VaR. CVaR 

at a confidence level c can be defined in the following way (here W* is VaR at 

a confidence level c): 

 

When determining the multiplier and rebalancing frequency, we must ensure 

that the risk does not exceed a certain limit. At this project certain limits have 

been set regarding the risk limit and rebalancing frequency: 

 CVaR at a 95% confidence level must be less than 2% from the 

notional amount 

 Maximum rebalancing frequency daily  
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In essence, we have to set a rebalancing period that is more than 1 day but is 

short enough to meet the risk limit condition. In other words, the volatility of 

the portfolio value must not grow too big. We also have to remember that 

there is a lag of 1 or 2 days before a new allocation takes place. 

Let us assume that the initial portfolio value equals 100. Let us now take a 

certain lower tail of the probability distribution of the future portfolio return 

(f(w)). The expected value of this tail must be -2 and there must be only a 5% 

probability that we hit this lower tail. When these conditions are met, the 

CVaR of the portfolio return at a confidence level 95% is 2% from the 

notional amount.  

We will make an assumption that the future return of the portfolio, f(w), is 

normal distributed with an expected return μ=0 and volatility σ. By using 

equation 14 we can determine a certain σ that satisfies the risk limit 

condition. By trial and error, we find a value of σ=1 that satisfies the 

condition of the risk limit: 

 

 

So f(w) is actually a standardized normal distribution (μ =0, σ =1). However, 

the result is that the volatility of the portfolio mustn't exceed 1% during a 

rebalancing period. However, the portfolio consists of a riskless investment 

(bonds) and a risky part (stocks). Let R(t) be the share of bonds at time t and 

E(t) the share of stocks in the portfolio (thus R(t)+E(t)=V(t)). The portfolio 

variance can then be determined as (here σB denotes the volatility of bonds 

and σS the volatility of stocks):   

 

We can assume that σB =0. Thus, the maximum variance of the risky part 

(stocks) will be: 
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where σP =1. 

Let us assume that there are 250 trading days a year and the stock market 

annual volatility is σ. Then we can calculate the maximum rebalancing period 

T (days), if we already have determined the risky asset exposure E(t): 

 

For an example we could assume the annual volatility of the stock market to 

be 20% and the current portfolio risky asset exposure E(t)=0,3 (30%). By 

using equation 18 we get a maximum rebalancing period of T=6,94 days. 

With this rebalancing frequency the CVaR of the portfolio is exactly 2% from 

the notional amount.  

Another strategy is to remain a fixed rebalancing period TF. Then the 

exposure of the risky asset has to be set small enough, so that the risk limit 

isn't exceeded. From equation 18 we can solve the maximum exposure. 

 

If we assume once again that the annual volatility of the stock market 

σS=20%, we can calculate the maximum exposure with different values of the 

fixed rebalancing period (table 2). 

 

3.8 Implementation 

As described in the earlier chapter, we could use CVaR to control the 

portfolio value change during one rebalancing period. The disadvantage of 
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this strategy is that the exposure will remain at a low level even if the value of 

the portfolio well exceeds the floor level at a certain time t. This results in low 

returns even during bull market. The performance of the volatility-based 

strategy when using CVaR is illustrated in figure 5. In this certain case the 

value of the stock index has risen to over 500% of the initial value. However, 

the portfolio final value is under 200% of the initial value. The multiplier 

remains low (ranging from 1 to 3), and the exposure changes very rapidly at 

some points. The exposure might be very different even on consecutive time 

steps because of the nature of the risk control method.  

 

Figure 4: Stock index, portfolio value (volatility based strategy with CVaR), multiplier and 

risky asset exposure. 

Obviously, we should not use this kind of risk measure because it drastically 

weakens the performance of the VPPI. A more reasonable solution would be 

to compare the portfolio value V(t) to the floor value F(t). When V(t) is well 

above F(t), we should put no restrictions to the risky asset exposure because 

there is only a minimal risk that V(t) would drop to F(t). However, if V(t) is 
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near F(t), so that V(t)>F(t), we should take actions to ensure that the floor 

level is not reached.  

We could use CVaR to determine the maximum allowed exposure if the 

portfolio value is close to the floor level. In this case, we would have to 

calculate CVaR at each time step and the calculation time would increase 

significantly. This kind of risk limit would also be quite difficult to implement 

and would require iterative measures instead of straight-forward calculation. 

Consequently, we control the risk by calculating how much the portfolio 

value exceeds the floor value at each time step. If the portfolio value (V(t)) is 

under 102% the value of the floor (F(t)), we set the risky asset exposure to 

0% and permanently move all assets to the riskless investment asset. Thus, 

the portfolio value must meet the following condition at each time step: 

 

This safety measure makes it very improbable that the portfolio value would 

drop through the floor. The result would eventually be quite the same even if 

we used more sophisticated, CVaR based risk limits. 

4 Results 

In this chapter different simulations of VPPI asset allocation rules are 

discussed. First, we consider whether to use generated or real market data in 

simulations. Then we move on to reviewing performances of chosen 

strategies and end up with conclusions.   
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4.1 Data types 

It can be argued whether to use generated or real historical market data 

when running the simulations. Below (Figures 5-8) are presented typical 

examples of both types in the form of stock market returns and volatilities. 

4.1.1 Real market data 

The VPPI strategies have been tested by using real market data. The data 

comes from two sources. The first one is S&P 500 which is a stock market 

index containing the stocks of 500 Large-Cap corporations, most of which are 

American. The observation time is from January 1, 1990 to April 14, 2008 

(4608 trading days). The other source is Dow Jones EURO Stoxx 50 which is 

stock index designed by Stoxx Ltd and contains 50 sector leaders in the 

Eurozone. The observation time is from January 4, 1999 to April 14, 2008 

(2361 trading days). Thus the total observation time is 6969 trading days 

(roughly 28 years), including daily stock index and implied volatility.   

The value of stock index (the value at first day is set to one) is shown in figure 

5. One can see on this picture some rapid increases and decreases as is 

typical to stock markets. The amount of these stock index fluctuations can be 

measured by implied volatility, shown to same time period as was used in 

Fig. 5 in Fig.6. Histogram of five day period of daily returns, the timeframe we 

are mostly using in this study, is shown in Fig. 7.  From Fig. 7 one can see that 

the return is not normally distributed, but contains tails, which broadens the 

distribution and such increase the amount of risk one have to take, when 

investing to the stock index.   
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Figure 5: The stock index value of S&P 500 

 

Figure 6: The implied volatility of S&P 500 
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Figure 7: Histogram of five day returns of S&P 500 

4.1.2 Simulated market data 

To simulate data we used parameters μ=0.11, risk-free interest rate 0.04,  

and volatility σ=0.2 [3]. Data was simulated to include 5 years of trading 

days, 50 weeks a year and 5 trading days a week. The simulated stock index 

value is illustrated in figure 7 and the corresponding volatility in figure 8. As 

can be clearly seen the data generated by geometric Brownian motion 

discussed in chapter 3 generates the stock index data, which differs in the 

case of real data especially with respect to volatility, which are much more 

noisy in our case, when compared to real market data. This is something 

what one expects to see, when we are dealing with the Brownian motion 

without any long-range memory. Such things as high implied volatility 

fluctuations with respect to long time scales are not seen with our simulated 

data. More sophisticated methods [16], which better take care of this 

problem have been created, but are not used here, where we are mainly 

interested in VPPI performance.      
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Figure 8: Simulated stock index value 

 

Figure 9: Volatility of generated data 

As we can see, simulation generated data gives congruent results with the 

actual data. A definite advantage in using generated data is its infinite 

quantity as it can contain a lot longer time horizon than real historical data. 
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From here on we move to comparing CPPI and different VPPI strategies. We 

consider the performance of CPPI strategy and use this as a benchmark for 

our VPPI simulations. We employ both data types in determining the optimal 

multiplier in the case of VPPI. 

4.2 CPPI as benchmark 

In order to be able to benchmark the different VPPI strategies we ran 

simulations with different CPPI values.  As assumed the expected return and 

volatility rise as the multiplier is increased. These expected value results are 

shown in figure 10 and the volatility results in figure 11. Intuitively, well 

designed VPPI strategy should perform at least equally well as CPPI with the 

same volatility. Hence the objective is to evaluate the performance between 

CPPI and VPPI strategies that we have devised. 

 

Figure 10: Expected portfolio value in CPPI strategy. Expected portfolio value in linearly 

decreasing VPPI. Squares 10000 simulation run, circles 20000 simulation run. 
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Figure 11: Portfolio variance in CPPI strategy 

4.3 Simulation with real market data 

We have taken eight different 5-year periods (1250 trading days) from the 

market data for the simulation. For example, from the S&P 500 data we have 

taken periods starting from day 1, 626, 1251, 1876, 2501 and 3126. 

Obviously, most days appear in two different periods, but on the other hand, 

the number of simulations is increased.  

We apply all the three strategies (volatility, trend, volatility & trend) to the 

market data. In the following simulations a fixed rebalance period of 5 days 

has been used. However, whenever the multiplier is changed, a rebalance 

occurs immediately. The risk limit of equation 20 has been used. The results 

of the simulations and the performance of the stock index are presented in 

table 3. The Sharpe ratios have been calculated assuming a 4% annual risk-

free interest rate. 
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The histograms of the returns with different strategies are illustrated in 

figures 13, 14 and 15. The returns of the stock index are presented in figure 

12. 

  
Figure 12: Index end value S&P 500 



 

 

 
Kunnas, Helander, Mikola, Sarjala, Soinio 

32 Optimization of Multiplier and Rebalancing in VPPI strategy 

 
Figure 13: Portfolio value with volatility based strategy  

 
Figure 14:  Portfolio end value with trend based strategy 
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Figure 15: Portfolio end value with volatility & trend based strategy 

4.4 Simulation with generated data 

We tested our algorithms with simulated data using trend based strategy and 

volatility & trend strategy. The capital invested in risk-free assets has a 

growth of three days during weekends, after every 5 days period. With 

simulated data and real stock market data we used one day time lag in 

rebalancing, so that when rebalance takes place, it is done at the price of the 

next day’s closing price. 

During our simulations we decided that an appropriate simulation run length 

is 5000 simulations. It is also a length our computers are able to execute in a 

decent time, several hours. According to our experience of the simulations, 

the mean has a quite low standard error, about less than 2%. But a problem 

arises with the variance. It does not seem to converge even if the simulation 

length is increased to 20000 or more. 

The simulation results are concurrent with the results obtained using real 

market data. The volatility & trend based strategy performs only slightly 
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better than the strategy relying solely on trend. Interesting notion is that 

neither of the above mentioned strategies is able to outperform CPPI in terms 

of volatility versus risk. 

 

4.4.1 Case example of linearly decreasing multiplier 

We also considered much more simple strategies to allocate assets. One of 

these strategies called the linearly decreasing multiplier was found to 

perform quite well. The idea is to start with some multiplier value and 

decrease it linearly to 0 within the given five year time frame. Starting with 

high exposure will enable the portfolio value to grow in the beginning of the 

hence creating possibility to compounding profits. These expected value 

results are shown in figure 16 and the volatility results in figure 17. The 

results are very similar to CPPI in terms of volatility versus expected return.  

 

Figure 16: Expected portfolio value in linearly decreasing VPPI. Squares 10000 simulation 

run, circles 20000 simulation run. 
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Figure 17: Portfolio variance in linearly decreasing VPPI 

4.5 Rebalancing costs 

Effects of various rebalancing periods were tested with all strategies, but no 

confidently measurable differences were discovered. This could indicate that 

with our strategies the costs caused by rebalancing have a relatively greater 

impact on expected portfolio terminal value than the actual portfolio 

performance in terms of capturing the market fluctuations.  

For volatility & trend -based strategy we received following results with 

rebalancing periods 5, 10 and 15 days: average portfolio end values 1.3766, 

1.4262 and 1.4347; average standard errors 0.5469, 0.5729 and 0.5766; 

average total costs 0.110, 0.063 and 0.055 respectively. It is clear that 

performance differences with different rebalancing periods are very much a 

result of decreased costs. 
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4.6 Conclusions 

The results of the simulations with real market data include great amount of 

uncertainty. The amount of simulations (8) is very small so the errors are 

quite large. With simulated data we use samples of several thousands. So the 

average returns and standard deviations as well as Sharpe ratios might be 

misleading.  

However, we can make some qualitative conclusions. The volatility based 

strategy seems to perform worse than the other two strategies. The strategy 

based on both volatility and trend yields the highest average returns. All in 

all, VPPI is working as it should be. The possibility of negative returns is 

eliminated, but in the same time the average return decreases when 

compared to the stock market index. And according to the Sharpe ratios, the 

strategy based on both volatility and trend outperforms the pure stock index. 
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