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Johdanto
Työn lähtökohta ja tavoitteet
Tämän  projektityön  tarkoituksena  on  tarkastella  Suomen  Puolustusvoimien
viestiverkkojen toimintaluotettavuutta. Projekti on osa Teknillisen korkeakoulun kurssin
Mat­2.177  Operaatiotyötutkimuksen  projektityöseminaaria.  Ongelmanasettajana  toimii
Puolustusvoimien Teknillinen Tutkimuslaitos (PvTT).

Viestiverkko  on  kriittinen osa  tämän päivän  sodankäyntiä.  Operaatioiden onnistumisen
edellytyksenä  on  usein,  että  komentopaikalta  on  toimiva  viestiyhteys  operaatioon
osallistuviin joukkoihin. Hyökkäävän osapuolen on otettava suunnitelmissaan huomioon
viestiverkon hyökkäykselle  asettamat rajoitukset  ja  riskit. Ei ole mitään  järkeä  toteuttaa
hyökkäysoperaatiota,  jonka  onnistuminen  edellyttää  viestiverkon  toimivuutta,  jos
viestiverkon  toiminta  on  hyvin  epävarmaa  tai  riippuu  muutaman  helposti  tuhottavan
komponentin  toiminnasta.  Puolustavalle  osapuolelle  on  vastaavasti  erittäin  hyödyllistä
tietää  toisen  osapuolen  viestiverkon  heikot  kohdat,  joiden  tuhoaminen  tai  toiminnan
estäminen vaikeuttaa hyökkäystä.

Projektityön  tavoitteena on  luoda Puolustusvoimien käyttöön malleja  ja työkaluja,  jotka
edesauttavat  viestiverkon  toimintaluotettavuuden  arviointia  ja  viestiverkon  tärkeimpien
osien löytämistä. Tarkemmin määriteltynä projektin tavoiteasettelu on seuraava:

• Ensimmäinen  tavoite:  rakenna  ja  koodaa  malli,  jonka  avulla  voidaan  määrittää
annetun viestiverkon toimintatodennäköisyys, ts. todennäköisyys, että solmusta A
saadaan yhteys solmuun B.

• Toinen  tavoite:  rakenna  ja  koodaa  malli,  jonka  avulla  voidaan  tarkastella  eri
solmujen keskeisyyttä viestiverkon toiminnan kannalta.

• Muut  tavoitteet:  tuottaa  hyödyllistä  tietoa  ja  johtopäätelmiä  viestiverkon
toiminnasta  viestiverkon  rakenteen  suunnittelua  ja  elektronista  sodankäyntiä
ajatellen.

Raportin sisältö
Raportti on suunnattu ensisijassa matematiikkaan perehtyneille, mutta olemme pyrkineet
kirjoittamaan  raportin  siten,  että  matematiikkaan  syvällisesti  perehtymätönkin  pystyy
omaksumaan  mallien  perusperiaatteet  ja  käytön.  Tätä  edesauttavat  vaihe  vaiheelta
läpikäytävät käyttöesimerkit.

Raportti  sisältää  kirjallisuuskatsauksen  Puolustusvoimissa  käytettävissä  olevista
viestiverkoista  sekä  lyhyen  johdannon  matemaattiseen  verkkoteoriaan.    Raportissa
käsitellään kahta luotua mallia, viestiverkon toimintatodennäköisyydet määrittävää mallia
ja  solmujen  keskeisyyttä  mittaavaa  mallia.  Luodut  mallit  vastaavat  edellä  esitettyä
tavoiteasettelua.

Ensin  käsitellään  toimintatodennäköisyydet  määrittävää  mallia.  Malli  johdetaan  Monte
Carlo –simulaatiosta käsin, luodut algoritmit käydään läpi, tutkitaan algoritmien antamien
tulosten  virheitä  sekä  niiden  laskenta­aikavaatimuksia.  Solmujen  keskeisyyttä  mittaava
malli  johdetaan  graafiteoriassa  määritellyistä  keskeisyysmitoista.  Luotu  malli  käydään
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kohta  kohdalta  läpi.  Mallin  ominaisuuksia  analysoidaan  yksinkertaisessa  verkossa.
Lopuksi  on  vielä  sovellusesimerkki,  joka  valottaa  sekä  todennäköisyysmalliin  että
keskeisyysmalliin liittyvien työkalujen käyttöä ja niistä saatavien tulosten tulkintaa.

Raportissa  pohditaan myös  mallien hyödyllisyyttä  käytännössä.  Yritetään  saadun  datan
valossa  vetää  johtopäätöksiä  kuinka  hyödyllisiä  mallit  ovat  oikeita  sotilasoperaatioita
ajatellen.  Tämän  perusteella  mietitään  mallien  puutteita  ja  mahdollisia
jatkokehityskohteita.

Kohdeorganisaatio
Puolustusvoimien Teknillinen Tutkimuslaitos PvTT on pääosin pääesikunnan alainen osa
Suomen  puolustusvoimia,  jonka  tehtävänä  on  tuottaa  puolustusvoimien  ja
maanpuolustuksen  kehittämiseksi  ja  päätöksenteon  tueksi  elektroniikan  ja
informaatiotekniikan,  suojan  sekä  asetekniikan  tutkimuspalvelut.  PvTT  keskittyy  niille
tutkimuksen osa­alueille, joilla ei ole osaamista maamme muissa tutkimuslaitoksissa, tai
joilla  puolustusvoimien  oma  tutkimustoiminta  on  välttämätöntä.  Laitoksen
tutkimuskohteina  ovat  aseet  ja  ampumatarvikkeet,  räjähteet,  sotavarustuksessa
käytettävät  materiaalit,  epäkonventionaaliset  aseet  ja  niiltä  suojautuminen,  optroniikka,
häiveteknologia  sekä  elektroniikka­  ja  informaatioteknologia.  Tämän  projektityön
tavoitteena on tukea elektroniikka­ ja informaatiotekniikan osaston tutkimusta.

Kirjallisuuskatsaus
Kirjallisuuskatsauksessa  on  lyhyt  katsaus  matemaattiseen  verkkoteoriaan  eli
graafiteoriaan  siltä  osin  kun  sitä  tässä  työssä  käytetään.  Tämän  jälkeen  käsitellään
Puolustusvoimien  viestiverkkoja  käytännön  tasolla  ja  määritellään  niihin  liittyviä
käsitteitä  sekä  kerrotaan  tarvittavia  taustatietoja  esimerkiksi  elektronisesta
sodankäynnistä.

Yleistä verkoista matematiikassa
Verkko (so. graafi) koostuu solmuista ja niitä yhdistävistä linkeistä. Yksinkertaisimmassa
tapauksessa  verkko  on  suuntaamaton,  eli  jos  solmusta  i  on  linkki  solmuun  j,  on  myös
solmusta  j  linkki  solmuun  i.  Tässä  työssä  tarkastellaan kuitenkin  suunnattuja verkkoja.
Matemaattisesti  verkko  on  kätevää  esittää  yhteysmatriisilla  A,  jonka  alkio  Aij =  1,  jos
solmusta  i  on  linkki  solmuun  j.  Verkon  linkkeihin  voidaan  myös  liittää  paino,  jolloin
puhutaan painotetuista verkoista.  Yhteysmatriisi on edelleen kätevä esitystapa,  alkio Aij
vastaa  nyt  i:stä  j:hin  kulkevan  linkin  painoa.  Tässä  työssä  linkkien  painot  vastaavat
yhteystodennäköisyyksiä solmujen välillä. Toisinaan verkot on järkevää määritellä siten,
että myös rinnakkaiset linkit ovat mahdollisia. Tällöin siis solmujen i ja j välillä voi olla
useita linkkejä. Näitä emme kuitenkaan tarvitse tässä projektityössä.

Matemaattisessa graafiteoriassa ei suoraan käsitellä tapausta, jossa eri solmujen toiminta
on  epävarmaa.  Tässä  työssä  solmuillakin  (eri  pisteissä  sijaitsevilla  radiolla)  on
toimintatodennäköisyys.  Tätä  tietoa  ei  voi  sisällyttää  eri  linkkien
toimintatodennäköisyyksiin.  Solmujen  epävarma  toiminta  on  siis  otettava  huomioon
erikseen.
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Verkoissa  on  hyödyllistä  määritellä  solmujen  etäisyys  linkkien  painojen  avulla.
Esimerkiksi  keskeisyystarkastelut  vaativat  tämän  lähestymistavan.  Painottamattomassa
verkossa  solmujen  i  ja  j  välisellä  etäisyydellä  tarkoitetaan pienintä  mahdollista  määrää
linkkejä,  joiden  läpi  kulkemalla päästään  solmusta  i  solmuun  j.  Painotetuissa verkoissa
etäisyys  on hieman  monimutkaisempi  käsite.  Linkin  paino  määritellään nimittäin  lähes
aina siten, että suuri paino viittaa voimakkaaseen yhteyteen linkin päätesolmujen välillä.
Tämän  takia  linkin  päätesolmujen  välistä  etäisyyttä  ei  ole  järkevää  määritellä  linkin
painona.  Jos  linkkien  painot  ovat  mielivaltaisia  positiivisia  reaalilukuja,  määritellään
linkin  päiden  välinen  etäisyys  usein  painon  käänteislukuna.  Tässä  projektityössä
tarkastellaan  kuitenkin  verkkoja,  joissa  linkkien  paino  vastaa  todennäköisyyttä,  että
lähetetty viesti kulkee linkin läpi, eli se on aina nollan ja yhden välillä. Todennäköisyys,
että viesti kulkee kahden peräkkäisen linkin läpi, on linkkien painojen tulo. Tämän takia
linkin  päätesolmujen  välinen  etäisyys  eli  linkin  pituus  on  järkevää  määritellä  painon
käänteisluvun luonnollisena  logaritmina, sillä  logaritmillehan tunnetusti pätee log(ab) =
log(a)+log(b).  Nyt  mielivaltaisen  solmun  i  etäisyys  toisesta  mielivaltaisesta  solmusta  j
voidaan määritellä pienimpänä mahdollisena linkkien ”pituuksien” summana kuljettaessa
i:stä j:hin.

Puolustusvoimien viestiverkot
Monipuoliset  ja  toimivat  viestiyhteydet  ovat  elinehto  puolustusvoimien  tehokkaalle
toiminnalle.  Puolustusvoimat  tarvitsevat  viestiyhteyksiä  operaatioiden  tukemiseen,
joukkojen komentamiseen ja valvomiseen ja riittävän tilannetietoisuuden saavuttamiseen.
Seuraava katsaus puolustusvoimien viestiverkkoihin perustuu pääosin artikkeliin [1].

Taisteluyksiköiden  yhteistoiminta  viestiyhteyksien  avulla  on  ratkaisevaa  digitaalisella
taistelukentällä.  Suomen  puolustusvoimat  aloittivat  1990­luvun  alussa
ohjelmistoradioiden  (SDR)  tutkimuksen  ja  kehittämisen  tulevaisuuden  radiosysteemejä
varten.
Ohjelmistoradiot  muodostavat  Ad  Hoc  –viestiverkon  eli  kommunikointi  on  langatonta
verkon  laitteiden välillä. Verkko muodostuu dynaamisesti langattomien  laitteiden välille
ilman  etukäteen  konfiguroitua  rakennetta.  Tällaisessa  verkossa  kommunikointi  niiden
laitteiden välillä, joihin ei ole suoraa radioyhteyttä, tapahtuu välisolmujen kautta. Ad Hoc
–verkko  muodostaa  automaattisesti  viestiliikenneyhteyden  lähettävän  ja  vastaanottavan
solmun välille ja viesti voi kulkea tällöin kaikkia mahdollisia viestiverkon reittejä pitkin.
Ad  hoc  –verkkotekniikkaa  mahdollistaa    myös  viestiverkon  muodostamisen  liikkuvien
solmujen  välille,  mikä  edesauttaa  viestiyhteyksien  ylläpitämisen  liikkeessä  olevien
joukkojen  välillä.  Tämä  on  Ad  Hoc  –verkkojen  yksi  suurimmista  eduista  verrattuna
vanhanaikaisiin staattisiin verkkoihin, jotka eivät toimi liikkeessä.
Ohjelmistoradio  mahdollistaa  eurooppalaisen  kriisinhallinnan  yhteisoperaatiot.
Ohjelmistoradion  merkitys  on  keskeinen  puolustushaara­,  aselaji­  ja  kansallisuusrajat
ylittävässä  yhteistoiminnassa  ja  yhteisoperaatioiden  toteuttamisessa  tulevaisuuden
taistelukentällä,  sillä  se  tekee  eri  aselajien  ja  puolustushaarojen  välisen  yhteydenpidon
helpommaksi. Se on osa verkkokeskeisen sodankäynnin mahdollistavia  teknologioita  ja
tukee  puolustusvoimien  integroidun  tiedustelu­,  valvonta­  ja  johtamisjärjestelmän
kehittämistä.
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Puolustusvoimien  ohjelmistoradio  ­hankkeessa  kehitetään  puolustusvoimille  kaupallisia
komponentteja  hyödyntävä  ohjelmistoradioalusta,  suuren  tiedonsiirtokyvyn
mahdollistava  mukautuva  laajakaistainen  aaltomuoto,  paikannusaaltomuoto  sekä
adaptiivinen antennijärjestelmä.

Prikaatin viestiverkko
Seuraavaksi  tarkastellaan  prikaatin  viestiverkon  toimintaa  vihamielisessä  ympäristössä.
Prikaatin  Ad  Hoc  ­verkon  solmuissa  on  digitaaliset  VHF­radiot  prikaatin  sisäiseen
kommunikaatioon  ja  yhteistoimintaan  siviilipuolen  kanssa  käytetään  yleistä
matkapuhelinverkkoa  (UMTS).  Kuvassa  1  on  esitetty  yksi  esimerkki  prikaatin
viestiverkosta,  jossa  joukot  ovat  jakautuneet  20  x  20  km  alueelle.  Mustat  ympyrät
kuvastavat  verkon  tukiasemia  ja  viivat  tukiasemien  välille  muodostuneista  yhteyksistä.
Yhteydet voivat olla vain toispuoleisia riippuen solmujen radioiden ominaisuuksista.

20 km

Kuva 1. Esimerkki prikaatin viestiverkosta

Viestintävälineet  on  kiinnitetty  taisteluajoneuvoihin,  jotka  voivat  olla  Ad  Hoc  –
verkkotekniikan  ansiosta  liikkeessä.  Jokainen  solmu  tukee  kommunikaatiota  muiden
solmujen  ja  muiden  päällekkäisten  verkkojen  kanssa  yhteyden  muodostuessa



7

automaattisesti solmujen välille. Eri siviiliverkkojen avulla (UMTS) tuetaan asevoimien
ja  siviilien  yhteistoimintaa.  Viestiverkon  digitaaliset  VHF­radiot  voivat  operoida  joko
yhdellä kanavalla tai taajuushyppytilassa. Jälkimmäisessä tilassa radio muuttaa  taajuutta
noin  100  kertaa  sekunnissa  VHF­radion  taajuusalueella  vaikeuttaen  viestiverkon
häirintää.

Elektroninen sodankäynti
Elektroninen  sodankäynti  muodostuu  kolmesta  eri  osa­alueesta:  elektroninen  tuki,
elektroninen  hyökkäys  ja  elektroninen  suojelu.  Elektronisilla  tukitoimilla  tarkoitetaan
elektromagneettisen  energian  lähteiden  etsintään,  tunnistamista  ja  paikantamista.
Elektroninen hyökkäys tarkoittaa elektromagneettisen energian käyttöä hyökkäyksissä eri
kohteita vastaan. Elektronisella suojelulla pyritään henkilöiden, varusteiden ja kiinteiden
kohteiden suojeluun elektronisia hyökkäyksiä vastaan.

Viestiverkon häirintä
Viestiverkkoa voidaan häiritä monilla eri menetelmillä.  Häirinnän päätyypit ovat spot­,
response­, swept­, comb­ ja barrage ­ häirintä.

Spot­häirintää  harjoittaessa  häirintä  kohdistetaan  yhdelle  kanavalle  ja  häirintäsignaalin
kaistaleveys  on  tavallisesti  sama  kuin  häirittävän  kanavan  kaistaleveys.  Häirinnässä
käytetään  suunnattavia  antenneja,  joilla  maksimoidaan  häirinnän  vaikutusta  viestin
vastaanottajassa. Yhden kanavan häirintä maksimoi häirintävaikutusta samalla kanavalla
operoiviin vastaanottajiin. Response­häirinnässä häiritsijä käyttää etsintävastaanotinta  ja
häirintää toteutetaan vain kun viestiliikennettä havaitaan tarkkailtavalla kanavalla.

Barrage­häirinnässä  häirintäsignaali  jakautuu  tietylle  taajuusalueelle  usean  eri  kanavan
ylle.  Barrage­häirintä  tarvitsee  onnistuakseen  vain  vähän  informaatiota  häirittävän
systeemin käyttämistä taajuuksista, mutta toisaalta häirinnän teho yhtä kanavaa kohden ei
ole  yhtä  korkea  kuin  spot  –  häirinnässä,  koska  häirinnän  teho  jakautuu  tasaisesti
häirittävän taajuusalueen ylle. Comb­häirinnässä keskitytään häirinnässä samanaikaisesti
useaan  eri  kanavaan.  Tässä  tapauksessa  häirintäteho  on  korkeampi  kuin  barrage­
häirinnässä,  koska häirintä  keskittyy  tiettyihin kanaviin barrage­häirinnässä  käytettävän
taajuusalueen sijaan.

Swept  ­häirintä  operoi  tietyillä  lähekkäisillä  kanavilla  ja  häirintää  toteutetaan
suunnattujen  antennien  avulla.  Swept­häirintä häiritsee  vain  yhtä  kanavaa  kerrallaan  ja
koko häirintäsignaalin lähettäjän teho keskittyy yhdelle kanavalle.

Häirintälaitteiden sijoitus
Häirintäsignaalin  lähettäjä  voidaan  sijoittaa  monella  tavalla.  Eri  sijoitusvaihtoehdot
asettavat kuitenkin rajoitteita käytettävälle häiritsijälle painon, tilavuuden ja liikkuvuuden
suhteen.

Yksi mahdollisuus on sijoittaa häirintälähetin taisteluajoneuvoon. Ajoneuvoihin voidaan
sijoittaa  suhteellisen  raskaita  ja  tehokkaita  häirintä  systeemejä  verrattuna  muihin
liikkuviin  ratkaisuihin. Ajoneuvojen  liikkuvuus on  kuitenkin  rajoitettua  taistelukentällä.
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Häiritsijän  kantamaa  rajoittavat  maastonmuodot  erityisesti  operoitaessa  korkeilla
taajuuksilla. Tavallisesti ajoneuvoissa käytettävien häirintälähettimien teho on 1 – 10 kW.

Toisaalta  häirintälaitteisto  voidaan  sijoittaa  helikopteriin  tai
miehittämättömään/normaaliin  henkilöstön  operoimaan  lentokoneeseen.  Ilmasta
operoitaessa  laitteiston  liikkuvuus  on  suuri  etu  eivätkä  maanmuodot  vaikuta
häirintälähettimen  toimintaan.  Ilma­alusten  koko  ja  painon  kantokyky  aiheuttavat
kuitenkin  rajoituksia  häirintälaitteiston  painolle  ja  teholle,  jolloin  puhtaassa  tehossa
jäädään  verrattuna  maasta  operoitaviin  ratkaisuihin.  Tavallisesti  näiden  laitteiden
häirintäteho on noin 1kW luokkaa.

Kevyitä häirintälaitteistoja voidaan levittää tykistön avulla tai sotilaat voivat kantaa niitä
mukanaan.  Kevyet  häirintälaitteet  pitää  asentaa  lähelle  häirittävää  kohdetta  riittävän
häirintätehon saavuttamiseksi. Kevyiden häirintälähettimien teho vaihtelee 20 – 100 W:n
välillä ja ne painavat normaalisti 10 – 15 kg.

Prikaatin viestiverkon toiminta häirinnän vaikutuksien alla
Tehdyissä kokeissa on todettu, että UMTS siviiliverkon toiminta on hyvin vajavaista, jos
elektronisen sodankäynnin keinoja käytetään verkkoa vastaan. Tehokkaalla siviilitahojen
ja  taisteluyksiköiden yhteistoiminnalla  voidaan  kuitenkin  taata paremmat viestiyhteydet
eri  verkoissa  toimiville.  Laajalle  taajuusalueelle  kohdistuva  häirintä  ei  ole  kovin
tehokasta prikaatin Ad­Hoc  verkkoa  vastaan,  jos  verkon  radiot  käyttävät  vaihtotaajuus­
mallia.  Jatkuvat  muutokset  taajuudessa  estävät  tehokkaan  häirinnän  yksiköiden
viestiyhteyksiä  vastaan.  Yhteen  kanavaan  keskittyvää  häirintää  voidaan  käyttää,  jos
vastustaja saa selville käytettävän  lähetysavaimen tai  jos häirinnällä kyetään  rikkomaan
radioiden tahdistus.

Pataljoonataso  on  prikaatin  viestiverkon  haavoittuvaisin  osa.  Yhteydet  pataljoonan
yksiköistä komentopaikalle ovat pitkät eivätkä yksiköt voi  normaalissa  tilanteessa ottaa
muihin  tukiasemiin  yhteyttä.  Jos  vastustaja  löytää  viestiverkon  kriittiset  osat,  se  voi
häiritä  tiettyjä  tärkeimpiä  solmuja  ja  estää  suunnatuilla  antenneilla  kaikki  pitkät
radioyhteydet  lamauttaen  prikaatin  viestitoiminnan.  Ad  Hoc  –verkkoa  vastaan
toimittaessa  häiritsijän  olisi  tehokasta  käyttää  useita  eri  häirintälähettimiä,  jotka
toimisivat  samaan  aikaan  eri  taajuusalueilla.  Tällöin  on  kuitenkin  mahdollista,  että
ongelmia syntyy oman viestiverkon ja häirinnän sekaantumisesta.

Viestiverkon  toimintavarmuus  paranisi,  jos  myös  komppanioilla  olisi  omat  Ad  Hoc  –
solmut, joiden avulla ne voisivat olla yhteydessä muihin solmuihin VHF­alueella. Tällöin
olisi  hyvin  vaikeaa  löytää  prikaatin  viestiverkosta  erityisen  haavoittuvia  osia.  Toinen
mahdollisuus olisi  taktisten internet palveluiden käyttäminen yksikkötasolla. Myös tässä
tapauksessa yhteydet muihin käyttäjiin muodostettaisiin tukiasemien kautta.
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Malli yhteyksien toimintatodennäköisyyksien
määrittämiseksi
Yleistä Monte­Carlo­menetelmistä
Monte­Carlo  on  yleisnimitys  stokastisille  algoritmeille,  joita  käytetään  yleensä
laskennallisesti  raskaiden  ongelmien  ratkomiseen.  Erityisen  paljon  Monte­Carlo
menetelmiä käytetään laskennallisessa fysiikassa, klassinen esimerkki on moniulotteisten
määrättyjen integraalien numeerinen ratkaiseminen.

Tässä  projektityössä  tarvitsemme  vain  kaikkein  yksinkertaisinta  Monte­Carlo
menetelmää, ns. Hit­or­miss­menetelmää. Yksinkertaisuudestaan huolimatta Hit­or­miss
on  hyvä  menetelmä  määrättyjen  integraalien  laskemiseen.  Sen  perustoiminta  idea
tarvitsemassamme  erityistapauksessa  selvinnee  seuraavan  esimerkin  avulla,  vaikkakin
matematiikkaan perehtymättömän voi olla vaikea löytää yhteyttä integraalilaskentaan.
Haluamme laskea yksikköympyrän, eli ympyrän, jonka säteen pituus on yksi, pinta­alan.
Tämä voidaan tehdä Hit­or­miss­menetelmällä seuraavasti.

1) Piirrä ympyrä, jonka säde on yksi ja sen  ympärille yksikköneliö.
2) ”Heittele” satunnaisesti N0 kappaletta pisteitä neliön sisälle.
3) Laske ympyrän sisälle osuneiden pisteiden lukumäärä N.
4) Ympyrän pinta­alan osuus neliön pinta­alasta, joka tässä tapauksessa on myös

ympyrän pinta­ala (sillä neliön pinta­ala on yksi), on yksinkertaisesti N0/N.

Matemaattisesti  ilmaistuna  edellisessä  approksimoitiin  yksikköympyrän  Lebesguen
mittaa. Yhteys integraalilaskentaan löytyy siitä että kyseinen tehtävä tarkoittaa integraalin

[ ] [ ]
∫
× 1,01,0

)( dxxf f(x)=1, kun |x|<1  ja f(x) =0 muualla (1)

ratkaisemista,  jossa dx  on  Lebesguen  mitta.  Tämän  oivaltaminen  ei  kuitenkaan  ole
välttämätöntä  tulevan  ymmärtämiseksi.  Monte­Carlo  menetelmien  hyödyllisyys  ja
kätevyys  eivät  välttämättä  tulleet  esille  vielä  edellisestä  esimerkistä,  sillä  kyseinen
integraali on hyvin helppoa  ratkaista analyyttisesti.  Jos kuitenkin halutaan  arvioida  alla
olevassa kuvassa esitetyn kappaleen pinta­alaa, jossa ympyrän kaarta on hieman
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modifioitu,  eivät  analyyttiset  menetelmät  enää  toimi.  Hit­or­miss  toimii  aivan  kuten
ympyränkin  tapauksessa,  lasketaan  taas  kappaleen  sisälle  osuneiden  pisteiden  osuus
kaikista pisteistä. Tässä tapauksessa standardit numeeriset menetelmätkin toimivat ilman
ongelmia,  mutta  kuvitellaanpa  seuraavaksi  vastaava  tehtävä  epäsäännölliselle
useampiulotteiselle  kappaleelle.  Deterministiset  integrointimenetelmät  kärsivät  niin
sanotusta moniulotteisuuden kirouksesta (”curse of dimensionality”): laskennan työmäärä
kasvaa  eksponentiaalisesti  ulottuvuuden  kasvaessa.  Tämän  takia  näitä  menetelmiä
voidaan käyttää vain hyvin pieniulotteisiin  integraaleihin. Hit­or­miss­menetelmä toimii
kuitenkin aina samalla tavalla. Virhe käyttäytyy ulottuvuudesta riippumatta kuten N/1 ,
jossa N on ”heitettyjen” pisteiden  lukumäärä. Tämän ominaisuuden  takia Monte­Carlo­
menetelmät ovat usein ainoa mahdollinen keino ratkaista moniulotteinen integraali.

Toimintatodennäköisyydet määrittävät algoritmit
Tässä  työssä  määrittelemme  viestiverkon  radioiden  välisten  yhteyksien
toimintatodennäköisyydet  MATLAB­koodien  avulla.  MATLAB  valittiin  työkalujen
toteuttamisympäristöksi,  koska  se  on  joustava  ja  tehokas  vaihtoehto  paljon
matriisilaskentaa sisältävien algoritmien toteuttamiseen.

Olemme  kehittäneet  algoritmin,  jolla  voimme  laskea  arviot  radioiden  välisten  linkkien
toimintatodennäköisyyksille  perustuen  radioiden  lähetystehoon  ja  niiden  välisiin
etäisyyksiin (lue_verkko.m).  Radioiden välisten yhteyksien toimintatodennäköisyyksien
määrittämiseen  käytämme  Monte­Carlo  ­menetelmiä.  Tarkastelemme  kahta  tapausta.
Ensimmäisessä  tapauksessa  määritämme  todennäköisyydet,  joilla  ns.  runkoverkkoon
kuuluvat  radiot  saavat  yhteyden  toisiinsa.  Toisessa  tapauksessa  määritämme
todennäköisyyden,  jolla  runkoverkkoon  liittyvä  radio  saa  yhteyden  toiseen  samaan
verkkoon  liittyvän  radion  kanssa.  Tapauksesta  tekee  mielenkiintoisen  se,  että  radiot
voivat  liittyä  useampaan  kuin  yhteen  tukiradioon.  Olemme  kehittäneet  molemmille
tapauksille Monte­Carlo­menetemiin perustuvat algoritmit, jotka ottavat parametreikseen
verkkoon kuuluvien radioiden ja niiden välisten suorien (ei siis muiden radioiden kautta
kulkevien)  yhteyksien  toimintatodennäköisyydet,  sekä  iteraatiokierrosten,  eli
”heitettävien  pisteiden”  lukumäärän.  Seuraavaksi  näihin  algoritmeihin  liittyvien
ajotiedostojen toiminnan.
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lue_verkko.m
Tämä  ajotiedosto  määrittää  viestiverkkoon  kuuluvien  radioiden  välisten  linkkien
toimintatodennäköisyydet  radioiden  etäisyyksien  ja  kantamien  perusteella.  MATLAB­
koodi on esitetty liitteessä 1. Syötteenä algoritmille on annettava kaikkien viestiverkkoon
kuuluvien  radioiden  sijainti,  kantama  ja  toimintatodennäköisyys  teksti­  tai  Excel­
tiedostona.  Algoritmi  palauttaa  käyttäjälle  NxN­matriisin,  jossa  ovat  eri  radioiden
välisten  suorien  linkkien  toimintatodennäköisyydet  ja  Nx1­vektorin,  joka  sisältää
viestiverkon  radioiden  toimintatodennäköisyydet.  Esitetään  seuraavaksi  algoritmin
toiminta vaiheittain.

1) Luetaan ensin käyttäjän antamasta tiedostosta radioiden koordinaatit, kantamat ja
solmujen toimintatodennäköisyydet. Tiedosto on laadittava niin, että
ensimmäisessä sarakkeessa ovat radioiden P­koordinaatit, toisessa sarakkeessa
radioiden I­koordinaatit, kolmannessa radioiden kantamat ja neljännessä radioiden
toimintatodennäköisyydet. Huomattavaa on, että sekä koordinaatit ja kantamat on
annettava samassa yksikössä ja sarakkeet on erotettava tabulaturilla, jos tiedot
annetaan txt­tiedostona. Koska vain radioiden etäisyyksillä on merkitystä, voidaan
kartan nurkkaan määrittää nollapiste, jonka mukaan radioiden P­ ja I­ koordinaatit
voidaan helposti määrittää. Tiedoston nimi luetaan parametrina. Tiedot voidaan
syöttää myös Excel­tiedostona. Ajotiedosto tunnistaa tiedostonimen päätteen
perusteella onko kyseessä .txt­ vai .xls­tiedosto. Esimerkki tekstitiedostosta on
annettu liittessä 5 (kohdeorganisaatiolta saatu esimerkkiverkko).

2) Tallennetaan seuraavaksi radioiden toimintatodennäköisyydet solmut­vektoriin ja
luodaan NxN­matriisi radioiden etäisyyksien laskemista varten.

3) Lasketaan radioiden etäisyydet koordinaattien perusteella Pythagoraan lauseen
avulla.

4) Lasketaan radioiden välisten linkkien toimintatodennäköisyydet. Tässä
hyödynnetään apufunktiota linkki_tn, joka laskee kahden radion välisen linkin
toimintatodennäköisyyden radioiden etäisyyden ja lähettävän radion kantaman
perusteella. Linkin toimintatodennäköisyyttä on approksimoitu paloittain
määritetyllä lineaarisella funktiolla, jonka on esitetty graafisesti kuvassa 2.
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Kuva 2. Viestiyhteyden toimintatodennäköisyyden approksimointi radioiden välisen
etäisyyden (yksikkö 1000m) avulla.

Kuvassa 2 kantamaksi on annettu 5000 metriä. Kuten kuvasta näkyy, muodostuu funktio
kolmesta  eri  osasta.  Kantamaa  pienemmillä  etäisyyksillä  todennäköisyys  vaimenee
hitaasti ja kantamaa vastaavalla etäisyydellä todennäköisyys on vielä 0.8. Tämän jälkeen
todennäköisyys laskee jyrkästi  ja etäisyydellä 1.2 x kantama toimintatodennäköisyys on
enää  0.2.  Tästä  eteenpäin  toimintatodennäköisyys  alenee  hitaasi  kohti  nollaa  ja
etäisyydellä 2 x kantama se häviää kokonaan.

Tämä  funktio  on  hyvin  yksinkertainen,  mutta  se  palvelee  tämän  työn  tarkoitusperiä
riittävän  hyvin.  Tässä  työssä  sivuutamme  linkin  toimintatodennäköisyyteen  liittyvän
radioteknisen ongelmakentän  ja  jätämme näin huomioimatta mm. maaston vaikutuksen
toimintatodennäköisyyteen.  Funktio  on  kuitenkin  laadittu  niin,  että  sitä  on  helppo
muuttaa ja parantaa tarkempien linkkien toimintatodennäköisyyksien saamiseksi.

laske_TNmatriisi.m
Tämä  ajotiedosto  (ks.  liite  2)  määrittää  runkoverkkoon  kuuluvien  radioiden  välisten
yhteyksien  toimintatodennäköisyydet.  Parametreiksi  annetaan  yksittäisten  radioiden
toimintatodennäköisyydet N:n pituisessa vektorissa (solmut) ja radioiden välisten suorien
yhteyksien  toimintatodennäköisyydet  N×N  kokoisessa  matriisissa  (linkit).  Solmut­
vektorin perustaalla radioille voidaan ajatella indeksit 1,… ,N. Tämän lisäksi ajotiedostoa
editoimalla  voi  halutessa  muuttaa  simulaatiokierrosten  määrää  (rounds).  Itse  algoritmi
toimii  siten,  että  arvotaan  realisaatioita  stokastisesta  verkosta  ja  tallennetaan  muistiin
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kunkin  realisaation  tapauksessa  toimivat  yhteydet  (Hit­or­miss).  Lopuksi  lasketaan
kuinka  suuressa  osassa  tapauksia  yhteys  toimi  kunkin  parin  ja  kummankin  suunnan
kohdalla. Tämä on toteutettu seuraavasti:

1) Luodaan N×N matriisi (onnistuneet), jonka kaikki alkiot ovat nollia toimivien
yhteyksien lukumäärien tallentamiseen.

2) Aloitetaan silmukka, jonka kukin kierros vastaa yhtä iteraatiokierrosta.
3) Arvotaan, mitkä solmut toimivat, ja tallennetaan niiden indeksit

suuruusjärjestyksessä M­pituiseen vektoriin (toimivat).
4) Arvotaan, mitkä toimivien solmujen välisistä yhteyksistä toimivat ja ilmoitetaan

tulos M×M matriisissa (runko), jonka indeksit menevät samalla tavalla, kuin
edellisessä kohdassa luodun vektorin. Matriisin alkion arvo 1 vastaa toimivaa
suoraa yhteyttä ja 0 toimimatonta suoraa yhteyttä.

5) Korotetaan edellisessä kohdassa luotu matriisi M:nteen potenssiin, jolloin
saadaan uusi M×M matriisi (yhteydet). Matrisin alkion arvo 0 vastaa
toimimatonta yhteyttä (suoraa ja epäsuoraa) ja nollasta eroava arvo toimivaa
yhteyttä.

6) Tutkitaan mitkä yhteyksistä toimivat edellisessä kohdassa luodun matriisin avulla
ja kasvatetaan toimivien yhteyksien tapauksessa 1. kohdassa luodun matriisin
vastaavaa alkiota yhdellä.

7) Palataan kohtaan 2, jos iteraatiokierrosten lukumäärä on pienempi kuin haluttu,
muuten edetään seuraavaan kohtaan.

8) Jaetaan 1. kohdassa luotu matriisi kierrosten lukumäärällä, jolloin saadaan N×N
matriisi, jonka alkiot kertovat yhteyksien toimintatodennäköisyyksien arviot.

Edellisen  algoritmin  5.  kohta  saattaa  vaikuttaa  hieman  epäselvältä.  Kohdassa  esitetty
johtopäätös perustuu tunnettuun graafiteorian lauseeseen: Binäärisen yhteysmatriisin n:n
potenssin alkio (i,j),  vastaa  i:stä  j:hin menevien n:n pituisten polkujen  lukumäärää. Nyt
emme  ole  kiinnostuneita  polkujen  lukumäärästä,  vaan  siitä  onko  radioiden  välillä
yhteyttä, eli yhtään polkua.

laske_TN.m
Tämä  ajotiedosto  (ks.  liite  3)  määrittää  kahden  runkoverkkoon  liittyvän  radion  välisen
yhteyden toimintatodennäköisyyden. Toinen radiosta on lähettäjä ja toinen vastaanottaja.
Toimintatodennäköisyys  on  suunnattu  todennäköisyys,  että  lähettäjä  saa  yhteyden
vastaanottajaan  (verkko  on  epäsymmetrinen).  Verkkoon  liittyvät  radiot  voivat  liittyä
mielivaltaiseen määrään radioita ja näiden ”liittymis­yhteyksien” oletetaan toimivan. Itse
asiassa ajotiedosto siis määrittää todennäköisyyden, että jostakin runkoverkosta valitusta
m:stä  radiosta  saadaan yhteys  johonkin etukäteen valituista n:stä  radiosta. Parametreinä
algoritmi  tarvitsee  edellisessä  osiossa  esitellyn  algoritmin  parametrien  lisäksi  m:n
pituisen vektorin, jossa kerrotaan mihin runkoverkon radioihin lähettäjä liittyy (liitos1) ja
n:n  pituisen  vektorin  (liitos2),  jossa  ilmoitetaan  ne  radiot,  joihin  vastaanottaja  liittyy.
Tämän jälkeen algoritmi toimii seuraavasti:
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1) Luodaan N:n pituinen vektori (liitos1vek), jonka alkio on 1, jos lähettäjä liittyi
kyseistä alkiota vastaavaan radioon, ja 0 muuten. Luodaan vastaava vektori
(liitos2vek) myös vastaanottajan liitännöille.

2) Luodaan muuttuja (onnistuneet) onnistuneiden yhteysyritysten määrän
tallentamista varten.

3) Aloitetaan silmukka, jonka kukin kierros vastaa yhtä iteraatiokierrosta.
4) Arvotaan, mitkä solmut toimivat, ja tallennetaan niiden indeksit

suuruusjärjestyksessä M­pituiseen vektoriin (toimivat). Luodaan myös vektorit
(liitetyt1, liitetyt2), jotka kertovat liitäntöjen indeksit tässä vektorissa.

5) Arvotaan, mitkä toimivien solmujen välisistä yhteyksistä toimivat ja ilmoitetaan
tulos M×M matriisissa (runko), jonka indeksit menevät samalla tavalla, kuin
edellisessä kohdassa luodun vektorin. Matriisin alkion arvo 1 vastaa toimivaa
suoraa yhteyttä ja 0 toimimatonta suoraa yhteyttä.

6) Korotetaan edellisessä kohdassa luotu matriisi M:nteen potenssiin, jolloin saadaan
uusi M×M matriisi (yhteydet). Matrisin alkion arvo 0 vastaa toimimatonta
yhteyttä (suoraa ja epäsuoraa) ja nollasta eroava arvo toimivaa yhteyttä.

7) Tutkitaan onko lähettävästä radiosta yhteyttä vastaanottavaan radioon ja
kasvatetaan 2. kohdassa luodun muutujan arvoa yhdellä jos yhteys on olemassa.

8) Palataan kohtaan 3, jos iteraatiokierrosten lukumäärä on pienempi kuin haluttu,
muuten edetään seuraavaan kohtaan.

9) Jaetaan 2. kohdassa luodun muuttujan arvo kierrosten lukumäärällä­ Saatu tulos
on yhteyden toimintatodennäköisyyden arvio.

Algoritmien vaatima laskenta­aika
Kohdeorganisaatio  asetti  tiettyjä  vaatimuksia  algoritmien  laskenta­aikojen  suhteen.
Kahden  radion  välisen  yhteystodennäköisyyden  määrittäminen  tuli  olla  mahdollista
reaaliaikaisesti (laskenta­aika < 1 min). Toisaalta koko verkon yhteystodennäköisyyksien
määrittäminen sai viedä enemmän aikaa. Nämä laskenta­aikavaateet koskevat normaalia
pöytätietokonetta.

Tarkastellaan  siis  algoritmeja  laske_TN.m  ja  laske_TNmatriisi.m.  Näistä  edelliselle oli
asetettu  erityinen  vaatimus  nopeudesta.  Kohdeorganisaatio  soveltaa  luotuja  malleja
viestiverkkoihin,  joissa  on  20  –  50  solmua.  Laskenta­aika  riippuu  käytettävästä
simulaatiokierrosten  määrästä  sekä  analysoitavan  verkon  koosta.  Riippuvuus
simulaatiokierrosten  määrästä  on  luonnollisesti  lineaarinen,  sillä  simulaatiokierrokset
ovat  odotusarvoisesti  samanlaisia  (verkon  stokastisuudesta  johtuen  ne  eivät  ole  aina
samanlaisia).

Simulaatiokierroksien  vaikutusta  kiinnostavampi  tutkimuksen  kohde  on  verkon  koko.
Analysoimme  algoritmien  laske_TN.m  ja  laske_TNmatriisi.m  vaatimaa  laskenta­aikaa
generoimissamme  verkoissa,  joissa  solmuja  oli  15  –  50.  Ajoimme  kotitietokoneella
kummankin  algoritmin  10000  kierroksella  kullakin  verkon  koolla  (8  eri  kokoa)  kolme
kertaa  ja  mittasimme  laskentaan  kuluneen  ajan.  Keskiarvot  laskenta­ajoista  eri  verkon
kooilla on esitetty kuvassa 3.
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Kuva 3. Verkon koon vaikutus laskenta­aikaan.

Kuvasta  nähdään,  että  koko  verkon  yhteystodennäköisyyksien  laskemiseen
(laske_TNmatriisi) ei mene  juurikaan kauemmin kuin yksittäisten verkkoon  liittyneiden
radioiden  yhteystodennäköisyyden  laskemiseen  (laske_TN).  Tämä  voi  vaikuttaa
yllättävältä,  mutta  selittyy  sillä,  että  algoritmit  eroavat  toisistaan  lähinnä  yhteyksien
tarkistamisen  suhteen  (tarkistetaan  mistä  on  yhteys  mihinkin).  Laske_TNmatriisi.m:ssä
tarkistetaan kaikkien solmujen väliset yhteydet, kun taas laske_TN.m:ssä vain lähettäjään
ja  vastaanottajaan  yhteydessä  olevien  solmujen  yhteydet.  Tästä  seuraa,  että  kaikkien
yhteyksien todennäköisyyksien laskeminen vie vain vähän enemmän aikaa.

Kuvasta  nähdään  myös,  että  simulaatiokierroksia  ollessa  10000,  toteutuu
kohdeorganisaation vaatimus laske_TN.m:n laskenta­ajalle kaikissa verkon kokoluokissa.
Laske_TNmatriisi.m  voi  halutessa  ajaa  suuremmallakin  simulaatiokierrosten  määrällä,
koska tässä tapauksessa käytetylle laskenta­ajalle ei ollut rajoituksia.

Varianssianalyysi: tulosten epävarmuus
Tutkimme  verkon  yhteystodennäköisyydet  määrittävien  algoritmien  antamien  tulosten
epävarmuutta  (laske_TNmatriisi.m  ja  laske_TN.m).  Tutkimuksen  kohteena  on  tulosten
epävarmuuden  riippuvuus  simulaatiokierrosten  lukumäärästä  sekä  vastaavan
yhteystodennäköisyyden suuruudesta.

Tutkimme  tässä  tapauksessa  pelkästään  algoritmia,  joka  antaa  verkon  kaikkien
solmuparien  välisten  yhteyksien  todennäköisyydet  (laske_TNmatriisi.m).  Tässä
tapauksessa  saadut  tulokset  on  yleistettävissä  myös  algoritmiin,  jossa  verkkoon
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liitytään(laske_TN.m),  sillä  tämä  on  erikoistapaus,  jossa  käsitellään  vain  tiettyä
solmuparia  laajemmassa  verkossa.  Analyysin  kohteeksi  olemme  valinneet
kohdeorganisaatiolta  saamamme  esimerkkiverkon  (ks.  liite  5),  sillä  se  vastaa  parhaiten
todellista sovellustilannetta.

Tulosten  epävarmuuden  riippuvuus  simulaatiokierrosten
lukumäärästä
Tulosten  epävarmuuden  riippuvuus  simulaatiokierrosten  määrästä  on  erittäin
kiinnostavaa  algoritmin  käytännön  soveltamisen  kannalta.  Kun  tulosten  hajonta  ja
varianssi  on  määritetty  tietylle  simulaatiokierrosten  lukumäärälle,  tiedämme  kuinka
tarkkoja tuloksia algoritmi pystyy ko. kierrosmäärällä antamaan.

Ajoimme  laske_TNmatriisi.m­ajotiedostolla  kohdeorganisaatiolta  saamamme
esimerkkiverkon  läpi  1000  kertaa  annetulle  simulaatiokierrosten  (rounds)  määrälle.
Simulaatiokierrosten  määrinä  käytimme  100,  1000,  3500,  7000  ja  10000:tta.  Koska
verkossa  oli  22  solmua,  saimme  kustakin  ajosta  1000  22x22­todennäköisyysmatriisia.
Näistä  määritimme  aritmeettisen  keskiarvon  ja  otoskeskihajonnan  kullekin  matriisin
alkiolle. Keskiarvon ja otoskeskihajonnan laskemiseen käytettiin kaavoja (2) ja (3):

∑
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22x22­matriisia  on  epäkäytännöllistä  käsitellä  kokonaisena,  joten  laskimme  matriisin
alkioiden  keskihajontojen  maksimin  ja  keskiarvon.  Keskihajontojen minimi on kaikissa
tapauksissa  nolla,  koska  yhteystodennäköisyysmatriisin  diagonaalialkiot  ovat  aina
ykkösiä.  Näin  ollen  minimin  analysointi  ei  tässä  tapauksessa  ole  mielekästä.  Näistä
laskimme  95  %  luottamusvälit  (2σ   vastaa  keskimäärin  95  %  luottamusväliä).
Pöytätietokoneelta tehtyihin simulaatioajoihin laskenta­aikaa kului kaiken kaikkiaan noin
kahdeksan tuntia. Saadut tulokset on esitetty taulukossa 1.

Taulukko 1. Tulosten keskihajonnat eri simulaatiokierrosten  lukumäärillä. s2  vastaa 95
%  luottamusväliä.  Taulukossa  on  annettu  keskihajontojen  keskiarvo  ja  maksimi  yli
todennäköisyysmatriisin alkioiden.

Simulaatiokierrosten lkm s2  (keskiarvo) s2  (maksimi)

100 0.057522 0.2554

1000 0.014324 0.074534

3500 0.007794 0.040898

7000 0.005197 0.021812

10000 0.004967 0.01916
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  Saadut tulokset on esitetty graafisesti kuvassa 4.
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Kuva 4. 95 % luottamusvälin koko s2  eri simulaatiokierrosten lukumäärillä. Max vastaa
keskihajontojen maksimia ja avg keskiarvoa.

Kuvasta  4  nähdään,  että  95  %  luottamusvälin  koko  pienenee  eksponentiaalisesti
simulaatiokierrosten  lukumäärän  funktiona.  Simulaatiokierrosten  lisäämisestä  7000
10000:een  ei  ole  läheskään  niin  paljon  hyötyä  kuin  lisäyksestä  1000­>3000.
Tarkkailemalla  taulukon  1  arvoja  havaitaan,  että  keskimäärin  tuloksissa  saavutetaan
kohdeorganisaation  kannalta  haluttu  taso  (0.02­tarkkuus)  jo  1000  simulaatiokierroksen
tapauksessa.  Kuitenkin  kun  tarkkaillaan  huonointa  tapausta  (maksimikeskihajonta),
havaintaan,  että  tämä  taso  saavutetaan  vasta  10000  simulaatiokierroksen  tapauksessa.
Maksimikeskihajonta  edustaa  yleistä  tapausta.  Näyttäisi  siis  siltä,  että  10000
simulaatiokierrosta  on  sopiva  simulaatiokierrosten  lukumäärä  käytännön  sovelluksia
ajatellen.

Epävarmuuden  korrelaatio  vastaavan  yhteystodennäköisyyden
kanssa
Tarkastellaan  seuraavaksi  onko  yhteyden  toimintatodennäköisyyden  ja  algoritmin
antaman  virheen  koon  välillä  yhteyttä.  Toisin  sanoen,  onko  niin,  että  mitä  suurempi
yhteystodennäköisyys  sitä  suurempi  todennäköisyyden epävarmuus?  Jos  asia olisi näin,
suhteelliset virheet todennäköisyyksissä saattaisivat olla samaa luokkaa.

Tarkastellaan  kutakin  tapausta  (simulaatiokierrosten  lkm  =  100,  1000,  3500,  7000,
10000)  erikseen.  Aiemmin  saatuina  tuloksina  on  yhteystodennäköisyysmatriisin
keskiarvo  ja  vastaava  otoskeskihajontamatriisi.  Tulokset  voidaan  ryhmitellä  pareiksi
(yhteystodennäköisyys,  95  %  luottamusvälin  koko)  ottamalla  vastaavat  alkiot  edellä
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mainituista matriiseista. Näin saadaan 222 = 484 mittausparia yhteystodennäköisyyden ja
luottamusvälin  koon yhteydestä.  Asian  tutkimiseksi piirrettiin  viisi  kappaletta  (kullekin
simulaatiokierrosten  lukumäärälle) kuvaajia:  95  %  luottamusväli
yhteystodennäköisyyden  funktiona.  Alla  on  esitetty  nämä  kuvaajat  tapauksissa:
simulaatiokierrosten lkm = 1000 ja 10000.

Kuva 5. 95 % luottamusvälin koko (2 * otoskeskihajonta) yhteystodennäköisyyden
funktiona. Simulaatiokierrosten määrä oli 1000.
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Kuva 6. 95 % luottamusvälin koko (2 * otoskeskihajonta) yhteystodennäköisyyden
funktiona. Simulaatiokierrosten määrä oli 10000.

Kuvaajien  piirtämisen  lisäksi  havaintoaineistolle  laskettiin  korrelaatiot  Pearsonin
otoskorrelaatiota eli kaavaa (4) käyttäen:

yx

n

i
ii

xy ssn

yyxx
r

)1(

))((
1

−

−−
=

∑
= , missä xs  ja ys  ovat otoskeskihajontoja. (4)

Lasketut otoskeskihajonnat eri tapauksissa on esitetty taulukossa 2.

Taulukko  2.  Korrelaatio  yhteystodennäköisyyden  ja  95  %  luottamusvälin  koon  (2  *
otoskeskihajonta) välillä eri simulaatiokierrosten lukumäärillä.

Simulaatiokierrosten lukumäärä Korrelaatio todennäköisyyden ja
luottamusvälin koon välillä

100 0.0359

1000 ­0.0438

3500 ­0.0701

7000 ­0.0518

10000 ­0.2296
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Kuvia  5  ja  6  vastaavat  kuvat  muille  simulaatiokierrosten  määrille  kuin  1000  ja  10000
olivat hyvin samankaltaisia kuin edellä esitetyt kuvat. Kuvista 5 ja 6 havaitaan selvästi,
että yhteystodennäköisyyden ja luottamusvälin koon välillä ei ole suoraa yhteyttä. Tämä
nähdään  myös  tarkastelemalla  taulukon  2  korrelaatiota.  Kaikki  korrelaatio  ovat  lähellä
nollaa.  Ainoa  korrelaation  arvo,  joka  poikkeaa  nollasta  merkittävästi,  on  viimeinen
tapaus, jolloin simulaatiokierrosten lukumäärä oli 10000 – tällöin korrelaatio oli ­0.2269,
joka  ei  ole  suuri  arvo.  Kuvien  ja  taulukon  perusteella  voidaan  siis  sanoa,
yhteystodennäköisyyden  epävarmuuden  (luottamusväli)  ja  yhteystodennäköisyyden
suuruuden välillä ei ole selvää yhteyttä.
Kuvien 5 ja 6 sekä muista tapauksista piirrettyjen kuvaajien perusteella näyttäisi siltä, että
suurimmat  epävarmuudet  sijoittuvat  todennäköisyysvälin  keskelle.  Välin  päissä
( ]1.0,0[∈p   ja ]0.1,9.0[∈p )  epävarmuudet  näyttäisivät  olevan  pienempiä.
Kohdeorganisaation  kannalta  kiinnostava  on  erityisesti  loppupää ]0.1,9.0[∈p ,  sillä
tällöin todennäköisyyden toisellakin desimaalilla on merkitystä. Tulokset näyttävät tässä
mielessä  suotuisilta,  koska  epävarmuus  pienenee  todennäköisyysvälin  loppupäässä.
Kuitenkin täytyy muistaa, että analyysi koskee vain yhtä verkkoa, eikä tällöin kata yleistä
tapausta.

Malli tukiasemien tärkeyden määrittämiseksi
keskeisyysmitoilla
Keskeisyysmitoilla  pyritään  vastaamaan  kysymykseen,  ”Mikä  solmu  tai  mitkä  solmut
ovat  tärkeimmät/keskeisimmät  solmut  verkossa?”,  tai  nimenomaan  tässä  tapauksessa
”Minkä  tukiasemien  toiminta  tulisi  turvata  ensisijaisesti?”  Keskeisyysmittoja  käytetään
yleisesti  verkkoteoriassa  kuvaamaan  verkon  solmujen  tärkeyttä.  Keskeisyysmittoja  on
useita  erilaisia  ja  ne  mittaavat  solmujen  tärkeyttä  hieman  eri  tavalla  [1].  Tässä  työssä
käytämme solmujen keskeisyyden määrittämisessä seuraavia mittoja: strength, closeness
ja betweenness.  Näistä  mitoista betweenness  on  monimutkaisin  ja  sopii  parhaiten
armeijan viestiverkon tukiasemien tärkeyden mittaamiseen.

Painojen laskeminen
Edellä esitetyt keskeisyysmitat voidaan laskea sekä painottamattomille että painotetuille
verkoille.  Koska  viestiverkon  linkeille  on  määritelty  toimintatodennäköisyydet  ja  ne
vaihtelevat  huomattavasti  eri  linkkien  välillä,  on  selvää,  että  yhteydet  solmujen  välillä
eivät  ole  samanarvoisia,  ja  näin  ollen  keskeisyysmittojen  laskemisessa  kannattaa  ottaa
huomioon linkkien toimintatodennäköisyyksien perusteella määritetyt painot.

Closeness  ja betweenness  ­algoritmeissa  etäisyysmitan  laskemisessa  käytetään  linkin
päätesolmujen  välistä  etäisyyttä,  eli  pituutta,  joka  yleensä  määritellään  painon
käänteislukuna.  Kuten  aikaisemmin  on  todettu,  tässä  tapauksessa  linkin  päätesolmujen
välinen  etäisyys  (l)  on  järkevää  määritellä  linkin  toimintatodennäköisyyden  (p)
negatiivisena  luonnollisena  logaritmina,  eli l =  ­ln(p).  Logaritmillehan  tunnetusti  pätee
log(ab) = log(a)+log(b) ja näin ollen useamman solmun kautta kulkevan reitin pituus on
verrannollinen  reitin  toimintatodennäköisyyteen,  joka  lasketaan  kertomalla  yksittäisten
linkkien  toimintatodennäköisyydet  keskenään.  Tässä  lähestymistavassa  myös
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erikoistapaukset,  jossa  linkin  toimintatodennäköisyys  on  nolla  tai  yksi,  tulee  otettua
järkevästi  huomioon.  Kun  linkin  toimintatodennäköisyys  on  yksi,  eli  linkki  toimii
varmasti, linkin päätepisteissä sijaitsevien solmujen etäisyydeksi toisistaan saadaan nolla,
eli viesti  saadaan aina menemään  solmusta  toiseen. Kun  linkin  toimintatodennäköisyys
on nolla,  eli  solmusta  toiseen ei  saada  suoraa yhteyttä,  solmujen  väliseksi  etäisyydeksi
saadaan ääretön.

Strength  –keskeisyysmitan  laskemisessa  tarvitaan  taas  linkin  etäisyyden  sijasta  linkin
painoa. Paino (w) saadaan laskettua helposti etäisyyden (l) käänteislukuna, eli w = 1/l =
1/­ln(p).

Kuva 7. Solmujen painojen laskeminen.

Kuva  7  esittää  yksinkertaisen  esimerkin,  jossa  solmuun  tulee  kolme  linkkiä.  Linkkien
toimintatodennäköisyydet ovat a, b ja c. Linkkien pituudet lasketaan seuraavasti:

clblal cba lnlnln −=−=−=

Ja painot vastaavasti:
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Jos a = 0.9, b = 0.5 ja c = 0.1, niin

0.431.449.49ja2.300.690.11 ====== cbacba wwwlll

Eli  linkin a pituus on selvästi pienempi kuin linkin b pituus,  jonka pituus on puolestaan
selvästi  pienempi kuin  linkin  c pituus. Vastaavasta  linkin  a paino on  selvästi  suurempi
kuin  b:llä,  jonka  paino  puolestaan  on  selkeästi  c:n  painoa  suurempi.  Eli  linkin
toimintatodennäköisyyden  suuruus  vaikuttaa  merkittävästi  linkin  pituuteen  ja  painoon,
kuten pitääkin.

b

c

a
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Strength –keskeisyys
Painottamattomilla  verkoilla  yksinkertaisin  keskeisyysmitta  on degree. Degree  –mitta
kertoo  sen  montako  linkkiä  on  kiinnitetty  kyseiseen  solmuun.  Painotetuilla  verkoilla
degree  –mittaa  vastaava  mitta  on strength. Strength  –mitta  toimii  samalla  tavalla  kuin
degree,  mutta  nyt  linkkien  painot  otetaan  huomioon.  Strength  –mitta  on  siis  kaikkien
kyseiseen  solmuun  kiinnittyneiden  linkkien  painojen  summa.  Tässä  työssä  tarkasteltu
viestiverkko  ei  ole  symmetrinen,  vaan  solmuun  tulevan  linkin  toimintatodennäköisyys
voi  olla  eri  kuin  solmusta  lähtevän  linkin  toimintatodennäköisyys.  Näin  ollen
tarkastellaan  erikseen  kahta  mittaa: in­strength  ja out­strength. In­strength  kuvaa
solmuun  tulevien  lenkkien  vahvuutta  ja out­strength  solmusta  lähtevien  linkkien
vahvuutta.
Tarkastellaan  jälleen  kuvan  7  tapausta,  jossa  solmuun  on  kiinnittynyt  kolme  linkkiä.
Linkkien toimintatodennäköisyydet ovat a, b ja c. Solmun strength –mitta lasketaan:

cba wwws ++=

Tarkastellaan tapausta, jossa solmuun tulevien linkkien toimintatodennäköisyydet ovat a
= 0.9, b = 0.5  ja c = 0.1  ja solmusta lähtevien  linkkien a = b = c = 0.5. Näillä arvoilla
saadaan:

36.1143.044.149.9,,, =++=++= incinbinain wwws
32.444.144.144.1,,, =++=++= outcoutboutaout wwws

Huomataan,  että in­strength  ja out­strength  saavat  merkittävästi  erilaiset  arvot,  vaikka
linkkien toimintatodennäköisyyksien summa on sama. Tämä johtuu siitä, että lähellä yhtä
olevat  todennäköisyydet  saavat  hyvin  suuren  painon,  koska  yhteys  toimii  suurella
varmuudella. Pituuksia laskettaessa erot eivät ole aivan näin suuria.

Strength  –mitat  antavat  jonkinnäköisen  käsityksen  siitä,  mitkä  solmut  ovat  keskeisiä
viestiverkossa,  mutta  keskeisyysanalyysissa  näitä  arvoja  ei  pelkästään  kannata  kovin
paljoa tuijottaa. Ne toimivat lähinnä muiden mittojen tukena ja vertailukohteina.

Lyhyimmän polun laskeminen
Sekä closeness  että betweenness  ­keskeisyysmitat  perustuvat geodesic  pathin,  eli
lyhyimmän polun  laskemiseen.  Painottamattomilla  verkoilla polun pituus  tarkoittaa  sitä
kuinka  monta  linkkiä  on  kyseisellä  polulla  kuljettaessa  solmusta  A  solmuun  B.  Lyhin
polku on puolestaan se polku, jota pitkin päästään vähimmällä linkkimäärällä solmusta A
solmuun B. Painotetuilla verkoilla ei tarkastella solmujen välillä olevien linkkien määrää,
vaan  linkkien  pituuksia.  Lyhin  polku  on  siis  se,  jota  pitkin  kuljettaessa  linkkien
pituuksien  summa on  lyhyempi kuin millään muulla polulla kyseisten solmujen välillä.
Voi olla, että lyhyimpiä polkuja on myös kaksi tai useampia.

Lyhyimpien polkujen laskemisessa käytimme Dijkstran algoritmia [2], joka laskee kaikki
etäisyydet annetusta aloitussolmusta i seuraavasti:

1) Etäisyydet solmusta i muihin solmuihin tallenetaan taulukkoon ja jokaisen solmun
kohdalle merkitään joko ”exact”, joka tarkoittaa, että etäisyys solmujen välillä on
laskettu tarkasti, tai ”estimated”, joka tarkoittaa, että etäisyys solmujen välillä on
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arvioitu. Aloitetaan siten, että merkitään solmun i estimoiduksi etäisyydeksi 0 ja
muiden solmujen estimoiduiksi etäisyyksiksi  .

2) Valitaan niistä solmuista, joiden merkki on ”estimated”, se solmu, jonka estimoitu
etäisyys on pienin ja merkitään kyseisen solmun kohdalle ”exact”.

3) Tutkitaan tarkasteltavan solmun välittömiä naapureita, eli niitä solmuja mistä on
suora yhteys tarkasteltavaan solmuun. Lisätään tarkasteltavan solmun etäisyyteen
sen ja naapurisolmun välinen etäisyys ja muutetaan saatu summa naapurisolmun
estimoiduksi etäisyydeksi, jos se on pienempi kuin kyseisten solmujen nykyinen
estimoitu etäisyys.

4) Toistetaan askelta 2 niin kauan, kunnes ”estimated” –merkittyjä solmuja ei enää
ole.

Closeness –keskeisyys
Solmun  i closeness  –keskeisyys  on  keskimääräinen  geodesinen  etäisyys  solmusta  i
muihin solmuihin, eli lyhyimpien polkujen keskiarvo. Closeness –mitta on sitä pienempi
mitä  keskeisempi  solmu,  eli  solmusta  pääsee  keskimäärin  sitä  nopeammin  muihin
solmuihin mitä pienempi sen closeness­arvo on. Kun lyhyimmät polut kaikkien solmujen
välillä on  laskettu  edellä  esitetyllä  algoritmilla, closeness –mitta  jokaiselle solmulle on
helppo laskea ottamalla keskiarvo solmun i laskettujen lyhyimpien polkujen arvoista.

Betweenness –keskeisyys
Betweenness –mitta kuvaa sitä kuinka monella lyhyimmällä polulla solmu i sijaitsee, kun
tarkastellaan  lyhyimpiä  etäisyyksiä  jokaisen kahden verkon  solmun välillä. Tämä mitta
kuvaa  sitä  mitkä  ovat  verkon  vaikutusvaltaisimmat  solmut,  eli  minkä  solmujen  kautta
viesti useimmiten  liikkuu. Mitä suurempi betweenness –arvo kyseisellä solmulla on sitä
keskeisempi  solmu  on.  Jos  korkeimman betweenness­  arvon  omaava  solmu  poistetaan
verkosta,  verkon  solmujen  väliset  etäisyydet  kasvavat  yleensä  kaikista  eniten  (eli  tässä
tapauksessa viestiverkon toimintatodennäköisyys pienenee eniten). Betweenness –mittaa
voidaankin  pitää  varsin  hyvänä  keskeisyysmittana,  kun  tarkastellaan  viestiverkon
toimintatodennäköisyyksiä.

Betweenness  –mitan  laskemisessa  käytimme  Newmanin  algoritmia  [2],  jolla  laskenta­
aika saadaan supistettua arvoon O(mn), koska laskutoimituksia tarvitaan vain m kertaa n.
Yksinkertaisella  algoritmilla,  jossa  kaikki  polut  käydään  erikseen  läpi,  tarvitaan  mn2

laskutoimitusta ja laskenta­aika on O(mn2 ). Näin ollen käyttämällä Newmanin algoritmia
laskuaikaa saadaan supistettua huomattavasti. Newmanin algoritmin toimintaperiaate on
seuraava:

1) Lyhyimmät polut solmusta j kaikkiin muihin solmuihin lasketaan käyttämällä
Dijkstran algoritmia painotetuille verkoille.

2) Jokaiselle solmulle k asetetaan muuttaja bk , jolle annetaan arvoksi 1.
3) Kaikki solmut k käydään läpi aloittaen siitä solmusta, jonka etäisyys solmuun j on

suurin. Tämän solmun bk –arvo lisätään jokaiseen kyseisen solmun
edeltäjäsolmuun, eli niihin solmuihin joihin kyseisestä solmusta on suora yhteys.
Jos k:lla on enemmän kuin yksi edeltäjä arvo bk jaetaan tasan kaikkien edeltäjien
kesken. Esimerkiksi, jos solmulla k on kaksi lyhintä polkua, molempiin edeltäjiin
lisätään arvo bk/2.
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4) Kun kaikki solmut on käyty läpi, tuloksena saadut arvot bk kuvaavat sitä kuinka
monella lyhyimmällä polulla solmu k on mukana, kun tutkitaan solmun j
lyhyimpiä polkuja. Polun päätepisteet lasketaan myös kuuluvaksi lyhyimpään
polkuun. Arvoa bk pidetään juoksevana ja betweenness­ mitta lasketaan kaikille
mahdollisille n:lle arvolle solmusta j. Lopulliset juoksevat bk ­arvot ovat tarkka
betweenness­ mitta jokaiselle solmulle k.

keskeisyys.m
Keskeisyysmittoja laskeva MATLAB­funktio on nimeltään keskeisyys.m (ks. liite 4).

Funktiolle  annetaan  syötteenä  linkit­matriisi,  joka  sisältää  linkkien
toimintatodennäköisyydet. Funktio palauttaa betweennes –arvovektorin  (betw),  jossa on
kaikkien solmujen betweenness­mitta. Lisäksi funktio palauttaa haluttaessa closeness (cl)
­, out­strength (str_out) – ja in­strength (str_in) –arvot vektorimuodossa. Funktio piirtää
myös  kuvaajat  kustakin  keskeisyysmitasta.  Kuvaajissa  on  esitetty  kunkin  solmun
prosentuaalinen keskeisyysmitan osuus verrattuna muihin solmuihin.

Mallin ominaisuuksien analyysi yksinkertaisessa verkossa
Kuva 8 esittää yksinkertaisen verkon, jossa on viisi solmua ja viisi linkkiä. Tämän verkon
tapauksessa esitetään miten kuvan verkosta voidaan laskea edellä esitetyt keskeisyysmitat
strength,  closeness  ja betweenness. Lisäksi  keskeisyysmittoja  vertaillaan  keskenään  ja
tehdään johtopäätöksiä linkkien keskeisyydestä.

Kuva 8. Esimerkkiverkko.

Linkkien toimintatodennäköisyydet ovat seuraavanlaiset:

P=























19.0000
9.016.08.00

02.013.00
08.07.019.0
0009.01

Lasketaan toimintatodennäköisyyksien avulla linkkien pituudet. Saadaan seuraavanlainen
matriisi:

e

d

c

b

a
1 2

3

4 5
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





















=

00.1054InfInfInf
0.105400.51080.2231Inf

Inf1.609401.2040Inf
Inf0.22310.356700.1054

InfInfInf0.10540

L

Kun linkkien pituudet muutetaan painoiksi, saadaan painomatriisi:























=

09.4912000
9.491201.95764.48140

00.621300.83060
04.48142.803709.4912

0009.49120

W

In­strength ja out­strength saadaan laskettua painomatriisista helposti. Solmuun tulevien
linkkien vahvuudet,  eli in­strength  solmulle  i  saadaan  laskemalla  sarakkeen  i  alkioiden
arvot yhteen. Solmusta lähtevien linkkien vahvuudet, eli out­strength solmulle i saadaan
puolestaan  laskemalla  rivin  i  alkioden  summa.  Painomatriisi  W:sta  saadaan  seuraavat
vahvuudet:

out­strength: so1 = 9.49   so2 = 16.77    so3 = 1.45   so4 = 15.93    so5 = 9.49
in­strength:   si1 = 9.49    si2 = 14.80    si3 = 4.76    si4 = 14.59    si5 = 9.49

Huomataan, että  solmun kolme in­strength arvo on selvästi  suurempi kuin out­strength
arvo. Näin pitääkin olla, koska solmuun tulevien linkkien todennäköisyydet ovat selvästi
suuremmat  kuin  solmuista  lähtevien  linkkien  todennäköisyys.  Kuva  9  esittää
prosentuaaliset  in­strength­osuudet  kullakin  solmulla  ja  kuva  10  prosentuaaliset out­
strength­osuudet.  Kuvista  huomataan  vieläkin  selvimmin,  että  solmu  3  on strength  –
mitoille  mitattuna  selkeästi  vähiten  keskeisin.  Kun  katsotaan  verkon  rakennetta  ja
linkkien todennäköisyysmatriisia, huomataan, että linkkien todennäköisyydet vaikuttavat
strength­ arvoon huomattavasti solmujen sijaintia enemmän.
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Kuva 9. Verkon solmujen in­strength­arvojen prosentuaaliset osuudet.
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Kuva 10. Verkon solmujen out­strength­arvojen prosentuaaliset osuudet.
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Nyt  siirrytään closeness  ja betweenness  –arvojen  tarkasteluun.  Lasketaan  ensiksi
lyhyimmät polut Dijkstran algoritmilla. Saadaan seuraavanlainen matriisi:























=

00.10540.61620.32850.4339
0.105400.51080.22310.3285

1.53251.427101.20401.3093
0.32850.22310.356700.1054
0.43390.32850.46200.10540

SP

Closeness–arvo  solmulle  i  saadaan  laskettua  summaamalla  yhteen  rivin  i  kaikki  alkiot.
Solmuille saadaan seuraavat closeness­arvot:

c1 = 1.32   c2 = 1.01    c3 = 5.47   c4 = 1.17    c5 = 1.48

Kuten arvoista nähdään,  solmu 3 saa  selvästi  suurimman arvon,  joka  tässä  tapauksessa
tarkoittaa  sitä,  että  se  on  keskimäärin  kauimpana  muista  solmuista.  Kuva  11  näyttää
solmujen prosentuaaliset closeness –osuudet (tässä siis mitä pienempi prosenttiosuus sitä
keskeisempi solmu). Kun vertaillaan  tätä kuvaa strength –osuuksien kuviin, huomataan,
että molemmat keskeisyysmitat antavat hyvin samanlaisen tuloksen solmu 3 on selkeästi
muita epäkeskeisempi ja solmut 2 ja 4 ovat jonkin verran keskeisimpiä kuin solmut 1 ja
5.
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Kuva 11. Verkon solmujen closeness­arvojen prosentuaaliset osuudet.
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Betweenness  –arvot  saadaan  laskettua  lyhyimpien polkujen  matriisin  avulla  Newmanin
algoritmilla. Tulokseksi saadaan:

b1 = 5.0   b2 = 14.5    b3 = 5.0   b4 = 12.5    b5 = 5.0

Arvoja  tarkastelemalla  huomataan,  että  solmut  2  ja  4  ovat  selvästi  keskeisimmät  ja
solmut 1,  3  ja  5 ovat  kaikki  yhtä epäkeskeisiä.  Kuva 12 esittää betweenness –mittojen
prosentuaaliset  osuudet  kussakin  solmussa.  Tämä  tulos  eroaa  merkittävästi strength­  ja
closeness –mitoista,  joiden mukaan solmu 3 on selvästi epäkeskeisin. Kun  tarkastellaan
verkon  rakennetta  (kuva  8), betweenness  –mitan  keskeisyysarvio  tuntuu  huomattavasti
järkevämmältä kuin muiden keskeisyysmittojen tulokset. Kuvasta nähdään, että solmut 2
ja  4  ovat  verkossa  keskeisimmässä  asemassa.  Myös  solmu  3  näyttäisi  olevan
keskeisemmässä  asemassa  kuin  solmut  1  ja  5.  Kun  tarkastellaan
toimintatodennäköisyysmatriisia  huomataan  kuitenkin,  että  solmun  3  linkkien
toimintatodennäköisyydet  ovat  selvästi pienemmät  kuin muiden  solmujen välillä.  Muut
keskeisyysmitat  painottavat  näitä  pieniä  toimintatodennäköisyyksiä  huomattavasti
enemmän  kuin  verkon  yleistä  rakennetta. Betweenness  –mitta  näyttäisi  taas  pystyvän
ottamaan  huomioon  sekä  verkon  rakenteen,  että  linkkien  toimintatodennäköisyydet
solmujen  keskeisyyttä  määritettäessä.  Näin  ollen  voidaan  todeta,  että  viestiverkon
solmujen keskeisyyttä tutkittaessa päähuomio kannattaa kiinnittää betweenness­ arvoihin
ja strength­ ja closeness­ arvoja kannattaa pitää lähinnä lisäinformaatiota antavina.
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Kuva 12. Verkon solmujen betweennes­arvojen prosentuaaliset osuudet.
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Sovellusesimerkki luotujen työkalujen käytöstä
Havainnollistetaan  seuraavaksi  tekemiemme  funktioiden  toimintaa  rajoitetun  esimerkin
voimin.  Sovellamme  MATLAB­algoritmeja  yksinkertaiseen  viestiverkkoesimerkkiin,
jolloin  saamme  laskettua  annetulle  viestiverkolle  erinäisiä  tunnuslukuja.  Tämän
informaation  avulla  pyrimme  analysoimaan  viestiverkon ominaisuuksia kuten  solmujen
ja  linkkien  tärkeyksiä  ja  viestiverkon  kriittisiä  viestipolkuja.  Analyysin  perusteella
pyrimme lopuksi ottamaan kantaa siihen, miten saadun informaation perusteella verkkoa
kannattaisi vahvistaa,  tai hyökkäysnäkökulmasta mitä yhteyksiä  ja solmuja vastaan olisi
järkevintä hyökätä suurimman häiriön aikaansaamiseksi.

Otamme  tarkastelun  alle viestiverkon,  joka  koostuu yhteensä 9  tukiasemasta. Kyseinen
viestiverkko ei vastaa prikaatin viestiverkkoa,  joka koostuu yli 20 solmusta. Suppeampi
esimerkki  havainnollistaa  kuitenkin  paremmin  algoritmien  toimintaa  ja  analyysissä
saatavat tulokset  ja päätelmät pätevät myös suuremmille viestiverkoille. Alla on esitetty
tekstitiedosto, joka sisältää verkon  tiedot sarakkeittain järjestyksessä P­ ja I­koordinaatit
(metreinä),  tukiasemien  radioiden  kantamat  (metreinä)  ja  tukiasemien
toimintatodennäköisyydet.

860  7540  3000  0.97
2430  5320  3000  0.97

5100  5830  4000  0.97

4980  8010  3000  0.97

9750  2520  1500  0.95

4530  980  3000  0.97

8320  3880  3000  0.97

9010  540  1500  0.95

8420  7860  3000  0.97

Kuvaan 13 on havainnollistettu viestiverkon rakennetta sijoittamalla tukiasemat annettuja
koordinaatteja vastaaville paikoille.
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                                                         10km

Kuva 13.  Tarkasteltava verkko kartalla.

Syötetään  seuraavaksi  tekstitiedosto  lue_verkko.m­ajotiedostoon.  Taulukossa  3  on
esitetty  algoritmista  saadut  linkkien  toimintatodennäköisyydet.  Esimerkiksi  matriisin
ensimmäisellä  riviltä  voidaan  lukea  tukiasemasta  1  lähtevien  linkkien
toimintatodennäköisyydet. Diagonaalilla on aina ykkösiä, koska solmulla on aina yhteys
itsensä kanssa. Huomattavaa on, että matriisi ei ole symmetrinen, joka tarkoittaa sitä, että
radiosta A ei välttämättä ole yhteyttä  radioon B, vaikka  yhteys on olemassa  radiosta B
radioon.
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Taulukko  3.  Esimerkkiverkon  linkkien  toimintatodennäköisyydet  (alkio  a_ij  vastaa
yhteytttä solmusta i solmuun j).

1,00 0,82 0,12 0,15 0,00 0,00 0,00 0,00 0,00

0,82 1,00 0,82 0,19 0,00 0,10 0,00 0,00 0,00

0,37 0,86 1,00 0,89 0,14 0,19 0,81 0,09 0,81

0,15 0,19 0,85 1,00 0,00 0,00 0,06 0,00 0,36

0,00 0,00 0,00 0,00 1,00 0,00 0,17 0,15 0,00

0,00 0,10 0,09 0,00 0,05 1,00 0,10 0,12 0,00

0,00 0,00 0,19 0,06 0,87 0,10 1,00 0,39 0,17

0,00 0,00 0,00 0,00 0,15 0,00 0,00 1,00 0,00

0,00 0,00 0,18 0,36 0,04 0,00 0,17 0,00 1,00

Kuvassa  14  on  esitetty  graafisesti  tukiasemien  välille  muodostuneet  yhteydet.  Nuolen
suunta ilmaisee mihin suuntaan linkki toimii.

                                                         10km

Kuva 14. Viestiverkkoon muodostuvat linkit.

Kuva  14  paljastaa  miten  epäsymmetrinen  muodostuva  viestiverkko  on.  Vaikka
esimerkkiverkon  koko  on  suhteellisen  pieni,  on  päätelmien  teko  ilman  aputyökaluja
hyvin vaikeaa ellei mahdotonta.
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Syötetään  seuraavaksi  linkkien  toimintatodennäköisyydet  sisältävä  taulukko  3  ja
tekstitiedostossa  ilmenevät  solmujen  toimintatodennäköisyydet  laske_TNmatriisi.m­
komentotiedostoon  ja  lasketaan  kaikkien  solmujen  välisten  yhteyksien
toimintatodennäköisyydet. Alla oleva taulukko 4 sisältää nämä todennäköisyydet.

Taulukko 4. Solmujen välisten yhteyksien toimintatodennäköisyydet

1,00 0,81 0,71 0,68 0,52 0,25 0,59 0,32 0,62

0,84 1,00 0,83 0,78 0,61 0,29 0,69 0,37 0,72

0,79 0,87 1,00 0,89 0,71 0,31 0,80 0,43 0,84

0,71 0,78 0,84 1,00 0,63 0,27 0,71 0,39 0,77

0,04 0,05 0,05 0,05 1,00 0,03 0,16 0,19 0,06

0,16 0,18 0,18 0,17 0,23 1,00 0,22 0,21 0,16

0,22 0,25 0,27 0,27 0,81 0,16 1,00 0,45 0,32

0,01 0,01 0,01 0,01 0,14 0,00 0,02 1,00 0,01

0,35 0,38 0,42 0,44 0,39 0,14 0,42 0,22 1,00

Koska  matriisissa  ei  ole  yhtään  nollia,  viestiverkon  jokaisesta  solmusta  päästään
jokaiseen solmuun. Jos matriisi sisältäisi nollia, joku tai jotkut solmut olisivat eristyksissä
muusta viestiverkosta  ja viestiverkko olisi  rakenteeltaan susi. Tällöin olisi  joko lisättävä
viestiverkkoon solmuja tai järjesteltävä viestiverkon solmut uudelleen.

Esimerkkiviestiverkossa näyttäisi olevan ongelmia etenkin solmujen 5 ja 8 kanssa, joista
lähtevät  yhteyksien  toimintatodennäköisyydet  ovat  luokkaa <0.1.  Tämä  selittynee  sillä,
että solmut 5 ja 8 ovat liittyneitä muihin solmuihin vain solmun 7 kautta, jolloin ne ovat
hyvin  vahvasti  riippuvaisia  siitä.  Lisäksi  solmulla  8  on  yhteys  vain  solmuun  5,  mikä
pienentää sen yhteyksien toimintatodennäköisyyksiä huomattavasti. Viestiverkko ei toimi
riittävällä varmuudella näiden solmujen osalta ja tästä syystä solmujen 5, 6 ja 7 radioiden
tehoja  olisi  joko  nostettava  tai  sitten  nämä  solmut  olisi  sijoitettava  keskeisemmälle
paikalle  viestiverkossa.  Solmujen  välillä  on  siis  havaittavissa  selviä  eroja,
ääriesimerkkinä  solmut  3  ja  8,  joista  solmu  3  saa  viestiverkon  parhaat  yhteyksien
toimintatodennäköisyydet.  Tähän  syynä  ovat  solmujen  radioiden  kantamien  erot  ja
tukiasemien  toimintatodennäköisyyksien  eroavaisuus.  Lisäksi  solmulla  3  on  paljon
keskeisempi  asema  verkossa,  koska  sillä  on  suora  linkkiyhteys  viestiverkon  kaikkiin
muihin solmuihin, kun solmu 8 on yhteydessä vain solmuun 5. Solmun keskeinen sijainti
näyttäisi siis korreloivan vahvasti siitä  lähtevien yhteyksien  toimintatodennäköisyyksien
kanssa.  Viestiverkon  kriittiset  alueet  sijaitsevat  viestiverkon  laidoilla,  jossa  sijaitsevilla
solmuilla  on  vain  muutama  yhteys  muihin  tukiasemiin.  Taulukosta  4  luonnollisesti
nähdään, että mitä pitempi matka kahden solmun välillä on,  sitä pienempi on yhteyden
toimintatodennäköisyys.
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Lasketaan  vielä  betweenness­algoritmilla  keskeisyysmitat  viestiverkon  solmuille.
Kuvassa 15 on esitetty Betweenness­mitat verkon solmuille.

Kuva 15. Betweenness­mitat viestiverkon solmuille.

Betweenness analyysin mukaan solmut 3 ja 7 olisivat tärkeimpiä solmuja viestiverkossa.
Tämä on hyvinkin järkevä tulos sillä ilman solmua 7 solmut 8 ja 9 eristyisivät kokonaan
muusta  viestiverkosta.  Solmu  3:n  tärkeys  selittyy  sen  keskeisyydellä  viestiverkossa.
Näiden  tulosten  valossa  ensisijaisen  tärkeää  viestiverkon  toiminnan  kannalta  olisi
solmujen  3  ja  7  toiminnan  turvaaminen.  Vastaavasti  vihollisen  toiminnan  kannalta
ajateltuna  häirintätoimet  tulisi  kohdistaa  ennen  kaikkea  näihin  kahteen  solmuun
suurimman vaikutuksen aikaansaamiseksi.

Tarkastellaan solmun 3 tärkeyttä viestiverkon kokonaistoiminnan kannalta poistamalla se
viestiverkosta.  Tämä  havainnollistaa  tilannetta,  jossa  vihollinen  häiritsee  onnistuneesti
solmun 3 toimintaa. Kuva 16 esittää viestiverkkoa tässä uudessa tilanteessa.
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Kuva 16. Esimerkkiviestiverkko ilman solmua 3.

Taulukossa  5  on  esitetty  solmujen  välisten  yhteyksien  toimintatodennäköisyydet,  kun
solmu 3 on poistettu viestiverkosta.

 Taulukko 5. Solmujen väliset toimintatodennäköisyydet ilman solmua 3.

1,00 0,78 0,27 0,04 0,08 0,04 0,03 0,10

0,78 1,00 0,28 0,04 0,09 0,04 0,03 0,10

0,27 0,28 1,00 0,10 0,04 0,11 0,05 0,34

0,01 0,01 0,02 1,00 0,02 0,16 0,19 0,03

0,08 0,09 0,04 0,15 1,00 0,11 0,16 0,03

0,04 0,04 0,11 0,81 0,10 1,00 0,43 0,17

0,00 0,00 0,00 0,14 0,00 0,02 1,00 0,00

0,10 0,10 0,35 0,18 0,03 0,19 0,09 1,00

Vertaamalla  taulukkoa  5  taulukkoon  4  nähdään,  että  solmun  3  poistaminen  laskee
vahvasti  melkein  kaikkien  muiden  yhteyksien  toimintatodennäköisyyksiä.  Tämä  tukee
Betweenness­algoritmin tulosta. Viestiverkkoesimerkissä vain yhden solmun poistaminen
aiheuttaa käytännössä koko viestiverkon  luhistumisen. Solmun 3 rooli viestiverkossa on
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tässä mielessä ylikorostunut ja sen tueksi keskeiseen asemaan olisi siirrettävä joku toinen
solmu  tai  koko  viestiverkon  rakenne  olisi  mietittävä  uudelleen.  Analyysin  perusteella
voidaan  vetää  johtopäätös,  että  Betweenness­algoritmi  kuvaa  hyvin  viestiverkon
solmujen  tärkeyttä  ja  sen  antamien  tulosten  perusteella  voidaan  priorisoida  solmujen
suojausta tai toisaalta viestiverkkoa vastaan harjoitettavaa häirintää.

Demonstroidaan  vielä  funktion  laske_TN.m  toimintaa  tarkastelemalla  tilannetta,  jossa
radio  A  liittyy  solmuihin  2  ja  6  lähettääkseen  viestin  radiolle  B,  joka  on  liittynyt
solmuihin  4  ja  9.  Lasketaan  yhteyden  toimintatodennäköisyys  laske_TN.m­
komentotiedostolla,  antamalla  funktiolle  jälleen  parametreina  linkkien  ja  solmujen
toimintatodennäköisyydet ja vektorit, jotka kertovat mihin solmuihin radiot liittyvät (A =
[2 6] ja B = [4 9]). Kuva 17 ilmentää tilannetta.

Kuva 17. Kaksi erillistä radiota liittyy runkoverkkoon.

Tulokseksi  saadaan  0.81,  joka  on  suhteellisen  hyvä  yhteyden  toimintatodennäköisyys.
Liittymällä  useampaan  runkoverkon  solmuun  saavutetaan  suurempi  yhteyden
toimintatodennäköisyys, kun liityttäisiin vain yhteen solmuun.
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Pohdinnat ja yhteenveto
Projektityön  tuloksena  saatiin  kaksi  erillistä  mallia:  malli  viestiverkon
todennäköisyyksien laskemiseksi ja malli viestiverkon solmujen tärkeyden mittaamiseksi.
Viestiverkon  toimintatodennäköisyydet määrtittävä malli näistä toteutettiin Monte Carlo
–simulaatioon perustuen. Alun perin idean oli lähestyä ongelmaa minimikatkosjoukkojen
kautta,  mutta  tämä  lähestymistapa  hylättiin,  kun  oivallettiin,  että  Monte  Carlo  –
simulaatiolla  haluttuihin  tuloksiin  päästää  huomattavasti  yksinkertaisemmin  ja
kätevämmin.  Tähän  malliin  sisältyy  kolme  MATLAB:lla  ajettavaa  tiedostoa:
lue_verkko.m, laske_TNmatriisi.m ja laske_TN.m. Näiden avulla voidaan koordinatti­ ja
kantamatietoina  annetulle  viestiverkolle  laskea  yhteystodennäköisyysmatriisi  (kertoo
todennänköisyyden,  että  solmusta  i  saadaan  yhteys  j:hin)  sekä  määrittää  kahden
runkoverkkoon  liittyvän  radion  yhteystodennäköisyys.  Kohdeorganisaation  antamiin
tavoitteisiin  laskenta­ajan  ja  laskentatarkkuuden  suhteen  päästiin  valitsemalla
simulaatiokierrosten  lukumääräksi  10000.  Tällöin  laskenta­aika  pöytätietokoneessa  on
20­50 solmua sisältävissä verkoissa luokka 5 – 60s molempien algoritmien  tapauksessa.
Algoritmien  antama  tarkkuus  on  tällöin  0.02  (95  %  havainnoista  kuuluu  välille

02.0±p ).

Malli  viestiverkon  tukiasemien  (solmujen)  tärkeyden  mittaamiseksi  toteutettiin
keskeisyysmittoja  käyttämällä.  Malliin  liittyy  MATLAB­tiedosto  keskeisyys.m,  joka
laskee  annetun  verkon  solmuille  keskeisyysmitat  out­strength,  in­strength,  closeness  ja
betweenness.  Näistä  Puolustusvoimien  viestiverkon  tapauksessa  käyttökelpoisin  on
betweenness.  Betweenness­arvo  mittaa  tehokkaasti  solmujen  tärkeyttä  verkossa,  kuten
havaittiin  edellä  esitetyssä  sovellusesimerkissä,  joissa  suurimman  betweenness­arvon
omaavan  solmun poistaminen verkosta aiheutti  sen, että  kaikki  yhteystodennäköisyydet
laskivat merkittävästi.

Raportin  johdannossa  määritettyihin  tavoitteisiin  on  siis  päästy.  Muina  tavoitteina
mainittu hyödyllisen tiedon tuottaminen esim. viestiverkkojen suunnittelua ja elektronista
sodankäyntiä  varten  toteutui  osittain.  Raportin  koko  ei  antanut  periksi  laajamittaista
analyysia  otollisesta  verkon  rakenteesta  yms.;  siispä  kohdeorganisaation  kannalta
hyödyllistä tietoa on tuotettu vain mallien ja sovellusesimerkkien muodossa.

Valitsemamme lähestymistavat ongelmiin (Monte Carlo –simulaatio ja keskeisyys­mitat)
ovat  erittäin  onnistuneita.  Vaikka  luodut  mallit  ovat  onnistuneita  ja  sopivat  hyvin
tarkoituksiinsa,  voidaan  niitä  halutessa  kehittää  edelleen.  On  mahdollista,  että
todennäköisyysmallien käyttämää  laskenta­aikaa voidaan pienentää  siirtymällä esim. C­
ohjelmointikieleen. Todennäköisyyksien tarkkuutta on kuitenkin vaikea kasvattaa, mikäli
pitäydytään  Monte  Carlo  –menetelmissä.  Kuitenkin  verkon  todennäköisyyksien
laskemiseen Monte Carlo –menetelmä on melko varmasti paras lähestymistapa.
Solmujen  tärkeyttä  mittaavaa  malli  nojaa  betweenness­mitan  arvioon  solmujen
tärkeydestä.  Betweennes­mitan  heikkoutena  voidaan  pitää  sitä,  että  se  ottaa  huomioon
pelkästään  lyhyintä  (todennäköisintä)  polkua  kulkevat  reitit  ja  niiden  varrella  olevat
solmut.  Viesti  kulkee  luonnollisesti  myös  muita  kuin  lyhyimpiä  reittejä  pitkin,  näitä
reittejä ei kuitenkaan oteta solmujen keskeisyyttä määritettäessä huomioon. Betweenness­
algoritmin  muunnelmia,  jotka  ottavat  myös  muut  reitit  huomioon,  on  kehitelty  esim.
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Newmanin  satunnaiskävelyyn  perustuva  kehittyneempi  betweenness­keskeisyys  [3].
Käytännössä näiden algoritmien antamat tulokset eivät kuitenkaan poikkea merkittävästi
käyttämästämme  lyhyimpiin  polkuihin  perustuvasta  algoritmista.
Ominaisarvovektorihajotelmaan perustuva  eigenvector­keskeisyys  [1]  on  myös  yleisesti
käytetty  keskeisyysmitta,  joka  voisi  betweenness­keskeisyyden  lisäksi  tuoda  myös
olennaista  tietoa  viestiverkon  tukiasemien  keskeisyydestä.  Algoritmin  soveltamisessa
suunnatuille verkoille on kuitenkin omat ongelmansa.
Luotuja malleja voidaan käyttää suoraan avuksi Puolustusvoimien viestiverkoissa. Nämä
uudentyyppiset verkot ovat ns. ad hoc­verkkoja, joissa viesti voi kulkea solmujen välillä
kaikkia  sallittuja  reittejä  pitkin.  Mallien  avulla  voidaan  tutkia  esimerkiksi  optimaalista
viestiverkon  rakennetta  (mikä  viestiverkko  kestää  parhaiten  häirinnän  ja  muut
hyökkäykset?)  ja  elektronisen  sodankäynnin  vaikutusta  prikaatin  toimintaan.  Eräs
kiinnostava  lähestymistapa  jälkimmäiseen  olisi  esim.  tutkia  skenaarioanalyysin  kautta
elektronisen häirinnän vaikutusta viestiverkon ja koko prikaatin toimintaedellytyksiin. Eri
skenaarioissa voitaisiin  luoda  todenmukaisia elektronisia hyökkäyksiä,  joissa hyökkääjä
estää tai häiritsee tiettyjen linkkien ja solmujen toimintaa.
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Liitteet
Liite 1: MATLAB­tiedosto lue_verkko.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% lue_verkko.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Laskee koordinaatti­ ja kantamatiedoista linkkien ja solmujen toiminta­

% todennäköisyydet.

% Parametrit: teksti­ tai exel­tiedosto

% Palautusarvot: solmut (solmujen toimintatodennäköisyydet) ja linkit

% (linkkien toimintatodennäköisyydet)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [solmut, linkit] = lue_verkko(a)

%luetaan data

b = length(a);

if('t' == a(b))

matriisi = load(a);

else

matriisi = xlsread(a);

end;

[M,N] = size(matriisi);

%solmujen toimintatodennäköisyydet

solmut = matriisi(:,4);

%lasketaan eri solmujen väliset etäisyydet

etaisyydet = zeros(M);

for m = 1:M

    for n = 1:M

    etaisyydet(m,n)= sqrt((matriisi(m,1) ­ matriisi(n,1))^2 + (matriisi(m,2) ­ matriisi(n,2))^2);

    end

end

%lasketaan linkkien toimintatodennäköisyydet voimaa­funktion avulla

linkit = zeros(M);

for m = 1:M

    for n = 1:M

        %lasketaan nimen omaan tn., että on yhteys m:stä n:ään

        %nämä eivät ole symmetrisiä

        linkit(m,n) = linkki_tn(matriisi(m,3), etaisyydet(m,n));

    end
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end

function tod = linkki_tn(kantama, etaisyys)

%approksimoidaan paloitteisella lineaarisella funktiolla

% etäisyydellä 0 todennäköisyys 1, kantaman päässä tod 0.8,

%1.2kantaman päässä tod 0.2 ja 2*kantama tod on 0

if(etaisyys > 2 * kantama)

    tod = 0;

elseif(etaisyys <= kantama)

    tod = ((­0.2*(etaisyys / kantama)) + 1);

elseif((etaisyys > kantama) && (etaisyys <= 1.2*kantama))

    tod = ­ 3 * etaisyys / kantama + 3.8;

else

    tod = ­0.25 * etaisyys / kantama + 0.5;

end;

Liite 2: MATLAB­tiedosto laske_TNmatriisi.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% laske_TNmatriisi.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Laskee verkon kokonaistoimintatodennäköisyydet.

% Parametrit: solmut (solmujen toimintatodennäköisyydet) ja linkit

% (linkkien toimintatodennäköisyydet).

% Palautusarvot: TNmatriisi (yhteystodennäköisyysmatriisi, jonka alkio

% a_ij sisältää todennäköisyyden, että solmusta i saadaan yhteys j:hin).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function TNmatriisi = laske_TNmatriisi(solmut,linkit)

%%%%%%%%% Alkuarvot %%%%%%%%%%%

% Simulaatiokierrosten lukumäärä

rounds=10000;

%Iteraatio alkaa

onnistuneet=zeros(length(solmut));

for round=1:rounds,

    toimivat=[];

    %arvotaan toimivat solmut

    for i=1:length(solmut),

        if solmut(i) > rand(1)
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            toimivat=[toimivat,i];

        end

    end

    %Muodostetaan matriisi vain toimiville solmuille

    runko=zeros(length(toimivat));

    for i=1:length(toimivat),

        for j=1:length(toimivat),

            if linkit(toimivat(i),toimivat(j)) >= rand(1)

             runko(i,j)=1;

            end

        end

    end

    %Lasketaan mistä solmusta on yhteys mihinkin solmuun

    yhteydet=runko^length(toimivat);

    %Tutkitaan mitkä palat yhteydessä

    for i=1:length(toimivat),

        for j=1:length(toimivat),

            if yhteydet(i,j) > 0

                onnistuneet(toimivat(i),toimivat(j)) = onnistuneet(toimivat(i),toimivat(j)) + 1;

            end

        end

    end

end

%Lasketaan viestiverkon toimintatodennäköisyysarvio

TNmatriisi = onnistuneet / rounds;

% asetetaan vielä TN_matriisin diagonaalit ykkösiksi

for i=1:length(solmut)

    TNmatriisi(i,i)=1;

end

Liite 3: MATLAB­tiedosto laske_TN.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% laske_TN.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Laskee todennäköisyyden, että radiosta 1 saadaan yhteys radioon 2.

% Parametrit: solmut (solmujen toimintatodennäköisyydet), linkit

% (linkkien toimintatodennäköisyydet), liitos1 (vaakavektori, joka sisältää

% niiden solmujen numerot, joihin radio1 on liittynyt) ja liitos2
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% (vaakavektori, joka sisältää niiden solmujen numerot, joihin radio2 on

% liittynyt).

% Palautusarvot: TN (yhteystodennäköisyys).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function TN = laske_TN(solmut,linkit,liitos1,liitos2)

%%%%%%%%% Alkuarvot %%%%%%%%%%%

% simulaatiokierrosten lukumäärä

rounds=10000;

%Muodostetaan bin­vektori, jossa 1 jos solmuun liitytään

liitos1vek=zeros(length(solmut));

liitos2vek=zeros(length(solmut));

for i=1:length(liitos1),

    liitos1vek(liitos1(i))=1;

end

for i=1:length(liitos2),

    liitos2vek(liitos2(i))=1;

end

%Iteraatio alkaa

onnistuneet=0;

for round=1:rounds,

    toimivat=[];

    liitetyt1=[];   % sisaltää indeksit toimivat­vektorissa

    liitetyt2=[];

    %arvotaan toimivat solmut

    for i=1:length(solmut),

        if solmut(i) > rand(1)

            toimivat=[toimivat,i];

            if liitos1vek(i) == 1

                liitetyt1=[liitetyt1,length(toimivat)];

            end

            if liitos2vek(i) == 1

                liitetyt2=[liitetyt2,length(toimivat)];

            end

        end

    end

    %Muodostetaan matriisi vain toimiville solmuille
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    runko=zeros(length(toimivat));

    for i=1:length(toimivat),

        for j=1:length(toimivat),

            if linkit(toimivat(i),toimivat(j)) >= rand(1)

             runko(i,j)=1;

            end

        end

    end

    %Lasketaan mistä solmusta on yhteys mihinkin solmuun

    yhteydet=runko^length(toimivat);

    %Tutkitaan kulkeeko viesti arvotussa verkossa liitos1 ­> liitos2

    apu=0;

    for i=1:length(liitetyt1),

        for j=1:length(liitetyt2),

        apu = apu + yhteydet(liitetyt1(i),liitetyt2(j));

        end

    end

    %Jos viesti kulkee, kasvatetaan onnistuneita

    if apu > 0

        onnistuneet=onnistuneet+1;

    end

end

%Lasketaan yhteyden toimintatodennäköisyysarvio

TN = onnistuneet / rounds;

Liite 4: MATLAB­tiedosto keskeisyys.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% keskeisyys.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Laskee halutut keskeisyysmitat annetun verkon solmuille ja piirtää

% kuvaajat mittojen prosentuaalisesta jakaumasta yli solmujen.

% Parametrit: linkit (linkkien toimintatodennäköisyydet).

% Palautusarvot: betw (betweennes), cl (closeness)

% str_out(out­strength), str_in(in­strenght).

% Palautusarvot ovat vektoreita, jossa on keskeisyysmittojen arvot

% kullekin solmulle.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [betw,cl,str_out,str_in] = keskeisyys(linkit)
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koko=size(linkit,1);  %linkkimatriisin koko

sp=zeros(koko); %alustetaan shortest paths ­matriisi

%lasketaan linkeille painot

for(i=1:koko)

for(j=1:koko)

painot(i,j)=­log(linkit(i,j));

end

end

%%% SHORTEST PATHS

for(i=1:koko)

solmut=zeros(koko,1); %alustetaan solmut

lapikaynti=zeros(koko,1); %0, jos estimated, 1, jos exact

apulk=solmut; %apumuuttuja,  jotta  löydetään helposti pienin solmu,  jota  ei  ole  käyty
jo läpi

%muutetaan tutkittava solmu nollaksi ja muut äärettömäksi

for(j=1:koko)

solmut(j,1)=inf;

apulk(j,1)=inf;

end

solmut(i,1)=0;

apulk(i,1)=0;

%Käydään vuorotellen kaikki solmut läpi, aloittaen pienimmästä ei­läpikäydystä solmusta

while (min(lapikaynti) == 0)

[y,ind]=min(apulk);

%Käydään läpi naapurisolmut, ja muutetaan tarvittaessa arvoa

for(k=1:koko)

if(painot(k,ind)+y < solmut(k,1))

solmut(k,1)=painot(k,ind)+y;

apulk(k,1)=painot(k,ind)+y;

end

        end

lapikaynti(ind)=1;  %Merkitään, että kyseinen solmu on käyty läpi

apulk(ind)=inf;

end

%Tallennetaan solmun i shortest paths

sp(:,i)=solmut;
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end

%%% BETWEENNESS

betw=zeros(koko,1); %alustetaan 'betweenness­laskuri'

betw_solmut=zeros(koko);

%muodostetaan yhteydet kertova matriisi (1, jos on yhteys, muuten 0)

for(i=1:koko)

for(j=1:koko)

if(linkit(i,j)~=0)

yhteydet(i,j)=1;

end

end

end

%Käydään kaikki solmut järjestyksessä läpi

for(i=1:koko)

b=ones(koko,1); %annetaan kaikkien solmujen b­arvoksi 1

spi=sp(i,:);

[spis,ind]=sort(spi);  %lajitellaan shortest pathsien pituuden mukaan

kaytylapi=zeros(koko,1);%alustetaan taulukko läpikäydyille solmuille

kaytylapi(i)=1; %ja merkitään tutkittava solmu läpikäydyksi

%Tutkitaan lähimmät naapurit aloittaen kauimmasta solmusta

for(j=0:koko­1)

kaytylapi(ind(koko­j),1)=1; %merkitään, että kaukaisin solmu on käyty läpi

predec=0;

%Lasketaan monta edeltäjää kauimmaisella solmulla on

for(k=1:koko)

if(yhteydet(k,ind(koko­j))==1 && kaytylapi(k,1)==0)

predec=predec+1;

end

end

%Kasvatetaan b­arvoa, jos solmu on tutkittavan ja kauimmaisen solmun välisellä lyhimmällä reitillä

%b­arvoa kasvatetaan luvun tutkittavan solmun b­arvo/edeltäjien määrä verran

for(k=1:koko)

if(yhteydet(k,ind(koko­j))==1 && kaytylapi(k,1)==0)

b(k)=b(k)+b(ind(koko­j))/predec;

end

end

end

betw=betw+b; %lisätään betw­lukuun tutkitun solmun betweenness­arvot
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end

%lasketaan betweenness_prosentit

betw_sum=sum(betw);

betw_pct=betw/betw_sum;

figure(1);

bar(betw_pct);

title('Betweenness');

ylabel('prosentissa poluista');

xlabel('tukiasema nro');

%%% CLOSENESS

%lasketaan shortest pathsien summat kussakin solmussa

cl=(sum(sp'))';

cl_sum=sum(cl);

cl_pct=cl/cl_sum;

figure(2);

bar(cl_pct);

title('Closeness');

ylabel('prosenttia kaikkien polkujen pituudesta');

xlabel('tukiasema nro');

%%% STRENGTH

%muutetaan painot siten, että vahvalla linkillä on suuri paino ja heikolla pieni

vahvuus=zeros(koko);

for(i=1:koko)

for(j=1:koko)

if(painot(i,j)~=0)

vahvuus(i,j)=1/painot(i,j);

end

end

end

%lasketaan out­ ja in­strengthit

str_in=sum(vahvuus);

str_out=sum(vahvuus');

%lasketaan prosentit ja piirretään kuvat

str_out_sum=sum(str_out);

str_out_pct=str_out/str_out_sum;

figure(3);

bar(str_out_pct);

title('out­strenght');
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ylabel('prosenttia kaikista vahvuuksista');

xlabel('tukiasema nro');

str_in_sum=sum(str_in);

str_in_pct=str_in/str_in_sum;

figure(4);

bar(str_in_pct);

title('in­strenght');

ylabel('prosenttia kaikista vahvuuksista');

xlabel('tukiasema nro');

Liite 5: Kohdeorganisaatiolta saatu esimerkkiverkko.
Tiedot ovat sarakkeittain järjestyksessä P­koordinaatti,  I­koordinaatti, kantama ja radion
toimintatodennäköisyys. P­koordinaatti, I­koordinaatti ja kantama on annettu metreissä.
9100 15200  10000  0.99

15400  21100  10000  0.99

18300  12200  10000  0.99

24100  18500  10000  0.99

30100  12700  10000  0.99

33200  18000  10000  0.99

5800 17200  5000 0.95

11900  27200  5000 0.95

13600  25400  5000 0.95

24100  22300  5000 0.95

29800  20600  5000 0.95

35400  22300  5000 0.95

39000  14700  5000 0.95

34400  14300  5000 0.95

18100  6800 5000 0.95

23200  10300  5000 0.95

14800  18900  5000 0.95

12100  9700 5000 0.95

41800  20800  2000 0.92

41700  19900  2000 0.97

39100  19600  2000 0.92

40200  16500  2000 0.91


