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1. Introduction 

This study is part of the course �Mat-2.1477 Seminar on Case Studies in Operations Research� that 

is lectured by Professor Ahti Salo from the Department of Mathematics and Systems Analysis in the 

Helsinki University of Technology. The study was concluded in Spring 2008. The project aimed to 

design a layout for agricultural experiments that suffer from disturbances. The project team consists 

of five undergraduate students of the Faculty of Information and Natural Sciences. 

1.1. The Client 

Yara Suomi is one of the leading fertilizer and fodder phosphate manufacturers in Europe. It 

operates in close connection with farmers, breeders, grocery- and fodder producers, chemistry 

industry and distributors. Yara Suomi pursues to develop partnerships that benefit all the parties 

involved. In its operations Yara Suomi is concentrated in creating advanced and tailored products 

for crop cultivation, animal feed industry and other industries. 

Yara Suomi has 13 production facilities in eight countries as well as its own phosphate mine. The 

company�s products are sold in more than 100 countries and its net sales in 2006 were EUR 1,166 

billion. Yara Suomi employs around 2,100 people worldwide. In 2007 Yara International ASA, the 

largest fertilizer producer in the world acquired Kemira GrowHow and so Yara Suomi was founded. 

Yara has over 8,200 employees and its revenues for 2007 were 7,266 billion euros. 

1.2. The Challenge 

One important research method for Yara Suomi is to conduct field experiments. These experiments 

are made to find out the effects, different kind of factors and their levels have on plant breeding. 

These experiments are conducted indoor as well as outdoor. Examples of different factors and their 

levels could be: whether the crop has ailment prevention or not and the level of fertilizer used. 

Conducting these field experiments may involve disturbances that make the interpretation of the 

results more difficult or even impossible. The disturbances could be for example unequal sunlight 

for the plants, temperature alternations in the experiment or even wildlife. The problem these 
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disturbances make is that if a part of the experiment is ruined and it contains most of the specimens 

with a certain level of a factor, the analysis of the effect of this factor could become impossible. 

Our task is to develop an algorithm or criteria with what better layouts for these field experiments 

can be made. Better layout here means that if something distracts the experiment, the layout is made 

so that the analysis of the experiment can be conducted in best possible way. The assumption here is 

that the possible areas that may encounter disturbances can be evaluated to some extent. 

Our experiment planning algorithm should take the following aspects in consideration: number and 

the levels of factors in the experiment, the shape of the experiment area and other restrictions due to 

the arrangements of the experiment. It would also be useful if we could determine when the 

problems that disturbances cause can be avoided and when not, given certain experiment 

parameters.  

1.3. The Objectives of the Project 

Our research objectives have been formulated based on discussions with the representative of our 

client company as well as with our professor. Our main research objective can be stated as follows: 

This study aims to provide the theory and tools for designing more robust layouts for specimens in 

agricultural experiments. 

In order to accomplish this main objective, we define the following sub-objectives for our study. 

 

1. Literature survey. In order to better understand the restrictions and finer points of agricultural 

experiment design, we will conduct a review of the relevant literature. Although experiment design 

is an old subject and agriculture is a multi-billion dollar business, there are no existing models that 

could be directly applied to the problem in hand. However, studying the existing literature provides 

insight into possible solutions. 

2. Identification of risks. Initially we planned to attempt to identify the different kinds of risk 

factors that can affect the quality of agricultural experiments for our client company. However, we 
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realized that apart from some well-known issues such as the fragility of the edges of the area, 

identifying the risks beforehand would not be practical, feasible or possible.  

3. Mathematical model. We will describe the problem our client company is facing in 

mathematical terms by creating a model for the layout of their experiments. 

4. MATLAB-program. Our main contribution was creating a piece of software for numerical 

calculation program MATLAB which will enable the user to automatically generate good layouts 

for specimens depending on variables the user enters. This represents a significant improvement 

from the current practice of layout design at Yara. 

5. Quality. We define a measure for the quality of the layout of any given experiment. This will 

enable us to show the benefit of our solution compared to the current practice in our client 

company. 

1.4. Structure of the report 

The structure of the report is as follows. The report consists of four different sections. In section 2 

we present the state of the discussion and the implications for our research as identified in our 

literature review. Section 3 first presents the proposed solution that we ended up with and the 

alternatives that we evaluated. It also presents in detail the MATLAB program that we created and 

give a brief description of the results. The last section compares the results with the current practice 

and analyzes the success our success in fulfilling our goals. The report ends with a short 

consideration of possible subjects for future research. 
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1.5. Terminology 

Disturbances Any type of external event or influence that has an unintended effect on 

the results of the experiment 

. 

Experiment A test under controlled conditions that contains multiple specimens that 

are exposed to different levels of various factors. Designed to test the 

effect the factors have on their development 

. 

Factor  An intended influence on the experiment. 

  

Layout The plan according to which the specimens will be placed in the area 

designed for the experiment 

 

Level  A discrete state of a single factor. 
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2. Literature review 

2.1.  Introduction 

Agricultural field experiments have a significant historical role in the development of many modern 

scientific and statistical tools. Agricultural field experiments have been important way of verifying 

the test results when people have crossbred plants or developed new cultivating methods in order to 

improve the overall harvest.  Thus, agricultural field experiments are not a new research subject and 

there is plenty of literature available in the field. In addition, the problems related to agricultural 

experiments are quite common in other experiments too. Uneven environmental factors affect many 

kinds of scientific tests. Therefore much research has been conducted on experiment design. The 

innovator in the use of statistical methods in experimental design was Sir Ronald A. Fisher (1890-

1962) who first used analysis of variance as primary method statistical analysis in experimental 

design (Montgomery, 1976).  

Due to the historical nature of the problem most of the ground-breaking discoveries made in this 

area have been made decades ago and today some of them might seem quite self-explanatory. The 

applications developed in agriculture and biology have been afterwards applied to numerous 

research areas. Even though one could say that we take one step backwards from the latest research 

in our study, the case specific circumstances make this problem really interesting. The main 

difference between theoretical methods derived from the literature and our case is that usually every 

specimen is assumed to experience the same environmental effects or at least local changes in these 

effects are completely random. In our case we have some predetermined assumptions how the local 

disturbances might behave in the field experiment. 

In many experiments, there are some case specific features which make it impossible to simply 

follow some literature based design method exactly. One has to apply the methods suggested by the 

literature as best as possible to the experiment under review. This applies to our problem too. 

Therefore it is really important to understand the different theoretical methods and their up- and 

downsides and then consider how well each one of them applies to this particular problem and 
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which ones to choose. 

2.2. Reducing experimental error with plot design 

Traditionally the main objective in agricultural field experiments has been the comparison made 

between the newly developed variety and the well-known standard variety. There are two issues to 

be considered: 

1. Is the yield of the new variety superior to that of the old? 

2. How large is the difference between the varieties? 

As mentioned before researchers have developed many scientific and statistical methods in order to 

verify these questions. If the data was perfect this job would be very straightforward. But in real 

experiments there is always some experimental error that must be taken into account. Actually, one 

of the goals of modern experimental design is to provide a measure for experimental error. Another 

goal is to reduce experimental error as much as possible within the limitations of the resources that 

can be committed to the experiment. In this study we are particularly interested in how we can 

reduce the experimental error by different plot designs. 

In his book �Agricultural Field Experiments� Roger Petersen lists few general considerations that 

should be considered when making the plot design. First of all, many studies with plots of different 

shape have indicated that long, narrow plots are to be preferred. Plots of this shape are usually more 

economical for such field operations as seeding, tillage, cultivation, and harvest. In general, if there 

is fertility or other gradient in the field, the plots should be oriented with the longest plot dimension 

in the direction of the greatest variability. This justifies our decision to focus on only rectangular 

plots.  (Petersen, 1994) 

The second important consideration concerns the borders of the plot. Plants along the edges of plots 

often perform differently than those in the center of the plot. Reasons for this are that outer 

boundaries have an advantage over interior plants as regards competition for air, sunlight nutrients 

and moisture. In addition when studying plants with different treatments there is certain spill-over 

that affects the plants on the borders. The machinery is usually not precise enough to keep the 
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treatment only on the specified area. Normal way of dealing with this is to exclude the borders from 

the study and look only at the plants in the center. This of course is usually applicable only in large 

scale outdoor studies. In our study we have give extra attention to assigning the specimens along the 

edges. (Petersen, 1994). 

2.3. Theoretical methods for plot design 

In this section we study some of the methods used when conducting agricultural field experiments. 

The aim of this review is to find support for our algorithm design. We are going to study closer the 

following experimental design methods: Completely randomized design, Randomized Block 

Design and Latin Square Design. The following results presented are mainly based on Petersen�s 

book (Petersen, 1994). 

2.3.1. Completely Randomized Design (CRD) 

In CRD the treatments are assigned to the plots completely randomly and without any restrictions. 

This means that each plot is equally likely to be assigned to any of the treatments. The CRD has 

many advantages, disadvantages and uses considering experiment design. 

Advantages 

• Flexibility.  Any number of treatments and replications of them may be used. The number of 

replications need not be the same for every treatment, although the best experimental results 

are obtained when treatments are equally replicated. 

• Simple statistical analysis. Even with unequal replication of the treatments the analysis is 

not complicated. This is not the case when using more complex design methods.  

• Missing plots. The analysis does not get more complicated if some of the plots are unusable. 

• Maximum error degrees of freedom (df). This method provides the most error df than any 

other design method with equal number of treatments and replications. 
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Disadvantages 

• Low precision if the plots are not uniform. This is often the case with our client, since 

different external factors affect the experiment so that the plots cannot be treated as they 

have uniform substrates. 

CRD is a very useful method for conducting agricultural field experiments if the circumstances for 

it are appropriate. The experimental area should be relatively uniform and thus the effect of external 

factors to the experiment minimal. If a large portion of the plots in the experiment may be lost CRD 

is a viable option since analysis of the data remains relatively simple. If the number of plots is 

limited CRD offers the maximum amount of df for error and thus makes it a good choice for 

experiment design. 

Design construction 

In CRD there is no restriction on the assignment of treatments to plots. The only stipulation is that 

any treatment is equally likely to be assigned to any plot. Let us assume that the experiment is made 

in such way that each treatment is equally replicated. This is the case in most agricultural 

experiments. If the number of different treatments is p  and each treatment is repeated k  times the 

total of plots in the experiment is kp * . Now that we know the number of plots in this particular 

experiment we can randomize the treatments to each plot. One might use for example random 

number generators of Matlab to do this. Figure 1 presents one experiment design generated with 

CRD. In this example there, are 3 treatments and each treatment is replicated 4 times. Here the letter 

indicates the treatment applied to the plot. 
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Figure 1: Field plan generated with CRD  

Use of CRD with our problem setting 

The biggest drawback of CRD is the fact that it does not perform very well if the circumstances of 

the experiment are not uniform. At the moment, Yara Suomi is using a somewhat modified 

procedure of CRD. The problem with CRD is that the placement of the treatments is totally random. 

If we for example know that in the experiment setting described in the Figure 1 the upper part of the 

experiment area (plots 1-4) is very likely to be lost or affected by certain external factors. This 

would mean that when using CRD this fact would be neglected and the upside of the experiment 

could contain all plots treated with some treatment. If it for example contained all the samples with 

treatment A the whole experiment could be useless. When the circumstances of the experiment are 

uniform CRD is a good choice of experiment design, but if external disturbances to the experiment 

are expected in certain areas it becomes less efficient. Our proposed solution is based on a 

replicated CRD procedure. 

2.3.2. Randomized Block Design (RBD) 

The randomized block design is the design most often used when performing agricultural research. 
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It is almost as simple to use as the CRD, yet it provides an opportunity for increased accuracy. In 

RBD the plots are first classified into groups, or blocks, of plots that are as nearly alike as possible. 

The treatments are then assigned to these plots so that each block contains the equal amount of any 

particular treatment. Usually the treatments are replicated once within a block. The object of RBD 

is to minimize the variation within plots in the same block and to maximize the variation between 

blocks. This is why it is essential that the plots within a block are as alike as possible and they are 

treated as equally as possible (techniques, equipment etc).  

Blocking Considerations 

There are a wide number of criteria on which plots may be grouped into blocks. It is studied that in 

field experiments neighboring plots tend to perform more nearly alike than do plots that are 

separated from each other. If other source of variation can not be detected the blocks may be formed 

from a square and compact group of adjacent plots. One study suggests that grouping plots into 

blocks in this manner increases the efficiency of the experiment design by 5% compared to the 

CRD. Thus, if a clear source of variation outside the experiment design can not be detected CRD is 

almost as good a choice for experiment design than RBD. If fertility, sunlight or any other gradient 

exists in the experiment the blocks should be long and narrow, with the long axis perpendicular to 

the gradient. This principle is illustrated in the Figure 2. In some cases it could be a good choice to 

have the blocks being completely separated from each other. This is the case for example if the 

experiment is conducted outdoors and the effects of some physical features (roads, trees, bridges 

etc.) should be avoided. To succeed in performing in RBD it is essential that each block gets as 

equal treatment within the plots in it as possible. This mean that it is preferred that the machines, 

labor etc. used within a block should be the same during the entire experiment. Once the blocks are 

formed they should be treated as individual units. The plots within blocks and treatments assigned 

to them can be done randomly, like in CRD. 
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Figure 2: Placement of blocks with respect to gradients  

Advantages 

• RBD can remove one source of variation from experimental error and thus increase the 
precision of the experiment 

• It can broaden the scope of the trial by placing blocks under different conditions 

• Any number of treatments and blocks may be used. The only restriction is that each 
treatment is equally replicated within a block. 

• Statistical analysis of an experiment designed with RBD is fairly simple. 

Disadvantages 

• Missing data can cause some difficulty in the analysis. One or two plots missing can be 
handled fairly easily, but several missing data can cause real problems. 

• Assignment of treatments by mistake to plots in the wrong block can lead to problems in the 
analysis 

• RBD is less efficient design method than the others if there are more than one source of 
unwanted variation 

• If the plots are uniform CRD is more efficient than RBD 
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Uses of RBD 

• It can be used to eliminate one source of variation (fertility of the soil, sunlight etc). Often in 
such situations The RBD provides satisfactory precision without more complex design. 

• It provides unbiased estimates of the means of the blocking factors. Hence these means can 
be estimated using RBD. 

Use of RBD with our problem setting 

In our problem setting there are often sources of undesired variation such as unequal sunlight or 

differences within the soil. If it is known that there is primarily one source of variation and its 

effects to the experiment are known our algorithm could have used a modified RBD. The problem 

with RBD and our problem is that there can be several sources of unwanted variation. This makes 

the direct use of RBD in our solution impossible and hence we rejected the idea of implanting RBD 

directly in our solution proposal. However we decided to use some concepts of RBD in our final 

solution.   

2.3.3. Latin Square Design (LSD) 

Latin Square design is an experiment design method that is more restrictive than CRD or RBD.  In 

LSD the number of plots in the experiment is the square of the number of treatments p . In this 

design the 2p  plots are first grouped into p  groups of p  plots, on the basis of one blocking factor 

(row grouping). The plots are the grouped into p  groups of p plots (column grouping). Treatments 

are then assigned to the plots so that each row and column includes only one certain treatment. The 

basic idea of LSD is shown in figure 1.3, where the letters indicate the treatment applied to the plot. 

In this example p = 4. By blocking on two sources of variation LSD sometimes offers significant 

reductions in the experimental error compared to that of RBD.  
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A B C D 

B C D A 

C D A B 

D A B C 

Figure 3: Basic arrangement of a 44 ×  Latin Square 

Advantages 

• It allows the experimenter to control two sources of variation 

Disadvantages 

• If there are only few treatment the error degree of freedom is small 

• The experiment gets very large if the number of treatments increases (quadratic dependence 
on p ). If p  = 10 the number of plots used is 100. 

• The statistical analysis gets complicated by missing plots and misassigned treatments.  

Uses 

• It is useful if two source of variance has to be controlled 

• For practical reasons its use has usually  been restricted to trials with [ ]10,4∈p  

The Latin Square design can be used to remove the effect of two gradients. For example if fertility 

changes and the effect of sunlight are at right angles to each other we could use the experiments 

setting in Figure 3. Let us assume here that the Fertility increases when going from left to right in 

the experiment and the amount of sunlight increases when moving from up to the bottom of the 

experiment. In this kind of experiment environment Latin Square is a very viable option 
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for experiment design, since with it the effects of outside gradients (sunlight and fertility in this 

case) to the experiment can be significantly reduced. 

2.3.4. A Simple randomization procedure  

Let p = 4 for this experiment example. The randomization procedure proceeds the following way 

(here the alphabets represent different treatments): 

1. First row in alphabetic order 

2. Subsequent rows with letters shifted one position to the left of the one in the row 

immediately above 

3. Randomize the order of the columns (for example 3, 1, 4, 2) 

4. Randomize the order of the rows (for example 1, 4, 2, 3) 

The procedure is presented in the Figure 4. 
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Phases 1, 2 

A B C D 

B C D A 

C D A B 

D A B C 

Phase 3 

C A D B 

D B A C 

A C B D 

B D C A 

Phase 4 

C A D B 

B D C A 

D B A C 

A C B D 

Figure 4: Example of randomizing a Latin Square Design 
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Advanced Latin Square designs 

Researchers have developed more advanced designs that utilize the principles of Latin Square 

design. One such method is Graeco-Latin Square Design. In this method one can combine two Latin 

Squares with each other. This design allows us to add another factor in the same study. Actually it is 

possible to combine multiple Latin Squares together and so add even more factors in the design. 

However, even the simple Graeco-Latin Square Design carries significant disadvantages. First, the 

design does not allow you to replicate any treatment combinations but each Graeco-Latin 

orthogonal pair is unique. Secondly, there are significant logical restrictions in the use of these 

methods. For example there just is not a Graeco-Latin Square available for a matrix of 6 x 6. For 

higher level designs these problems become even more severe. (Montgomery (1976), Cox (1958) ) 

Use of Latin Squares with our problem setting 

We can not use the Latin Square methodology directly in our algorithm design, since the nature of 

our problem is so diversified. There are some aspects we can consider when developing our 

criterion for more robust experiment designs. When for example we know that there are two outside 

factors disturbing the experiment then it might be a good idea to apply LSD, but we decided to 

make our solution such that it could perform well enough no matter what the number of the outside 

disturbance sources. Our most important lesson from this design method is concept of how to adjust 

if there are two outside factors affecting the experiment. 

2.4. Conclusion  

The literature review does not provide us a model that could be used as such to assign the 

specimens to a plot. However, we found a lot of interesting material on agricultural field 

experiments which we can utilize in solving the problem. First, we found some theoretical 

considerations about the plot shape and border effects. Secondly we found many methods which 

can be used as the basis for our algorithm. None of the methods fit perfectly to this case but 

combining the best features of each method, we can develop a relevant algorithm for assigning the 

specimens. 
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3. Results 

3.1. Proposed Solution 

3.1.1. Ideology 

There would have been many different ways to try to find the solution for our problem and they are 

presented in section 3.2 Alternative solutions. After deliberation we decided to pursue the following 

methodology for our solution. Our approach was to use a brute force technique, which creates 

alternative, completely random and independent layout suggestions. For these suggestions we then 

calculate a criterion with what we can identify the most promising layout suggestion. To help us 

determine whether our criterion really is relevant we also decided to study the layout suggestions 

which our criterion suggested to be the worst. 

3.1.2. Implementation 

We implemented our solution with MATLAB. The process of creating a layout is following. The 

user must first decide the factors he/she wants to study. After that the number of levels of each 

factor has to be identified. Then the user has to decide how many replications of different 

combinations will be used. After this the user defines the shape of the experiment area (It was 

agreed with the client to be rectangular). Now all the data required has been defined and the user 

can create a layout for the experiment. Our implementation of this problem assumes that all the 

possible combinations of the factors and their levels will be used in the experiment. In reality the 

case always is not so but it was agreed with the client that we focus on the case where all the 

possible treatment combinations are studied. However the criterion we have developed is not 

depended on whether or not all the different combinations of the factors and their levels are used in 

the experiment or not. 

3.1.3. Definition of the criteria used 

The most important part of our study was to create a criterion which would find good enough 

layouts for the experiment. After discussions with our client, we decided to pursue a criterion which 

would generate more robust layout suggestions to outside disturbances than the client�s present 
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methodology. We previously considered that the user could define the most likely areas to be 

disturbed by outside factors. Due to discussion with the client we decided to reject this idea, since 

the areas being affected by outside factors are not usually known.  Our goal in this project has not 

been trying to find some kind of optimal layout design, we have settled to finding a good enough 

one.  

We decided to use a penalty function to evaluate, whether or not a certain layout is a good candidate 

for the specific experiment. This penalty function studies all the different factors and their levels. It 

takes into consideration how close the similar levels of each factor are in the experiment, how many 

levels are in each factor and it also takes into consideration the location of different treatments in 

the experiment. It then calculates the criterion with what the layout can be rated. Forming of the 

criterion goes as follows: 

m , the number of factors studied. 

[ ]mm ccccC 121 ... −= , vector that shows the number of levels each factor has. 

mCRA ** , is a three-dimensional matrix that includes all the treatments of the specimens expressed as 

integers. It has R rows, C  columns and the third dimension m  represents the number of factors 

studied. So each factor has its own �layer� in the matrix. R  and C  are defined by the person 

conducting the experiment, they define the shape of the experiment area. It should be remembered 

here that the lower the value of the criterion is, the better the layout. 

The value of the criterion Q  is calculated with the following equation: 
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 represents the sum of all the factor levels. 

jkh  represents the penalty calculated for every element of certain factor in A  (here the matrix A  

can be treated as a 2-dimensional matrix since the calculations are performed only on one level of 

A  at a time ). jkh  is calculated as follows (pseudo code representation (2)-(6)): 

0=jkh              (2)     

( ) 75,0)1,1(),( +=⇒++== jkjk hhkjAkjAif           (3) 

( ) 75,0)1,1(),( +=⇒+−== jkjk hhkjAkjAif           (4) 

1)(:1: −++= iCjjnfor             (5)  

 ),(),(: knAkjAif =  

  Ckkif ==== ||1:  

  1*1 d
jn

hh jkjk −
+=  

  
jn

hhelse jkjk −
+= 1:  

1)(:1: −++= iCkklfor             (6) 

 ),(),(: ljAkjAif =  

  Rjjif ==== ||1:  

  2*1 d
jn

hh jkjk −
+=  
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jn
hhelse jkjk −

+= 1:
 

where 

21, dd  represent the weight put on the criterion if we are studying the borders of the experiment. 

Hence if the borders contain similar treatments close to each other it is penalized more than if they 

were in the middle of the experiment area. Naturally it has to hold that: 1, 21 >dd .  In our proposed 

solution we set: 5,2, 21 =dd . We came to this value through simulations with various different 

values of  1d   and 2d .  

jkd  represents the closeness of every treatment combination. It is calculated similarly as jkh except 

the input matrix is not a certain level of matrix A . The input here is a CRB ∗  matrix that contains all 

the different treatment combinations expressed as integers (the only thing that matters is that 

treatments can be separated from each other). Let ∏
=

=
m

i
ict

1

represent the number of all the different 

treatment combinations. Let B  be the matrix that contains all the different treatment combinations. 

jkd  is calculated as follows (7)-(11): 

jkd =0              (7) 

( ) 75,0)1,1(),( +=⇒++== jkjk ddkjBkjBif           (8) 

( ) 75,0)1,1(),( +=⇒+−== jkjk ddkjBkjBif           (9) 

1:1: −++= tjjnfor           (10)  

 ),(),(: knBkjBif =  

  Ckkif ==== ||1:  
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  1*1 d
jn

dd jkjk −
+=  

  
jn

ddelse jkjk −
+= 1:  

1)(:1: −++= iCkklfor           (11) 

 ),(),(: ljBkjBif =  

  Rjjif ==== ||1:  

  2*1 d
jn

dd jkjk −
+=  

  
jn

ddelse jkjk −
+= 1:

 

Where 

21, dd  are defined similarly when calculating jkh . 

3.1.4. Interpretation of the criterion used 

The following section tries to justify the choices made when developing the algorithm. The 

relevance of the criterion is also being vindicated.  

Let us take a look at part (1) of the criterion and especially the meaning of )(iC . It can be seen that 

the more levels the factor has (the higher the )(iC ) the more significant the factor becomes in 

defining the goodness of the layout. We decided to emphasize our criterion this way because the 

more a factor has different levels, the fewer replications of each level there are in the experiment. 

So it is justified that factors with many levels are more randomized than factors with less levels and 

more replications. 
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Here the justification of the parts (3) and (4) is discussed. Due to our literature survey and 

discussions with our client it became clear that if agricultural experiments are being influenced by 

outer factors they usually tend to have a local impact. Hence we decided to penalize the studied 

layout if there are replications of certain factor level lying diagonally. For example from Figure 5, it 

can be seen that in the best layout and its first factor (upper left corner subfigure) the specimens in 

places (2,1) & (1,2) have different levels of  factor 1. Hence it is not penalized for this. But when 

you look at the worst possible layout in this example and that respective specimens you can see that 

specimens in (2, 1) & (1, 2) do indeed have the same levels of factor 1 and hence this layout is 

penalized for it. 

The justification of parts (5) & (6) is being presented here. In these parts of the criterion it is studied 

that how close to each other different replications of factor levels are in the experiment. The study is 

conducted for every specimen and it is conducted horizontally and vertically.  If there are n  

different levels of certain factor the specimens lying at the distance 1−n  or closer are studied. If 

there are specimens that contain the same level of certain factor than the specimen studied then the 

layout is being punished according to the distance between the studied specimen and the one with 

the same factor level. As mentioned earlier these studies are conducted vertically and horizontally. 

For example if you look at the best and worst layout suggestions and their first factor. It has 4 

different levels (4 colors). Take a look at the specimen in place (1,1) from both layouts. Then the 

studied specimens are (1,2�n = 2�4) & (2�n =2�4,1). Now if you look at the best layout you 

can see that all the specimen studied horizontally have different levels of factor 1 than the specimen 

in (1,1) (this picture illustrates that ).  Hence there will be no penalty 

assigned to this layout from this study. If you look at the vertical study you can see that the 

specimen in (1,1) has the same level of factor 1 than the specimen in (4,1). Hence the penalty from 

this study is 1/3. If you conduct the same calculations for the specimen in the worst layout and place 

(1,1) the penalty is going to be 1 horizontally and 1 vertically and 2 total. From the definition of (5) 

& (6) it can be seen that the closer the specimen with the same factor level is, the bigger the penalty 

will be which is only natural.   

The reasoning with parts (7)-(11) of the criterion is similar with the previous one. It should be 
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noticed that here we study the whole layout instead of a certain factor layer. Even though it is most 

important that the different factors would be as random as possible, we sought to penalize the layout 

if the replications of different treatment combinations were too close to each other. It should be 

evident that if all the replications of a certain treatment combination were to be lost it could affect 

the success of the experiment drastically. We decided to emphasize this part of the criterion with the 

sum of all factor levels. This is done to balance the effects of using )(iC  as the coefficient in the 

other section of Q . The effect of this part of the criterion usually isn�t as high as the effect of the 

part that studies the different factor levels. This results from the fact that there are more treatment 

combinations than factor levels if there is more than one factor.  

The validation of our criterion is not very simple. The best way to see if a certain layout is a good 

one is to look a graphic illustration of it. The Figure 5 represent a part of the solution the user gets 

when using our solution. In this example the shape of the experiment area is a square (6*6). The 

number of different factors is 2, the first factor has 4 and the second one 3 different levels. There 

are the 12 different treatment combinations and 3 replications of each. Our solution prints out the 

best and the worst solution according to our criterion.  If you look at  Figure 5, the first factor 

(upper row of pictures) is more randomized in the best layout suggestion than in the worst. The 

difference between these layout suggestions is even clearer in the case of the second factor (second 

row of pictures). Here the second factor is more randomized in the best layout suggestion. The 

figures best layout and worst layout show how close the different treatment replications are to each 

other. In this case, it can also be seen that the treatments in the worst layout are closer to each other 

(for example the right side of the layout) than in the best one. So the relevance of our criterion can 

be rather seen than calculated. 

In our solution, we have used a benchmark which defines how many different solutions our 

algorithm generates at most. Running our test we have seen that in most cases 200000 layout 

suggestions is enough.  Our algorithm does not necessarily create all these. It stops if the best 

solution has not changed for 0,1*benchmark=20000 iterations. This speeds up our algorithm a little. 

In Figure 5 the lowest subfigure is the distribution of our criterion Q  for different layout 

suggestions.  When the user creates a layout suggestion for an experiment, our solution checks 
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whether the distribution of Q  is normal (this seems to be the case if the number of iterations is high 

enough). If Q  is normally distributed then a value is calculated which tells the probability of a 

better solution to occur (according to our criterion) if a random solution is selected instead of our 

solution. In the case represented in Figure 5 the probability of a better solution to occur if created 

randomly is 0,024%. This indicates that because our criterion can be considered to be relevant, our 

algorithm creates meaningful and good enough layout suggestion for agricultural experiments. 
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Figure 5: Distribution of the criterions. 
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3.2. Alternative solutions 

During the process of developing our final algorithm, we thought about many other alternatives. 

Here we have analyzed some of these alternatives and why we chose the previously presented 

algorithm as the final one. Each of these alternatives has some features that are better and some that 

are worse than our final algorithm. However, when looking at the whole picture the final algorithm 

was considered the best. 

3.2.1. Approach base on optimizing 

Perhaps the most fundamental decision concerning the algorithm was that we did not try to find the 

optimal plot design but looked for a good enough one. The fundamental difference is that this 

decision enabled us to randomly generate plot designs and work with them instead of changing the 

matrix one element at the time and looking for the optimal design. We discussed this approach with 

the client and the guiding professor and we all agreed that in this problem there is no need to find 

the global optimum since a design that is good enough will do just fine. The alternative would have 

been to express the measure of goodness as a target function and let the algorithm change the matrix 

one element at the time when looking for the optimal value. The negative side of this approach 

would have been that it is very time consuming. When we add treatments, factors and replications 

the size of the plot area increases heavily which extends calculation time. At least with more 

complicated design the running the algorithm would have been painfully slow. This combined with 

the fact that there is little practical difference between good enough and optimal layout, we decided 

to abandon this. Perhaps if the design is kept simple enough with relatively low level of different 

factors this approach could be useful. 

3.2.2. Approach based on block design 

One alternative that we considered was an approach that based on the block design discussed in the 

literature review. In this approach the algorithm would have divided the plot area into to smaller 

plots. Then these blocks are mixed properly and combined together, and as a result the whole area 

would be mixed well enough. The advantage of this approach would be that we could easily divide 

the problem into sub-problems and so ease the calculation process. The drawback is that when we 
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combine the mixed blocks there might be some unwanted concentrations of specimens on the edges 

of the blocks. We tried to overcome this problem by choosing the blocking randomly and blocking 

the same matrix many times. However, soon we realized that if we do the blocking procedure too 

many times we might as well calculate the criteria for the whole plot in the first place. Again we 

decided to leave the blocking method as such out of the model since in the end it did not deliver the 

advantages we thought it could. However, the final algorithm does give the borders a special 

attention and this is an application of block design in some sense. The blocking method could prove 

to be really time efficient in cases where the plot size would be large and the number of treatments 

relatively low. 

3.2.3. Approach based on Latin Squares 

The two main problems with Latin Squares with our problems were that first Latin Square is shaped 

as a square by definition and the number of factors allowed is highly restricted (look for literature 

review for additional information). We wanted to enable the user to define the size and shape of the 

plot area quite freely. In addition number of replications, factors and factor levels should be chosen 

freely. Therefore the Latin Square does not work that well here. However, the same principle that 

every specimen should occur just once in one row and one column could be applied here. When the 

plot shape is changed or multiple factors included in the design (and experiment still done with full 

representation of specimen) it will be impossible to get exactly one specimen on corresponding 

rows and columns. But the idea could be applied so that each row and each column should include 

the expected number of each specimen. For example if you have 4x3 plot and you have 6 different 

specimens and two replications. Then for each row you should have 4/6 = 0.67 of each specimen 

and on each column respectively 3/6 = 0.5 specimens. By comparing the values of a certain plot 

design with these expected values, you can say how close to the optimal this particular design is in 

the spirit of Latin Squares. This approach has strong theoretical background and for small plots it 

works reasonably well. Of course, if you run the algorithm on a square plot (with correct amount of 

replications) the expected values are 1 and the optimal design is a Latin Square, which is usually 

considered quite optimal.  

However, the negative aspect of this method is that it doesn�t take into account how the specimens 
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lay on the row/column. This becomes a problem when the plot size is large and the expected value 

of specimens on a row is greater than one. For this algorithm, it is equally good if the two similar 

specimens on the same row are next to each other or if they are far away from each other. From our 

point of view, this is clearly not the same because the situation where the two similar specimens are 

next to each other is far worse than the other. The problem becomes even more severe when we 

start to look at the layout on a treatment level. We want to mix the layout in terms of different 

specimens but also in terms of all factors. If some factor has only two different treatments it is clear 

that there will be large number of similar treatments on each row and column. In such cases this 

approach will become blind to the differences between the layouts. However, this approach showed 

us that it has great potential. First of all, it is very simple and fast to calculate and thus the number 

of evaluated random designs could be increased substantially. In addition, it would seem to work 

quite nicely with smaller plots and on the upper level, where only different specimens are 

considered (enough different treatments). When the plot size increases and there is a need to look at 

the layout in terms of different factors this method proves to be too approximate. 

3.2.4. Approach based on distances between similar elements 

This approach is really close to the final method we chose to use. Here, instead of looking if a 

specimen has another similar specimen next to it, we would calculate its distance from other similar 

specimens. By doing this for all specimens we would acquire a measure of how far the similar 

specimens are from each other on average. By looking at this figure we could say if the layout is 

scattered enough. The positive side of this method is that it is quite intuitive and the goodness 

measure would have simple meaning: the average distance between two similar specimens. On the 

negative side this would be relative slow since one would have to calculate all the distances 

between matrix elements. By increasing the plot size and the number of measured layout the 

algorithm could prove to be too slow. However, the biggest problem with this approach is that as 

such it would not have enough emphasis on small distances. For example a �violation� of distance 

of only 1 could be neutralized to 3 by changing some other distance from 9 to 11. Surely from our 

point of view it doesn�t matter at all if the specimens are at a distance of 9 or 11, but a distance of 1 

is unacceptable. As a solution to this problem the distances could be weighted so that close to zero 

would have large effect and for example higher than 5 wouldn�t matter at all. The weighting 



 

 

 

 

29

process would of course add one more level of complexity in the model. Actually at this point we 

had the final idea for the model. Why do it so complicated if we are actually only interested if the 

nearby elements are not the same specimen. Thus, the final model is a kind of special version of this 

approach, where only the nearby elements are analyzed. However, this method could become handy 

if the possible disturbances would be really large and of all shapes (also long narrow disturbances 

possible). Then it could be wise to optimize the overall distances between similar specimens. 
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4. Discussion 

In this section we elaborate on the benefits of our solution to our client as well as on our experience 

of working as team on a project of this scale. 

4.1. Analysis of Impact 

In order to examine the impact of our solution, we defined our own measure for the robustness of an 

experiment layout in the face of unexpected disturbances. As described earlier, this quality measure 

was a sum of penalties which a specific layout incurred if similar treatments were placed close to 

each other. Thus a low score would imply that a local disturbance will be less likely to affect 

similarly treated plants, whereas a high score indicates vulnerability. 

An example of the benefits of our solution can be seen in Figure 6. There the task was to arrange 3 

treatments with 2, 3 and 3 levels each onto an experiment area with 36 slots for specimens. Thus 

each unique specimen type was represented twice. The first six graphs represent the individual 

treatments in this scenario, with the top ones showing how the specimens were distributed in 

relation to the first treatment, the next two showing how they were distributed in relation to the 

second treatment and so on. The left hand figure always shows the best possible solution found 

through the simulation process, whereas the right hand figure shows the worst case scenario that 

was encountered during the simulation. 

The plot at the bottom of the picture shows the distribution of quality encountered during the 

simulation run. In this case all the scores encountered are between 400 and 600, and our 

recommended solution is the layout with the very best score. The colorful pair of figures at the 

bottom of the picture shows the distribution of the specimens in relation to all treatments, i.e. how 

the unique specimens are distributed, again with the best one found being on the left and the worst 

one on the right. It is these figures that offer the most insight into the value of our solution, since at 

first glance both appear to be well scattered with no clear clusters of identical specimens. However, 

by looking at our measure of quality and by examining the individual treatment-pictures, it is 
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obvious that the layout on the right is far inferior. This is exactly the kind of situation where a poor, 

albeit initially robust-appearing layout may have been chosen. Thanks to our solution, the true 

robustness of the layout is revealed, thus enabling more informed decisions from our client. 

 

Figure 6: The results from our program. 

With the new layout tool, our client�s experiments should be far more robust, meaning fewer 

experiments will need to be repeated due to the loss of similar specimens. This will not only save 

our client�s expenses by reducing the number of experiments, but also increase the speed with 
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which research can be studied and also the reliability of the results. 

4.2. Success of the project 

In general the project can be considered a success. Through teamwork we attained the objectives set 

out at the beginning of the project in a timely fashion, and our team met and worked together in a 

pleasant and productive atmosphere. Our project manager handled our communications toward our 

client and organized meetings making sure we had ample time to attain our objectives. 

4.2.1. Timetable 

At the outset of the project we set a timetable for ourselves, which can be seen in Table 1. 

Table 1: Timetable 

   Week 6 7 8 9 10 11 12 13 14 15 16 17 18

Planning Initial meetings with stakeholders                           

  Defining the problem                 

  Initial Research                 

  Making the project plan                           

                

Research Literature survey                           

  Risk analysis                  

  Modeling the problem                           

                 

Problem 
solving Programming MATLAB                           

  Testing the program                 

  Formulating quality indicator                           

                 

Reporting Project plan reporting                           

  Mid-term reporting                

  Final reporting                           

Our team managed to stick to this schedule very well, as almost no changes were required, nor were 

we in a real hurry at any stage of the project. In fact the only change made was a positive one, as the 
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literature review was finished earlier than planned, enabling more focus on the MATLAB-

implementation of the project. 

4.2.2. Goals 

In our original research plan, we defined certain objectives for our study. I will now examine how 

these objectives were accomplished. 

1. Literature survey. In order to better understand the restrictions and finer points of agricultural 

experiment design, we will conduct a review of the relevant literature. 

A thorough literature review was conducted, and although we did not directly use any of the 

methods from earlier studies, the review did provide us with an understanding of what the 

possibilities in this field were. The study will also provide a practical handbook for our client to use 

as a summary of existing literature. 

2. Identification of risks. We will attempt to identify the different kinds of risk factors that can 

affect the quality of agricultural experiments for our client company. 

Through discussions with our client we uncovered various threats to their experiments including 

uneven exposure to the sun, uneven irrigation and rampaging moose among others. Although these 

did not play a direct part in our solution, they did help our understanding of the problem. 

3. Mathematical model. We will describe the problem our client company is facing in 

mathematical terms by creating a model for the layout of their experiments. 

Our description of the problem was a function of the proximity of similar specimens, which is both 

easily understandable and functional. 

4. MATLAB-program. We aim to create a piece of software for MATLAB which will enable the 

user to automatically generate good layouts for specimens depending on variables the user enters. 

Our MATLAB-program is delivered ready-to-use, with several adjustable features and with enough 

flexibility for future improvements. The program produces clear visual tools for the placement of 
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the specimens and is fairly straight-forward to use. 

5. Quality. We will define a measure for the quality of the layout of any given experiment. This 

will enable us to show the benefit of our solution compared to the current practice in our client 

company. 

Through discussions within the project group we identified a relatively straight forward measure of 

quality for experiments. The measure can be fine-tuned further by adjusting multipliers for various 

penalties certain designs incur. 

By fulfilling these sub objectives we were able to complete the main objective for this study, which 

was defined as: 

To be able to provide the theory and tools for designing better layouts for specimens in 

agricultural experiments. 

In our opinion this objective has been indisputably attained. 

4.2.3. Quality of solution 

In retrospect, certain aspects of the solution could be improved upon. For example, at the moment 

the measure of quality has no real-world interpretation, thus making it hard to say precisely how 

much better our solution is compared to the original one. However, the superiority of our solution is 

evident just by looking at the distributions of individual treatments from figure 6. Also, at the 

moment our MATLAB-program can only handle rectangular experimental areas. It is noteworthy 

however that most of the time the areas will be rectangular anyway, so the program can be used in 

most cases. 

At the moment our solution is based on simulation, which is very unlikely to locate a global 

optimum solution. An analytic solution for finding the global optimum would thus be more 

effective, but in our opinion simulation provides substantial benefits already. Also, going through 

every single possible solution could very quickly become an arduous task for any computer, 

whereas our algorithm is relatively quick to process. 
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4.3. Future research 

This study provides an interesting insight to the world of agricultural experiment design. However 

there are still many interesting topics for future research in this area. Below we have discussed 

some of them. 

One topic for future research could be trying to solve the problem through optimization rather than 

using brute force randomization. Problems with this approach are the optimization process, which 

could become complicated and the calculation time, which could become too long. But it would be 

interesting to compare the global optimum (according to our criterion) of the problem with the 

results of our model and see if it significantly better.  

One interesting field of study could be to let the user define the experiment area and freely. If the 

user could enter the area in terms of x,y �coordinates, the model could be applied to even more 

wider range of problems. However in this case the optimization criteria should be defined 

differently and it might be hard to find such a criterion that the results would match up to the 

method proposed in this study.  

Another interesting topic could be to study how much the robustness of the results could be 

improved if the number of replicates would be increased. Or on the other hand how much the 

robustness suffers if one replicate would be excluded in order to save resources. In addition it would 

be interesting to study how changing the shape of the experiment area would affect the robustness 

of the layout. 
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Appendices 

APPENDIX 1: WHAT WENT WELL VERSUS WHAT COULD HAVE GONE BETTER 

In our opinion, this project was a schoolbook example of good planning and teamwork. We divided 

up the work whenever possible and then worked either in smaller groups or individually, but also 

met as a team on several occasions. We also maintained constant e-mail contact with each other, 

thus ensuring that everyone knew exactly how the project was progressing, and contacted our client 

a number of times to ensure the progress was within his expectations as well. The timetable of the 

project was strict enough to make sure our project would be completed on time, but also lax enough 

to allow for a leisurely work pace and for any unexpected changes. Taking all this into account, no 

real improvements come to mind regarding the actual process of our project. 

It must also be said that the topic definitely turned out to be more interesting than it seemed at first. 

Many of our team-members were hoping for a more business-oriented project, but in the end our 

team was genuinely excited about this one! Several of us had previous experience in the way 

projects are designed and executed, but it was nevertheless inspiring to see again how results are 

made from nothing. Especially in this case it has been rewarding to see how all of us have begun to 

understand experiment design better although at the outset none of us knew anything about this 

field! 

WHAT WE LEARNED 

Most of what we learned during this project was very directly related to experimental design and 

MATLAB-programming, but certainly also to managing and scheduling projects successfully. 

However, learning MATLAB was definitely the most rewarding part of the project for most of us. 

Many times our team was struggling with a piece of code for hours on end in the school�s computer 

labs, and the feeling of elation after the problem was solved was indescribable. I think most of us 

would not hesitate to call ourselves proficient MATLAB-users after this project. 
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APPENDIX 2: THE MATLAB-CODE 

Below the MATLAB-code produced. The code is commented in Finnish. 

Generate.m 

6. function [Q]=generate(a,b,c,d) 
7.  
8. %a koealueen rivien lkm 
9. %b koealueen sarakkeiden lkm 

10. %c vektori johon syötetään eri faktorit sekä niiden tasot.   
11. %d kerranteiden lkm 
12.  

13. % Lasketaan eri käsittelykombinaatioiden määrä 
14. tulo = 1; 
15. for i=1:length(c) 
16.     tulo = tulo*c(i); 
17. end 
18.  

19. %Lasketaan matriisit, jotka kuvaavat eri kombinaatioiden määrää, eli jos 
3 

20. %tasoa saadaan matriisi M1 = [1 2 3] 
21. for n = 1:length(c) 
22.         eval(['M' num2str(n) ' = linspace(1,c(n),c(n))']); 
23. end 
24.  
25. %Talletetaan kaikki mahdolliset kombinaatiot matriisiin B 

26. %Käytetään valmista funktiota allcomb.  
27. if length(c) == 1 
28.     B = allcomb(M1); 
29. elseif length(c) == 2 
30.     B = allcomb(M1, M2); 
31. elseif length(c) == 3 
32.     B = allcomb(M1, M2, M3); 
33. elseif length(c) == 4 
34.     B = allcomb(M1, M2, M3, M4); 
35. elseif length(c) == 5 
36.     B = allcomb(M1, M2, M3, M4, M5); 
37. elseif length(c) == 6 
38.     B = allcomb(M1, M2, M3, M4, M5, M6); 
39. elseif length(c) == 7 
40.     B = allcomb(M1, M2, M3, M4, M5, M6, M7); 
41. elseif length(c) == 8 
42.     B = allcomb(M1, M2, M3, M4, M5, M6, M7, M8); 
43. else 

44.     disp('laitoit liikaa käsittelyjä.') 
45. end 
46.  
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47. %Sijoitetaan eri käsittelyt kolmiulotteiseen matriisiin A, jossa syvyys 

48. %kuvaa eri käsittelyominaisuuksia. Aloitetaan vasemmasta yläkulmasta ja 

49. %täytetään rivi kerrallaan. Käsittelyjä laitetaan matriisin B 

järjestyksessä 

50. %niin monta kertaa kuin käyttäjä on määritellyt toistoja. Loppuihin 

51. %mahdollisiin ylimääräisiin ruutuihin jätetään nollat. k ja r ovat 
52. %apumuuttujia. 
53.  
54. k=1; 
55. r=1; 
56. A = zeros(a,b,length(c)); 
57. for i = 1:a 
58.     if r > d*tulo 
59.             break 
60.         end 
61.     for i2 =1:b 
62.         if r > d*tulo 
63.             break 
64.         end 
65.         for i3 = 1:length(c) 
66.                 A(i,i2,i3) = B(k,i3); 
67.         end 
68.         k = k+1; 
69.         r=r+1; 
70.         if k > tulo 
71.            k=1; 
72.         end 
73.         if r > d*tulo 
74.             break 
75.         end 
76.     end 
77. end 
78.  

79. talteen = {};           %Ruudukko johon kerätään kaikki matriisit 

80. talteen_kriteeri = [];  %Vektori johon kerätään kaikkien matriisien 
hyvyydet 

81. laskuri = 0;            %Laskee iteraatioiden määrän 

82. max_laskuri = 200000;   %Määritetään iteraatioiden maksimi 
83. laskuri2=0;             %Tarkastelee, kuinka paljon iteraatioita on 

kulunut            viimeisen minimin saavuttamisesta 

84. kerroin=0.1;             %Määritetään, kuinka monta iteraatiota saa 
kulua ilman uuden minimin saavuttamista suhteessa iteraatioiden 

maksimimäärään 
85.  
86. while laskuri2<max_laskuri*kerroin && laskuri < max_laskuri 
87.     

88.     B=A(:,:,1);         %otetaan matriisin A ensimmäinen käsittely eli 
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ensimmäinen taso matriisista A 

89.     [R,I] = randmat(B); %sekoitetaan ensimmäinen käsittely 
90.    

91.     for j=2:length(c)   %sekoitetaan muut käsittelyt s.e käsittelyjen 

järjestys säilyy 
92.         C=A(:,:,j); 
93.         D=C; 
94.         for i=1:a*b 
95.             C(i)=D(I(i)); 
96.         end 
97.         R(:,:,j)=C; 
98.     end 
99.    
100.     talteen{end+1} = R; 
101.     %matriisissa R nyt satunnaistetut tasot 
102.     %aletaan tutkimaan onko matriisi tarpeeksi satunnainen 
103.     %Tutkitaan aluksi uloimmat rivit/sarakkeet 
104.        l=[];    %Vektori, johon talletetaan eri taasojen kriteerit 
105.     for g=1:length(c) 
106.          
107.         l(end+1)=optimize(R(:,:,g),a,b)*(c(g));     %Laskee viereisten 

solujen samankaltaisuuden asteen ja kertoo sen tason eri alkioiden määrällä. 
Potenssia voi muuttaa. 

108.     end 
109.     l(end+1)=optimize(kokomat(R,length(c),d),a,b)*sum(c);   %Laskee 

viereisten kombinaatioiden samankaltaisuuden asteen. 
110.     talteen_kriteeri(end+1)=sum(l); 
111.     % Jos kriteeri on parempi kuin edellinen minimi, niin laskuri2 

112.     % nollautuu, muuten sitä kasvatetaan yhdellä. 
113.     if talteen_kriteeri(end)>min(talteen_kriteeri) 
114.         laskuri2=laskuri2+1; 
115.     else 
116.         laskuri2=0; 
117.     end 
118.     laskuri=laskuri+1; 
119.  
120.     end 
121.     [C,O]=min(talteen_kriteeri);                    %Hakee parhaan 

matriisin ja sen hyvyyden 
122.     Q=talteen{O}; 
123.      
124.     [C1,O1]=max(talteen_kriteeri);                  %Hakee huonoimman 

matriisin ja sen hyvyyden 
125.     Q1 = talteen{O1}; 
126.      
127. for i=1:length(c) 
128.         
129.     B=Q(:,:,i);      %parhaan matriisin i:s taso 
130.     B1=Q1(:,:,i);     %huonoimman matriisin i:s taso 
131.      
132.     subplot(length(c)+2,2, 2*i-1),imagesc(B)    %paras 
133.     title('Best'); 
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134.     subplot(length(c)+2,2, 2*i),imagesc(B1)     %huonoin 
135.     title('Worst'); 
136. end 
137. subplot(length(c)+2,2,2*length(c)+3),plot(sort(talteen_kriteeri))        

%Plottaukset 
138. title('distribution of the criterion') 
139. E=kokomat(Q1,length(c),d); 
140. D=kokomat(Q,length(c),d); 
141. subplot(length(c)+2,2,2*length(c)+1),imagesc(D) 
142. title('Best layout'); 
143. subplot(length(c)+2,2,2*length(c)+2),imagesc(E) 
144. title('Worst layout'); 
145. [k1,s1]=normfit(talteen_kriteeri); 
146.  
147. if jbtest(talteen_kriteeri,0.01)==1                                 

%Testaa, onko kriteeri normaalijakautunut 
148. Todennakoisyys_loytaa_parempi_matriisi_satunnaisella_yrityksella=normcdf

(C,k1,s1)                 %Kertoo, kuinka todennäköistä on löytää parempi 
iteraatio, saavutetun jakauman pohjalta. 

149. else 

150.     disp('Tulokset eivät ole normaalijakautuneita'); 
151. end 
152.  
153. iteraatioiden_lkm=laskuri     %tulostetaan iteraatioiden lkm 
154.  

155. a3=optimize(kokomat(Q,length(c),d),a,b)*sum(c);       %kuvaa sitä kuinka 

paljon rangaistaan käsittelyjen läheisyydestä parhaassa sekoituksessa. 

Kyseessä siis kokonaiskäsittelyt ei tietty faktoritaso. 

156. a4=optimize(kokomat(Q1,length(c),d),a,b)*sum(c);      %kuvaa sitä kuinka 

paljon rangaistaan käsittelyjen läheisyydestä huonoimmassa sekoituksessa. 

Kyseessä siis kokonaiskäsittelyt ei tietty faktoritaso.   
157.  
158. whitebg('white'); 

 

Kokomat.m 

 
%Piirtotiedosto, muuttaa matriisin eri tasot yksitasoiseksi matriisiksi, 

%jonka alkiot koostuvat numeroista 1, 2, 3 jne. Tätä käytetään apuna 

%plottauksessa, sekä hyvyyskriteerin laskennassa. 
 
function C = kokomat(B, c,d) 
 
C=B(:,:,1); 
for i = 2:c 
    C = C+B(:,:,i)*10^(i-1); 
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end 
C; 
 
for j = 1:numel(C)/d 
    y = max(max(C)); 
    for k = 1:numel(C) 
    if C(k) == y 
        C(k) = j*0.01; 
    end 
    end 
end 
    C = C*100; 

Optimize.m 

%Tämä tiedosto sisältää hyvyyskriteerimme määrityksen. 
 
function t =optimize(A,r,c) %A matriiisi, r on rivien lkm, c sarakkeiden lkm 
 
u = 0;  % hyvyyskriteerin arvo 
%lasketaan tason eri alkioiden lkm 
d = length(unique(A)); 
 
 
kerroin1 = 2.5;   %kerroin, jolla reunaehtojen rikkomisesta sakotetaan. 
kerroin2 = 2.5;   %kerroin, jolla reunaehtojen rikkomisesta sakotetaan. 
 

if min(min(A)) == 0   %tarkastetaan onko matriisissa tyhjiä kohtia. Jos on 

muokataan d:tä. 
    d = d-1; 
end 
 
 
for x = 1:1:r 
    for y=1:1:c 
        
         
         

        %sakotetaan jos kaakossa oleva sama eikä kyseessä ole tyhjät 
        %ruudut. 
        if x+1 <= r && y+1 <=c 
            if A(x,y) == A(x+1,y+1) && A(x,y) ~= 0 
            u = u+0.75; 
            end 
        end 

        %sakotetaan jos koilisessa oleva sama. tyhjistä ei sakkoa. 
        
         if x >1 && y +1 <= c 
            if A(x,y) == A(x-1,y+1) && A(x,y) ~= 0 
         u = u+0.75; 
            end 
        end 
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        %tutkitaan onko alkion alapuolella samoja 

        %alkioita max etäisyydellä d, jos on sakotetaan. Tarkastetaan myös 

        %millä kertoimella sakotus tapahtuu. 
        for i=x+1:(x+d-1) 
            if i<=r 
                if A(i,y) == A(x,y) && A(i,y) ~= 0 
                    er = i-x; 
                    if y==1 || y == c 
                        u = u+(1/(er))*kerroin1; 
                     else     
                        u = u+(1/(er));   
                     end 
                
                     
                end 
            end 
        end 
        %tutkitaan onko alkion oikealla puolella samoja 

        %alkioita max etäisyydellä d, jos on sakotetaan.Tarkastetaan myös 

        %millä kertoimella sakotus tapahtuu. 
        for j=y+1:(y+d-1) 
            if j<=c 
                if A(x,j) == A(x,y) && A(x,j) ~= 0 
                    er = j-y; 
                    if x==1 || x==r  
                        u = u+(1/(er))*kerroin2; 
                    else 
                        u = u+(1/(er)); 
                    end 
                end 
            end 
        end 
         
    end 
end 
 
t=u; 


