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1. Introduction
This study is part of the course Mat-2.4177 Seminar on Case Studies in Operations Research”
held in spring 2008. The study aims to find more accurate estimates for means of field trial
treatments by taking into account spatial correlation. The project team consisted of five minors
of systems and operations research.

1.1. Client

Kemira GrowHow is the second largest producer of fertilizers in Europe. The company is a
subsidiary of Norwegian Yara International, which is the largest fertilizer producer in the
world. Kemira GrowHow 3 products are sold in over 100 countries. Their strongest market
position is in Europe —especially in Northern Europe.

In 2007 Kemira GrowHow had 2435 employees and net sales were 1,294.7 million Euros.
Kemira GrowHow 3 Crop Cultivation business unit produces fertilizers for agriculture, crop
farming, and for gardening.

Kemira GrowHow is active in R&D in the fields of agronomy, organic and inorganic chemistry,
and process technology. R&D projects are often long: developing fertilizer products from
original ideas can take three to six years. Research is usually done in greenhouses and in test
plantations. Experiments are done in different places of the world in order to test potential
products in different environmental conditions. (Kemira GrowHow, Annual Report, 2007)

1.2.Background

In cultivation experiments, the impact of different treatments on crop yields are examined by
dividing treatments to field plots in a specified way. Statistics is used to analyze the
experiment results. Most of the commonly used methods of analysis assume that residuals are
independent and normally distributed. In practice, residuals are often locally dependent. This
is problematic because

1. local systematic error leads to overestimation of natural variation, which makes it
more difficult to notice differences between different treatments;

2. replicates of the same treatment can be located in the problematic area, and thus, the
mean effect of the treatment will become distorted.

Because of these problems, usual statistical methods cannot be used. Test results must be
corrected so that local correlation will be diminished. We present methods both for testing
whether results are locally dependent and for correcting test results accordingly.

1.3. Limitations

Two spatial regression models and four alternative contiguity weights are discussed. The
regression models are the spatial autoregressive and spatial error model. Weights are based
on row, column, and so-called Rook and Queen contiguity (see section 3.1).

1.4. Problem statement

The background presents the problem setting for the project. The results in cultivation
experiments embody spatial correlation and the task of the project is to come up with means
how to handle such a situation. The goal setting for the project is double-barreled; firstly the
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target is to develop a gauge for measuring the level of spatial autocorrelation. Secondly the
target is to develop a systematic approach to handling the spatially autocorrelated data.

1.5. Structure of the Report
The report is structured into six sections, a references section, and appendices 1-7. In section
2, the theoretical background is presented. Section 3 continues by introducing concepts
important in forming spatial regression models. Our solution is presented in section 4, which
includes a brief description of the MATLAB implementation. Section 5 presents the results. The
last section discusses the findings.
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2. Theoretical Background
This section presents the standard methods of statistical analysis used in this study. Data from
actual greenhouse and wheat field trials is used in reviewing these methods (see Appendices 1
and 2 respectively). For indexing and basic information about the data, see Appendix 3. The
discussion continues in Section 3.

2.1. Descriptive Statistics

In statistics, graphical representations are used for obtaining information on properties of
data. Two especially useful representations include surface plot and map of observations.
Assuming a randomized block design, one should expect observations of high and low-value to
scatter randomly. There should not be any clustering of values.

Surface plot
Map of observations

Figure 1. Surface plot & map of observations. Data sample 1 (Appendix 1.)

Surface plot
Map of obsenations

Figure 2. Surface plot & map of observations. Data sample 2 (Appendix 2.)

Figures 1 and 2 for our data samples show just the opposite. Both exhibit areas of high and low
values, hills and valleys. Everything seems to be related to everything else, but “tloser things
more so”’(Tobler, 1979).
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2.2. Analysis of Variance ANOVA

In one-way analysis of variance data is categorized to multiple groups based on some variable.
In analysis of variance every observation3 variance is assumed to be constant. In addition,
every observation is assumed to have the same expected value within the group. Notation:
there are k groups. There are n; independent observations in every group where i is group 3
index. yji is observation jingroupi.j=1.2,..,njandi=1.2,.. k.

Assumptions:
E(yii) = Wi
D2(y;ji) = 02
Group means:
_ 1 #
Ve = Xiti Ve
Combined groups mean
§ =15 S, vy wheren=ng +na +..+
One-way analysis of variance is based on sum of squares: total sum of squares (SST), group
sum of squares (SSG) and residual sum of squares (SSE).
ko ni

5723 Y o5
1
k

i=1 j=

556= ) (5 —7)*

i=1
kM
SSE=) 3 (u-7)

i=1;=1
ANOVA is a test for equality of expected values. Formally

Null hypothesis Ho: 1 = 2 = s = ... = [k
Alternative hypothesis H1: There exist a # b so that pa # pb

In our work this test should show that expected values are not the same because of different
treatments.
The F-test variable is of the form
n—k S5G

k-1 SSE
If the observations are normally distributed and the null hypothesis is valid, the variable F is F-
distributed with degrees of freedom k-1 and n-k.
We ran one-way analysis of variance: to analyze data sample 2 (Appendix 2) and got the

following results:

ANOVA Table
Source 55 df M5 F Frob:F
Colunns L2743 .5 2 26371 .8 n.14 0.8744
Error 1742349 .5 9 193594 4
Total 1795093 11

! In Matlab:
>> X=[6152 60325464 5887; 6222 6267 5507 4935; 6162 6018 5768 5492];
>>anoval(X);

-6-
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6200 *
6000 - b
5800 - b

5600 *
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Values
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L L L
1 2 3
Column Number

Figure 3. Boxplot of data set 2

Test 3 F-variable is 0.14 and P-value is 0.8744. Based on this test, the null hypothesis cannot be
rejected and all the expected values are equal between groups. This is not satisfactory since
different treatments should affect the results. Spatial dependence might cause this result.

2.3. Ordinary Least Squares Regression OLS

The method of ordinary least squares is used to achieve an optimal fit between the model and
observed numerical data by adjusting the parameters of the model. This is done by minimizing
the squared sum of residuals. (Pindyck, R, Rubinfield, D, 1998)

The general model is defined as
Yi = by + DX+ b,%, ot DX te

with the following standard assumptions (Mellin, I. 2007):

(1) The values x;; of dependent variable x;are fixed non-random constants, i=1, 2, ..., n,
=1,2,.. k

(2) There are no linear dependencies between dependent variables
(3) E(e)=0,i=1,2,..,n

(4) Var(g)=o02i=1,2,..,n

(5) Cor(si, ) =0,i #]

(6) &~ N(@,0?),i=1,2,.. ,n

In our research variables x; are so-called indicator variables (or dummy variables), and have
value equal to 1 if treatment j is used in observation y; is a replication of treatment j, and O if it
is not. Appendices 1 and 2 illustrate this for actual greenhouse (21 different treatments) and
wheat field trials (three treatments) made in Kotkaniemi, Finland, in 2006.

OLS statistics for the results of the above mentioned field trials is shown in the table below. As
only one treatment was used for one field plot, using all treatments as dependent variables
leads to a highly multicollinear model. This happens when the model includes a constant. Then,
one of the three dummy variables is linearly dependent on the rest:

-7-
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Xz =1- X, - X,

Thus, we have included only two of the three dummy variables to our standard OLS analysis.
Table 1. Standard OLS regression of data sample 2

Statistix 8.0 Kot kani em Wheat Fie..., 26.4.2008,
12: 36: 59

Unwei ght ed Least Squares Linear Regression of Y

Pr edi ct or

Vari abl es Coef fici ent Std Error T P VI F
Const ant 5860. 00 219. 997 26. 64 0. 0000

X1 23. 7500 311. 122 0.08 0. 9408 1.3

X2 -127. 250 311.122 -0.41 0. 6921 1.3

R- Squar ed 0. 0294 Resi d. Mean Square (MSE) 193594
Adj ust ed R-Squared -0. 1863 St andard Devi ati on 439. 994
Sour ce DF SS MS F P

Regr essi on 2 52744 26372 0.14 0. 8744

Resi dual 9 1742350 193594

Tot al 11 1795093

Cases Included 12 M ssing Cases 0O

None of the variables are statistically significant and the model is not statistically significant as
awhole. Thus, it is clear that normal OLS regression is inadequate.

2.4. Regression Diagnostics

Regression diagnostics is important after the parameters of regression have been estimated.
The goal of regression diagnostics is to test the assumptions of OLS-model and check that the
model is correct and valid. (Laininen, 2000)

2.4.1. Residual Maps and Plots
Figures 4 and 5 illustrate residual analysis plots for data sets 1 and 2 respectively.
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Figure 4. OLS Regression diagnostics for data sample 1 (105 observations)

Normal plot of residuals shows the residuals to be approximately normally distributed. The
second chart plots observation number i against residual ei. The chart reveals a clear trend: the
closer we get to plot 105, the larger the residuals get and vice versa. Compare this to Figure 1.

Based on the histogram, the mean of the residuals is below zero and the distribution is skewed
to the right. The model violates assumptions (3), (5) and (6) of the general linear regression
model. The fit y, against residual e; plot implies slight heteroskedasticity (as fit values get

larger, residuals diverge more).
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Figure 5. OLS regression diagnostics for data sample 2 (12 observations)

Appendix 4 exhibits more regression diagnostics including a studentized residual map and
chart, Cook % distance2 and fit vs. observation plot.

2.4.2. Diagnostics for Spatial Autocorrelation

Standard assumption (5) guarantees that the residuals of a standard OLS-model do not
correlate. Correlation of residuals causes coefficient estimators to be inefficient and wrong. A
special form of correlation is autocorrelation where residuals are correlated in some fixed
distance (Virtanen 2007). Durbin-Watson test can be used to test for autocorrelation of
sequential residuals.

We are not interested in temporal autocorrelation but in spatial autocorrelation. Whereas
autocorrelation is about proximity in time, spatial autocorrelation is about proximity in space.
Spatial autocorrelation is more interesting since data is spatial. A spatial distribution is
spatially autocorrelated “if there is any systematic pattern in the spatial distribution available™
(Lembo, 2008).

One measure of the degree of spatial dependence in data is Moran 3 | (Moran, 1948), the most
commonly used statistic for global spatial autocorrelation.

Moran 3 | is defined formally (Moran, 1950) as

2 When Cook s distance Di > 1, the observation i is a strong outlier candidate

-10 -
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_ 1858 e T
| = aaWi,-(Xi' X)(Xj' X)
Sobz i=1 j=1

Where x;is the variable of interest in region i in study area A, which has m regions. The other
terms are defined below.

wij is an element of a spatial weight matrix which measures spatial distance between regions i
and j. In a tradition Queen or Rook contiguity definition wjis 1 if a region i is connected with j,
and O otherwise. It is also possible to use weighting methods that are not binary and that
assign non-zero weights to areas that are not directly connected but rather close to each other.
In any case Moran 3 | statistic can range from -1 to 1. Statistic values close to 1 indicate either
high-value clustering or low-value clustering, and values close to -1 indicate that low-values
are located next to high-values. When statistic is close to zero values are spatially random.
(Moran, 1950)

The pitfall of the Moran3 | statistic is that it can detect only one dominant type of spatial
autocorrelation. If high-value clustering and low-value clustering coexist, the method cannot
distinguish them. (Tonglin, Lin, 2006). In addition, the method is not helpful in suggesting
which alternative specification should be used (Anselin, 2005). To this end, our solution
employs a spatial regression model decision rule (see Figure 6 in Section 4).

Despite these difficulties, Moran 3 | has considerable power in detecting misspecifications in
the model.

-11 -
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3. Spatial Regression Model

Spatial econometrics has emerged as a new subfield of econometrics. It is a blanket term for
statistical tests and models used to address potential issues introduced by the presence of
spatial effects in regression analysis. These include:

n spatial lag dependence
N spatial error dependence
N spatial heterogeneity

Traditional econometrics has largely ignored spatial dependence and heterogeneity, since they
violate the traditional Gauss-Markov assumptions used in regression modeling. This gives rise
to alternative estimation approaches.

First, we must somehow quantify the locational aspect of our sample data. This can be
achieved by defining a spatial weight matrix which maps out the neighbourhood of each
observation.

3.1. Constructing Spatial Weights

Weight matrix construction is crucial when using Moran3 I. The weight matrix defines the
spatial autocorrelation to be analyzed. There are many ways to construct weight matrices that
capture the notion of “tonnectiveness”’between regions on the plot.

Figure 4 shows a hypothetical example of five regions as they would appear on a map3.

(4)

Figure 4. An illustration of contiguity (LeSage, 1998)

We wish to construct a 5 by 5 binary matrix W containing 25 elements taking values of 0 or 1
capturing the neighbourhood structure of every region on the map. We record in each row of
the matrix W a set of contiguity relations associated with one of the five regions.

® This section is largely based on LeSage (1998).
-12 -
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There are many ways to accomplish the task. Below, some of the alternative ways are
enumerated.

Rook contiguity: Define Wj; = 1 for regions that share a common side with the region of
interest. For row 1, reflecting region 1's relations we would have W1, = 1 with all other row
elements equal to zero. As another example, row 3 would record W34 = 1;W3s = 1 and all other
row elements equal to zero.

Bishop contiguity: Define Wj; = 1 for entities that share a common vertex with the region of
interest. For region 2 we would have W»; = 1 and all other row elements equal to zero.

Queen contiguity: For entities that share a common side or vertex with the region of interest
define Wij = 1. For region 3 we would have: W3, = 1; W34 = 1;W35 = 1 and all other row
elements zero.

The matrix W reflecting first-order rook 3 contiguity relations for the five regions in Figure 4
is:

® 1 0 0 09
¢ 00 0 o0
W:500011f
0O 010 1+

0 01 1 04
A transformation often used is to convert the matrix W to have row-sums of unity. This is
referred to as a Standardized “contiguity matrix C:
® 1 0 0 0%
2800 0 o0-
C=f 0 0 1/2 V2]
¢c0 0 1/2 0 1/2+

0 0 1/2 1/2 04

If we now multiply C by a vector of observations on some variable y associated with the five
regions, we get the spatially lagged variable Cy, used in the SAR model:

&, "0 ® 1 0 0 Od0 \Z 0
Sy, s €0 0 0 0%ye ¢ -
¢¥s*I=Cy=g0 0 0 05 053y; =05y, +0.5y;]
gy4*f ¢c0O 0 05 O O.5—:(;y4f (;O.5y3+0.5y5f
&s*p €0 0 05 05 0 fysy &05y;+05y,

This is one way of quantifying the notion that y; = f(y;), j*i.

Cressie (1993) differentiates spatial data structures between point patterns, geostatistical
data, and lattice data. Since this study considers data in lattices, the corresponding weight
matrices are contiguity-based. In contiguity-based spatial weights, neighbors are defined as
cells who share a boundary. In distance-based spatial weights the construction is based on
distance between cells, not neighbors. (Anselin, 2005)

Four weight matrices are took into discussion in this section. They are row, column, Queen and
Rook contiguity weight matrices. Let (gray cell) be a neighboring cell to cell 5. In the table on
the left all the cells that share a common side or vertex with cell five are neighbors to it
(Queen). On the right only cells that share the same column (2 and 8) or row (4 and 6) are
neighbors to cell five (Rook). All neighbors get the same weight and non-neighbors get weight

-13 -
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of zero. The resulting weight matrix can be standardized so that the sums of row weights equal
1

Row contiguity Column contiguity Rook contiguity Queen contiguity
10 11 12 10 11 12 10 11 12 10 11 12
7 8 9 7 9 7 9
5 4 5 6 5 5
1 2 3 1 3 1 3

Figure 5. Implemented contiguityweight matrices

We could also use a weight matrix where all the cells are noted when analyzing spatial
autocorrelation. Cells that are not neighbors would get a smaller weight than neighboring cells.
In this work we do not consider complex weight matrices since our data matrices contain few
elements —only the closest neighbors are important.

3.2. Spatial Lag Model —SAR Spatial Autoregressive Model
This section considers the estimation by means of maximum likelihood of a spatial regression
model that includes a spatially lagged dependent variable. Formally,

y=pWy+Xp+e 0)
£~N(0,s°2l,)

where y is a N by 1 vector of observations on the dependent variable, Wy is the corresponding
spatially lagged dependent variable for weights matrix W, X is a N by K matrix of observations
on the explanatory variables, eis a N by 1 vector of error terms, r is the spatial autoregressive
parameter, and bis aK by 1 vector of regression coefficients.

(Wy)i is always correlated with error term & and thus, an OLS estimator is inconsistent with
the model. Thus, maximum likelihood estimators or instrumental variables must be used.
Normal OLS regression results are biased and inconsistent when data is spatial. (Anselin, Bera,
1998. p. 246)

Maximum likelihood estimation of this model is based on a concentrated likelihood function.
For details on the estimation, the reader is referred to LeSage (1998).

3.3. Spatial Error Model - SEM
Spatial Error Model can be defined as,

y=Xp+u ()
u=2Wu-+g

£~N(0,52l,)

where the parameter | is the spatial autoregressive coefficient for the error lag Wu, and e is an
uncorrelated and homoskedastic error term. The model is implemented in the Econometrics
toolbox by LeSage (1998).

Results of applying SEM for data set 1 and 2 can be found in Appendices 10 and 12.

-14 -
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4. Our Approach

The variety of test statistics for spatial autocorrelation is great. Since models (1) and (I1) both
rely heavily on the weight matrix W, one obvious action is to consider the spatial regression
results for different spatial weights. Consequently we run both SAR and SEM with four
different spatial weights, namely, the row, column, Rook and Queen contiguity weight
matrices.

Figure 6 illustrates a simplified spatial regression model selection decision rule based on
Anselin (2005).

Run OLS Regression ]

l

Regression Diagnostics
Moran’s |

|

No spapal Significant
correlation
Stop Run SAR
Keep OLS Results Spatial Lag Model
\ J
Run SEM
Spatial Error Model

l

SEM R?
SAR > SAR R2? SEM
Stop Stop
Keep SAR Results Keep SEM Results

Figure 6. Spatial Regression Decision Process

The process begins at the top of the graph and considers the standard OLS statistics. Moran 3 |
test statistic is calculated with each of the four spatial weights. If one of the | test statistics
rejects the null hypothesis of no spatial autocorrelation in residuals, both SAR and SEM are run
with each of the weights. The results are compared so as to maximize R-squared. The process
ends and reports results of the model that best explains variation in observations

4.1. MATLAB Implementation

We used MATLAB and LeSage3 Econometrics toolbox (LeSage, 1999) to implement our
solution. MATLAB is a high-level language and interactive environment that enables one to
perform computationally intensive tasks faster than with traditional programming languages

-15 -
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such as C, C++, and Fortran. The Econometrics toolbox adds over 350 functions to MATLAB 3
standard set and includes the following models

n Spatial Autoregressive Model (SAR)-- ML and GMM estimators

n Spatial Error Model (SEM)-- ML and GMM estimators

n General Spatial Model (SAC)-- ML and GMM estimators

n Spatial Durbin Models (SDM)

n Spatial Error Probit Models (SEMP)

n SAR model with Fixed Effects (Panel Data)

n SEM model with Fixed Effects (Panel Data)

n Bayesian Geographically Weighted Regressions (BGWR)

n Casetti 3 Spatial Expansion Model (DARP)

The Spatial Autoregressive (SAR) and Error (SEM) models are considered in this report.

The Econometrics toolbox offers a function, noran(), that computes Moran's I-statistic for
spatial correlation in the residuals of a regression model. It takes as its parameters a vector of
dependent variable observations, matrix of independent variables and a contiguity weight
matrix. We implemented a function, creat ew(), that constructs row, column, Queen and Rook
contiguity weight matrices for latice data (see: Appendix 5).

In addition, the toolbox includes functions ol s(), di agnose() and df bet a() that perform ordinary
least squares regression, compute regression diagnostic measures, and measures omitting
each observation sequentially respectively. Appendix 6 lists help ols? help diagnose and help
dfbeta”

Functions sar () and sen() compute spatial autoregressive and spatial error model estimates.
Both take three parameters: vector of dependent variable observations, matrix of independent
variables and a standardized contiguity weight matrix. Appendices 7 and 8 list help sar >and
help sem?

The main function of our solution, fixspat () (Appendix 9), implements the model selection
decision process in Figure 6. The function estimates an OLS regression, calculates Moran3 I,
and then runs SAR and SEM regression with each weight matrix in turn. Fixspat () outputs
regression diagnostics in two windows, Moran 3 | test statistic and the best spatial regression
model in a separate window.

-16 -
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5. Results

The result windows of Moran3 | and best model selection for fi xspat (' data15x7. xI's’, fal se)
are given below.

J Figure No. 2: Moran |-test for spatial correlation in residuals

File Edit iew Insert Tools Window Help

MORAN |: reject HO of no spatial autocorrelation
Moran I for row contiguity

Moran I-test for spatial correlation in residuals

Moran I 0.70928781
Moran I-statistic B.20410820
Marginal FProbability 0.oooo00on
nEan 0.o0o0o000a0
standard dewviation 0.11432551

Moran I for column contiguity
Moran I-te=t for =patial correlation in residuals

Horan I 0.81688026
Moran I-=tatistic 7743178307
Marginal FProbability 0.ooo0oo0o0n
nEan 0.ooo0o000n0
standard deviation 0.10549677

Moran I for Rook contiguity
Moran I-test for spatial correlation in residuals

Moran I 0.79108074
Moran I-statistic 10, 26844776
Marginal FProbability 0.o0o0o0000a0
nEan 0.o0o0o000a0
standard dewviation 0.07703995

Moran I for Queen contiguity
Moran I-te=t for =patial correlation in residuals

Horan I 0.75377772
Moran I-statistic 13.19352364
Marginal FProbability 0.ooo0o00on
nEan —-0.00077381
standard deviation 0.05719105

Figure 7. Moran I-test for spatial correlation in residuals. Data set 1

Since maximum I-statistic equals 13.19 > 1.96 and marginal probability < 0.05, HO is rejected.
Data set 1 exhibits spatial autocorrelation.
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J Figure No. 3: Chosen Spatial Error Model

File Edit Wiew Insert Tools  Window Help

SEM. Rook contiguity

Spatial error model. Rook contiguity

Spatial error Hodel Estimates

F—=quared = 0.8963
Rbar—sguared = n.a271e

=igma” 2 = 0.0080
log-likelihood = 119 . 7551
Hobh=, HNwars= = 105, 21

¥ iterations= = 19

min and max rho = —0.9900, 0.9900
total time 1n =ecs = 12 . 5000
tinme for optimiz = 12 4060
time for lndet = 0.0470
tinge for t-=stats = 0.0320

Pace and Barrwv. 1999 MC Indet approximation used

order for MC appr = 50

iter for MC appr = 30

3636 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 336 36 3 36 36 36 36 36 33636 3 36 36 36 3636 33636 3 36 36 36 363633636 36 36 36 36 36333633636
Variable Cosfficient Asvymptot t—=tat z—probability
variable 1 0.556386 3.500220 0.000465
wvariable 2 0.610620 3.810299 0.000139
variable 3 0.496062 3.124914 0.001779
variable 4 0.565378 3.569394 0.000358
wariable § 0.565144 3.510501 0.000447
variable 6 0.621553 3.876994 0.000106
wvariable 7 0.536105 3.370423 0.000751
variable & 0.494001 3.087470 0.0020149
variable 9 0.539505 3.376443 0.000734
wvariable 10 0.556270 3.484327 0.000493
variable 11 0.5455549 3.406221 0.000659
variable 12 0.578033 3.629589 0.o00z2e4
wvariable 13 0.570765 3.576975 0.000348
variable 14 0.441921 2.750402 0.005952
wvariable 15 0.509667 3.201704 0.001366
variable 16 0.522103 3.297228 0.000976
variable 17 0.489028 2.057414 0.o02233
wvariable 18 0.524340 3.293395 0.000990
variable 19 0.579231 3.656501 0.000256
wvariable 20 0.512278 3.2259E56 0.001256
variable 21 0.521480 3.305288 0.0009449
lambda 0.942972 a7 .638991 0.ooo0oo

Figure 8. Best spatial regression model for data set 1 is SEM with Rook contiguity

In this case, the best spatial regression model is the spatial error model with Rook contiguity.
The model greatly improves R-squared from 9.25% for OLS to 89.63% for SEM. Compare other

results with standard OLS regression (Appendix 5).

Appendices 6 and 7 show results for data set 2.
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6. Discussion
As mentioned in section 4, there are many ways of selecting a spatial regression model. Here,
we considered four different contiguity regimes and two different spatial regression models
and simply compared results of every combination. To analyze the resulting regression model,

we reproduced some of the plots shown before for SEM with Rook contiguity. The plots are
illustrated below.

Surface plot of SEM+Rook fits Map of SEM+Rook fits

10

15

2 4 6

Map of SEM+Rook residuals | Chart of SEM+Rook residuals

0.8
0.6
0.4
0.2
0
-0.2
-0.4

Residual

20 40 60 80 100
Observation

Figure 9. SEM regression diagnostics: fit and residual plots for data set 1. (SEM with Rook contiguity)

Fits for each treatment equal the regression coefficient for that treatment indicator variable.
Because of this, the surface plot of fits has less high hills and low valleys. Residuals of the
model still exhibit heteroskedasticity. Despite of this, SEM does a better job than standard OLS
in finding better values for regression coefficients evidenced by its higher R-squared value, and
thus provides better estimates of treatment means. For comparison of regression coefficients
between OLS and SEM, see Appendices 5and 7.
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Appendix 1. Indexing and Data sets 1 and 2

Data set 1: greenhouse trials. 15x7 latice (Appendix 2)

Number of observations: 105
Number of treatments: 21
Number of replicates: 5 (A-E)

heated plots

17C 16C 15C 14C 18E 19E 20E
13C 12C 11C 10C 15 16E 17E
oC 8C 7C 6C 12E 13E 14E
5C 4C 3C 2C 9E 10E 11E
1C ocC 20B 19B 6E 7E 8E
18B 17B 16B 15B 3E 4E 5E
14B 13B 12B 11B OE 1E 2E
10B 9B 8B 7B 18D 19D 20D
6B 5B 4B 3B 15D 16D 17D
2B 1B 0B 20A 12D 13D 14D
19A 18A 17A 16A 9D 10D 11D
15A 14A 13A 12A 6D 7D 8D
11A 10A %A 8A 3D 4D 5D
7A 6A 5A 4A 0ob 1D 2D
3A 2A 1A 0A 18C 19C 20C

Data set 2: wheat field trials. 4x3 latice (Appendix 3)
Number of observations: 12

Number of treatments: 3
Number of replicates: 4 (A-D)

2D 3D 1D Block 4
1Cc 2C 3C Block 3
3B 1B 2B Block 2
1A 2A 3A Block 1
Indexing*
Dataset 1 Data set 2
15x7 Col 1 Col 7 Col 1 Col 2 Col 3 4x3
Row 1 99 105 10 11 12 Row 1
7 8 9 Row 2
: : 4 5 6 Row 3
Row 15 1 7 Plot 1 2 3 Row 4

*rows and columns according to Matlab matrix notation
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(greenhouse trials)

IX

15x7 matr

Appendix 2. Data set 1

R C PLOT TREAT REPLICATE YIELD TO T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T1l1l T12 T13 T14 T15 T16 T17 T18 T19 T20

15

10 0 0 0 0 O
0O 0 0 0 0 OO

0
0

0,172

0,255

0O 0 0 0 0 OO

0

0,303

18
19
20

0O 0 0 0 O 0O

0

0,282

0O 0 0 O0 1 0 O
0O 0 0 1 0 0O
0O 0 1 0 0 0 O
01 0 0 0 0 O

0
0
0
0

0,130

0,268
0,330

10
11
12

0,353

0O 0 0 0 O 0O

1

0,430

13
14
15
16
17

0O 0 0 0 O 0O
0O 0 0 0 0 OO
0 0 0 0 0 0 1
0O 0 0 O0 0 1 0

0
0
0
0

0,190

11

0,255
0,413

10

0,425

18
19
20
21
22

01 0 0 0 0 O

0

0,488

0O 0 0 0 O 0O

0

0,130

15
14
13
12

23
24
25
26
27

0O 0 0 0 O 0O
0O 0 0 0 O 0O
0O 0 0 1 0 0O
0O 0 0 O0 1 0 O

0
0
0
0

0,363

0,440

0,387

0,472

28
29
30
31
32

0O 0 0 0 O 0O

0

0,135

19
18
17

0O 0 0 0 O 0O
0O 0 0 0 0O 0O
0 0 0 0 0 0 1
0O 0 0 0 0O 0O

0
0
0
0

0,318

0,490

16

0,520

33
34
35
36
37

0,527

10
11

0O 0 0 0 0O OO

0

0,188

0O 0 0 0 O 0O

0

0,512

38
39
40

20
12

0O 0 0 0 O 0O
0O 0 0 0 0O 0O
0O 0 0 0 0O 0O
0 0 01 0 0 O

0
0
0
0

0,675

0,615

13
14

41

0,754

0,142

42

43

44
45

01 0 0 0 0 O

0

0,345

46

0O 0 0 0 O 0O
0O 0 0 0 O 0O
0O 0 0 0 O 0O
0O 0 0 0 0O 0O

0
0
0
0

0,498

15
16
17

47

0,642

48

0,633

49

0,180

10

50
51
52

0O 0 0 O0 O0 1 0

0

0,393

53
54
55
56
57

0O 0 0 0 O 0O

0

0,643

18
19
20
14
13
12

0O 0 0 0 O 0O
0O 0 0 0 O 0O

0
0

0,868

0,157

58
59
60
61
62

0O 0 0 0 0O 0O

0

0,428

11

0O 0 0 0 0O OO

0

0,518

0O 0 0 0 O 0O
0O 0 0 0 O 0O
0O 0 0 0 O 0O
0O 0 0 0 O 0O

0
0
0
0

0,740
0,117

63
64
65
66
67

18
17

0,277

0,488

16
15

10 0 0 0 0 O

0

0,630

68
69
70
71
72

0O 0 1 0 0 0O

0

1,048

0O 0 0 0 O 0O
0O 0 0 0 O 0O

0

0

0,288
0,498

20
19

73
74
75
76
7

0O 0 0 1 0 0O

0

0,627

0O 0 0 O0 O0 1 0

0

0,932

78
79
80
81
82

01 0 0 0 0 O
10 0 0 0 0 O
0O 0 0 0 O 0O
0O 0 0 0 0 0 1

0
0
0
0

0,435

0,463

0,550

0,648

10
11

83
84
85
86
87

0O 0 0 0 0O OO

0

1,135

0O 0 0 O0 O0 1 0
0O 0 0 O0 1 0 O
0O 0 0 1 0 0O
0O 0 0 0 O 0O

0
0
0
0

0,350

0,382

0,683

88
89
90
91
92

0,760

12

13
14
13
12

0O 0 0 0 O 0O

0

1,263

0O 0 0 0 O 0O

0

0,412

93
94
95
96
97

11

0O 0 0 0 O 0O
0O 0 0 0 O 0O
0O 0 0 0 O 0O
0O 0 0 0 O 0O

0
0
0
0

0,682

10
15
16
17

0,710
0,952

1,448

98
99
100
101
102
103
104

105

17

0O 0 0 0 O 0O

0

0,442

16
15
14
18
19
20

0O 0 0 0 O 0O
0O 0 0 0 O 0O
0O 0 0 0 O 0O
0O 0 0 0 O 0O

0
0
0
0

0,670

0,983

1,206
1,326

0

0

0

E
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Appendix 3. Data set 2: 4x3 matrix (wheat field trials)

R C PLOT TREAT REPLICATE YIELD TREAT1 TREAT2 TREAT3

4 3 1 1 A 6152 1 0 0
2 2 A 6222 0 1 0
3 3 A 6162 0 0 1
4 3 B 6018 0 0 1
5 1 B 6032 1 0 0
6 2 B 6267 0 1 0
7 1 C 5464 1 0 0
8 2 C 5507 0 1 0
9 3 C 5768 0 0 1

10 2 D 4935 0 1 0
11 3 D 5492 0 0 1
12 1 D 5887 1 0 0
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Appendix 4. Regression diagnostics continued. Data sets 1 and 2

Map of studentized deleted residuals Il Chart of studentized deleted residuals
3
2
1
0
-1
2 4 6 20 40 60 80 100
Cook’s distance Fits vs. Observations
1.2 ] 1.4 N
1 , 12 R
0.8 » R ‘
0.6 » 08l . .3 ’
06/°3" o e
0.4 e '.:: o® i % o I
0498 o 8 ° .
o2 o2ltle, V"L
20 40 60 80 100 0.4 0.5 0.6 0.7
Figure 10. Regression diagnostics for data sample 1, continued.
Map of studentized deleted residuals Il Chart of studentized deleted residuals
1
2
3
4
1 2 3 2 4 6 8 10 12
x 10€00k’s distance Fits vs. Observations
2 1 6000 e
15 1 °
1 ] 5500¢ o
0.5
N N 5000 , ‘
2 4 6 8 10 12 5750 5800 5850

Figure 11. Regression diagnostics for data sample 2, continued.
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Appendix 5. Results of SEM and OLS regression for data set 1

Mat-2.4177 Seminar on Case Studiesin Oper ations Resear ch
Kemira GrowHow: Adjusting estimates of treatment means

Spatial error Model Estimates

F-squared = 0.8971
Fhar-squared = 0.8726
sigmat2 = 0.0079

log-likelihood 120.63674
Hobs, Nvars = 105, 21

# iterations = 13

min and mex rho = -0.9900, 0.9%00

total time in secs = 0.2030

time for optimiz = 0.0630 Ordinary Least-squares Estimates

time for Indet = 0.0470 R-squared - 0.0925

time for t-stats = 0.0620 Bbar-squared = -0.1235

Pace and Barry, 1999 NC lndet approximacion used sigua*2 = 0.0875

order for MC appr = 50 Durbin-Watson = 1.1005

icer for HC appr = 30 Nobs, Nvars = 108, 21

AR RSN AN AE SRS AR AT ANENAIANENNNNANSLANEE sa st i e s R R R R E R R R E SRR E R RO EECEEEEOEEREEEOEREEREER R R R ER R R R SRR AR R R R ER R SRR R R D
Variable Coefficient Asymptot t-stat  z-probability wVariable Coefficient t-statistic t-probability
variable 1 0.559551 3.245282 0.001173 <arisble 1 0. 400000 3.023432 0.003314
variable 2 0.614160 3.536752 0.000405 yariasble 2 0.423333 3.199798 0.001941
variable 3 0.49901% 2.897536 0.003761 wvariable 3 0.436333 3. 298060 0.001429
EH”HW “ ”.”MMMWM “.M””M”M ”.”MNWM_ variable 4 0.449067 3.394306 0.001052
var [ ) f i i . i

Thif ek Iba  hamenr sewn wm oown
Eﬂwn_u_.n 7 0.539333 3.125088 0.001778 variable 7 0.421333 3. 184681 0.002034
HHHH “ “““HH“ M”HMH“ ””””H““ varisble 8 0.459733 3.474931 0.000811
variable 10 0.559211 3.229725 0.001239 Vveriable s e RARHN gl DGR
variable 11 0.548452 3.158865 p.00L5e4 Yorieble 10 0. 442333 9.343411 0.001230
variable 12 0. 580679 3.361620 0.000775 variable 11 0. 510667 3.859914 0.000222
varlable 13 0.573227 3.312342 0.000925 wvariable 12 0.642667 4.857647 0.000005
variable 14 0. 444000 2.550461 0.010758 variable 13 0.543000 4.104308 0.000094
wvariable 16 0.524514 3.052066 0.002273 Variable 15 0.612800 4.631897 0.000013
variable 17 0.490936 2.831876 0.004628 Varisble 16 0.542533 4.100781 0.000095
variable 18 0.526158 3.048052 0.002303 WVvariable 17 0.602733 4.555808 0.000018
variable 19 0.5682044 3. 386391 0.000708 variable 18 0.632167 4.778282 0.000007
variable 20 0.514620 2.987826 0.002810 wvariable 19 0.462667 3.497103 0.000754
variable 21 0.523246 3.056056 0.002243 wariable 20 0.592267 4.476694 0.000024
lambda 0.94795% 40.428592 0.000000 wariable 21 0.710933 5.373646 0. 000001
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Appendix 6. Moran % | test for data set 2

J Figure No. 2: Moran |-test for spatial correlation in residuals

File Edit “iew Insert Tools Window Help

MORAN |: reject HO of no spatial autocorrelation
Moran I for row contiguity

Moran I-te=t for =s=patial correlation in residuals
Moran I 0.67970672
Horan I-=s=tatistic 1.94472709
Marginal FProbabilitwy 0.06020979
nean o.ooooooon
standard deviation 0.34951265

Moran I for column contiguity
Moran I-te=st for =patial correlation in residuals

Moran I 0.51189349
Moran I-=tatistic 1.69775866
Marginal Probability 0.094407828
nEan 0.oooo00o0a0
standard deviation 0.30151134

Moran I for Roolk contiguity
Moran I-te=t for =s=patial correlation in residuals

Moran I 0.60207465
Horan I-=statistic 2.99886510
Marginal FProbability 0.00444696
nean o.ooooooono
standard deviation 0.20076750

Moran I for Queen contiguity
Moran I-test for spatial correlation in residuals

Horan I 0.52517729
Moran I-=tati=stic 3.76014389
Marginal Probability 0.00033942
nEan —-0.06574074
standard deviation 0.15715304
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Appendix 7. Results of SEM and OLS regression for data set 2

Zpatial error Model Estimates

F-zquared = 0.e660

Fhar-aquared = 0.5918

sigmatz = 49359, 9079

log-likelihood = -79, 6954

Naobz, Nwvars = 1z, 3

# iterations = 20

min and max rho = -0.9300, 0.9900

total time in secs = 0.1400

time for optimiz = 0.1090

time for lndet = 0.01la0

Pace and Barry, 1999 MC lndet approximation used

order for MC appr = a0

iter for MC appr = a0

o o e e e e e e i e i e e e e i e e i e i e el el e e e e e
Wariahle Coefficient AsymptoL t-ztat z-probability
wariahle 1 5835047256 15. 594030 0. oooooo
wariahle 2 L750.74804]1 15. 268620 0. oooooo
wariahle 3 E7a80.306827 15.338746 0. 000000
lanbda 0.525937 T.102903 0. 0oo0oo

Ordinary Least-squares Estimates

F-squared = 0,0294
Fhar-squared = -0.1563
Sigqmatz = 193594, 38589
Durhin-Watson = 1.1708
Naobs, Nwvars = 1z, 3

oo o e o o ol e e ol e e el e e e e ol e e el e el ol el ol ol e o o o

Wariahle Coefficient t-statistic t-probahility
wariable 1 5883.750000 Z68. 744706 0. 000000
wariahle Z 5732.750000 ZB.0558332 0. 000000
wariahle 3 5860, 000000 ZB.636750 0. 000000
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