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Johdanto

Tyon lahtékohta ja tavoitteet

Taman projektitydbn tarkoituksena on tarkastella Suomen  Puolustusvoimien
viestiverkkojen toimintaluotettavuutta. Projekti on osa Teknillisen korkeakoulun kurssin
Mat-2.177 Operaatiotyotutkimuksen projektitydseminaaria. Ongelmanasettgjana toimii
Puolustusvoimien Teknillinen Tutkimuslaitos (PvTT).

viestiverkon hyokkaykselle asettamat rgjoitukset ja riskit. Ei ole mitddn jarkea toteuttaa
hyokkéaysoperaatiota, jonka onnistuminen edellyttdd viestiverkon toimivuutta, jos
viestiverkon toiminta on hyvin epdvarmaa tai riippuu muutaman helposti tuhottavan
komponentin toiminnasta. Puolustavalle osapuolelle on vastaavasti erittain hyodyllista
tietdd toisen osapuolen viestiverkon heikot kohdat, joiden tuhoaminen tai toiminnan
estaminen vaikeuttaa hyokkaysta.

Projektityon tavoitteena on luoda Puolustusvoimien kayttéon malleja ja tyokaluja, jotka
edesauttavat viestiverkon toimintaluotettavuuden arviointia ja viestiverkon tarkeimpien
osien loytamista. Tarkemmin méaariteltyna projektin tavoiteasettelu on seuraava:

Ensmméinen tavoite: rakenna ja koodaa malli, jonka avulla voidaan maarittaa
annetun viestiverkon toimintatodennakoisyys, ts. todennakoisyys, etta solmusta A
saadaan yhteys solmuun B.

Toinen tavoite: rakenna ja koodaa malli, jonka avulla voidaan tarkastella eri
solmujen keskeisyytta viestiverkon toiminnan kannalta.

Muut tavoitteet: tuottaa hyodyllistd tietoa ja johtopadtelmid viestiverkon
toiminnasta viestiverkon rakenteen suunnittelua ja elektronista sodankayntia
gatellen.

Raportin sisaltod

Raportti on suunnattu ensisijassa matematiikkaan perehtyneille, mutta olemme pyrkineet
kirjoittamaan rgportin siten, ettd matematiikkaan syvéallisesti perentyméatonkin pystyy
omaksumaan mallien perusperiaciteet ja kayton. Téatd edesauttavat vaihe vaiheelta
|8pikaytavat kayttoesimerkit.

Raportti sisdltéd kirjallisuuskatsauksen Puolustusvoimissa kéytettdvissa olevista
viestiverkoista sek& lyhyen johdannon matemaattiseen verkkoteoriaan. Raportissa
kasitell&an kahta luotua mallia, viestiverkon toi mintatodenndkoisyydet maarittavad mallia
ja solmujen keskeisyyttéd mittaavaa mallia. Luodut mallit vastaavat edella esitettyd
tavoiteasettelua.

Ensin kasitelléan toimintatodennakoisyydet méadrittévaa mallia. Malli johdetaan Monte
Carlo —smulaatiosta kasin, luodut algoritmit kdydaan 18pi, tutkitaan algoritmien antamien
tulosten virheita seka niiden laskenta-aikavaatimuksia. Solmujen keskeisyyttd mittaava
malli johdetaan graafiteoriassa madritellyista keskeisyysmitoista. Luotu malli kéydaan



kohta kohdalta l&pi. Mallin ominaisuuksia analysoidaan yksinkertaisessa verkossa
Lopuks on viela sovellusesimerkki, joka valottaa sekd todenndkoisyysmalliin etta
keskeisyysmalliin liittyvien tyokal ujen k&yttoa ja niisté saatavien tulosten tulkintaa.

Raportissa pohditaan myds mallien hyodyllisyytta kdytdnndssa. Yritetédn saadun datan

gatellen. Tamédn perusteella mietitdéan mallien  puutteita ja mahdollisia
jatkokehityskohteita

Kohdeorganisaatio

Puolustusvoimien Teknillinen Tutkimuslaitos PvTT on padosin pddesikunnan alainen osa
Suomen puolustusvoimia, jonka tehtdv&nd on tuottaa puolustusvoimien ja
maanpuolustuksen  kehittdmiseks ja padtoksenteon tueksi  elektroniikan ja
informaatiotekniikan, suojan sek& asetekniikan tutkimuspalvelut. PVvTT keskittyy niille
tutkimuksen osa-aueille, joilla el ole osaamista maamme muissa tutkimuslaitoksissa, tai
joilla  puolustusvoimien oma tutkimustoiminta on véttdmaonta Laitoksen
tutkimuskohteina ovat aseet ja ampumatarvikkeet, r&jdhteet, sotavarustuksessa
kaytettavat materiaalit, epdkonventionaaliset aseet ja niiltd suojautuminen, optroniikka,
héiveteknologia seka elektroniikka- ja informaatioteknologia. Taman projektityon
tavoitteena on tukea elektroniikka- ja informaatiotekniikan osaston tutki musta.

Kirjallisuuskatsaus

Kirjdlisuuskatsauksessa on lyhyt katsaus matemaattiseen verkkoteoriaan eli
graafiteoriaan siltd osin kun sitd tassa tyossa kaytetdan. Taman jakeen kasitelldan
Puolustusvoimien viestiverkkoja kaytéannon tasolla ja méaritelldadn niihin liittyvia
késitteita sekd kerrotaan tarvittavia taustatietoja esimerkiksi  elektronisesta
sodankaynnista.

Yleista verkoista matematiikassa

Verkko (so. graafi) koostuu solmuistaja niitd yhdistavista linkeista. Y ksinkertaisimmassa
tapauksessa verkko on suuntaamaton, eli jos solmusta i on linkki solmuun j, on myo6s
solmusta j linkki solmuun i. T&ssA tydssa tarkastellaan kuitenkin suunnattuja verkkoja
Matemaattisesti verkko on kéatevaa esittéa yhteysmatriisilla A, jonka akio Ajj = 1, jos
solmusta i on linkki solmuun j. Verkon linkkeihin voidaan myds liitté4 paino, jolloin
puhutaan painotetuista verkoista. Yhteysmatriisi on edelleen kéteva esitystapa, akio Ajj
vastaa nyt i:sta j:hin kulkevan linkin painoa. Tassi tydssa linkkien painot vastaavat
yhteystodennékdisyyksia solmujen valilla. Toisinaan verkot on jarkevaa maaritella siten,
ettd myos rinnakkaiset linkit ovat mahdollisa. Talldin siis solmujen i jaj valilla voi olla
useita linkkeja. Néitd emme kuitenkaan tarvitse tassa projektitydssa.

Matemaattisessa graafiteoriassa el suoraan kasitella tapausta, jossa eri solmujen toiminta
on epdvarmaa. Téassa tydssa solmuillakin (eri pisteissd sijaitsevilla radiolla) on
toimintatodenndkbisyys. Tata tietoa e voi  Ssdlyttéa e linkkien
toimintatodenndkoisyyksiin. Solmujen epavarma toiminta on siis otettava huomioon
erikseen.



Verkoissa on hyddyllistd madritelld solmujen etdisyys linkkien painojen avulla
Esimerkiksi keskeisyystarkastelut vaativat tdmén |ahestymistavan. Painottamattomassa
verkossa solmujen i ja j valisella etdisyydella tarkoitetaan pienintd mahdollista maaraa
linkkeja, joiden l&pi kulkemalla pastdan solmusta i solmuun j. Painotetuissa verkoissa
etaisyys on hieman monimutkaisempi kasite. Linkin paino maaritellédn nimittain lahes
aina siten, etta suuri paino viittaa voimakkaaseen yhteyteen linkin padtesolmujen valilla
Taman takia linkin p&itesolmujen valistd etdisyytta ei ole jarkevda madritella linkin
painona. Jos linkkien painot ovat mielivaltaisa positiivisia reaalilukuja, méaritellaén
linkin péiden vélinen etdisyys usein painon kaanteislukuna. T&ssa projektitydssa
tarkastellaan kuitenkin verkkoja, joissa linkkien paino vastaa todennakoisyytta, etta
|&hetetty viesti kulkee linkin |&pi, eli se on aina nollan ja yhden vélill& Todenndkoisyys,
etta viesti kulkee kahden perékkaisen linkin 18pi, on linkkien painojen tulo. Taméan takia
linkin paétesolmujen valinen etéisyys eli linkin pituus on jarkevda méaaritella painon
k&anteisluvun luonnollisena logaritmina, silla logaritmillehan tunnetusti patee log(ab) =
log(a)+log(b). Nyt mielivaltaisen solmun i etéisyys toisesta mielivaltaisesta solmusta |
voidaan madritel|a pienimpand mahdollisena linkkien " pituuksien” summana kuljettaessa
i:stéj:hin.

Puolustusvoimien viestiverkot

Monipuoliset ja toimivat viestiyhteydet ovat einehto puolustusvoimien tehokkaalle
toiminnalle. Puolustusvoimat tarvitsevat viestiyhteyksia operaatioiden tukemiseen,
joukkojen komentamiseen ja valvomiseen ja riittavan tilannetietoisuuden saavuttamiseen.
Seuraava katsaus puolustusvoimien viestiverkkoihin perustuu pagosin artikkeliin [1].

Taisteluyksikoiden yhteistoiminta viestiyhteyksien avulla on ratkaisevaa digitaalisella
taistelukentall &. Suomen puol ustusvoi mat aloittivat 1990-luvun alussa
ohjelmistoradioiden (SDR) tutkimuksen ja kehittdmisen tulevaisuuden radiosysteemeja
varten.

Ohjelmistoradiot muodostavat Ad Hoc —viestiverkon eli kommunikointi on langatonta
verkon laitteiden valilla. Verkko muodostuu dynaamisesti langattomien laitteiden vdlille
ilman etukéteen konfiguroitua rakennetta. Téllaisessa verkossa kommunikointi niiden
laitteiden valill&, joihin el ole suoraaradioyhteyttd, tapahtuu valisolmujen kautta. Ad Hoc
—verkko muodostaa automaattisesti viestiliikenneyhteyden lahettavan ja vastaanottavan
solmun vélille ja viesti voi kulkeatall6in kaikkia mahdollisia viestiverkon reitteja pitkin.
Ad hoc —verkkotekniikkaa mahdollistaa my0s viestiverkon muodostamisen liikkuvien
solmujen vélille, mika edesauttaa viestiyhteyksien yll&pitdmisen liikkeessa olevien
joukkojen vdlilla. Tama on Ad Hoc —verkkojen yksi suurimmista eduista verrattuna
vanhanaikaisiin staattisiin verkkoihin, jotka eivat toimi liikkeessa.

Ohjelmistoradio mahdollistaa eurooppadaisen kriisinhalinnan  yhteisoperaatiot.
Ohjelmistoradion merkitys on keskeinen puolustushaara-, aselgji- ja kansallisuusrgat
ylittdvassd yhteistoiminnassa ja yhteisoperaatioiden toteuttamisessa tulevaisuuden
taistelukentdlld, silla se tekee eri aselgjien ja puolustushaarojen véalisen yhteydenpidon
helpommaksi. Se on osa verkkokeskeisen sodank&ynnin mahdollistavia teknologioita ja
tukee puolustusvoimien integroidun tiedustelu-, valvonta- ja johtamisjarjestelman
kehittamista.



Puolustusvoimien ohjelmistoradio -hankkeessa kehitetddn puolustusvoimille kaupallisia
komponenttgga  hyddyntdva  ohjelmistoradioalusta,  suuren  tiedonsiirtokyvyn
mahdollistava mukautuva lagakaistainen aaltomuoto, paikannusaaltomuoto seka
adaptiivinen antennijarjestelma.

Prikaatin viestiverkko

Seuraavaksi tarkastellaan prikaatin viestiverkon toimintaa vihamielisessa ymparistossa.
Prikaatin Ad Hoc -verkon solmuissa on digitaaiset VHF-radiot prikaatin sisdiseen
kommunikaatioon ja yhteistoimintaan siviilipuolen kanssa kaytetddn yleista
matkapuhelinverkkoa (UMTS). Kuvassa 1 on estetty yksi esmerkki prikaatin
viestiverkosta, jossa joukot ovat jakautuneet 20 x 20 km aluedle. Mustat ympyrét
kuvastavat verkon tukiasemia ja viivat tukiasemien vélille muodostuneista yhteyksi sta.
Y hteydet voivat ollavain toispuoleisiariippuen solmujen radioiden ominaisuuksista.

v

A

20 km
Kuva 1. Esimerkki prikaatin viestiverkosta

Viestintdvalineet on kiinnitetty taistelugjoneuvoihin, jotka voivat olla Ad Hoc —
verkkotekniikan ansiosta liikkeessd. Jokainen solmu tukee kommunikaatiota muiden
solmujen ja muiden paallekkésten verkkojen kanssa yhteyden muodostuessa



automaattisesti solmujen vélille. Eri siviiliverkkojen avulla (UMTS) tuetaan asevoimien
ja siviilien yhteistoimintaa. Viestiverkon digitaaliset VHF-radiot voivat operoida joko
yhdella kanavalla tai tagjuushyppytilassa. Jalkimmaisessa tilassa radio muuttaa tagjuutta
noin 100 kertaa sekunnissa VHF-radion tagjuusalueella vaikeuttaen viestiverkon
hairintaa.

Elektroninen sodankaynti

Elektroninen sodankéynti muodostuu kolmesta eri osa-alueesta: elektroninen tuki,
elektroninen hyokkays ja elektroninen suojelu. Elektronisilla tukitoimilla tarkoitetaan
elektromagneettisen energian ldhteiden etsintddn, tunnistamista ja paikantamista
Elektroninen hyokkays tarkoittaa elektromagneettisen energian kayttoa hyokkayksissa eri
kohteita vastaan. Elektronisella suojelulla pyritéan henkilGiden, varusteiden ja kiinteiden
kohteiden suojeluun elektronisia hyokkayksia vastaan.

Viestiverkon hairinta

Viestiverkkoa voidaan héirita monilla eri menetelmilla. Harinnan pdétyypit ovat spot-,
response-, swept-, comb- jabarrage - héirinta

Spot-hdirintda harjoittaessa héirintd kohdistetaan yhdelle kanavale ja héirintdsignaalin
kaistaleveys on tavalisesti sama kuin héirittdvan kanavan kaistaleveys. Hairinndssi
kaytetddn suunnattavia antennegja, joilla maksimoidaan hairinndn vaikutusta viestin
vastaanottgjassa. Y hden kanavan héirinta maksimoi hairintavaikutusta samalla kanavdla
operoiviin vastaanottgjiin. Response-héirinnassa hairitsija kayttaa etsintavastaanotinta ja
hé&irint&& toteutetaan vain kun viestiliikennettd havaitaan tarkkailtavala kanavalla.

Barrage-hairinndssa hairintasignaali jakautuu tietylle tagjuusalueelle usean eri kanavan
ylle. Barrage-hairintd tarvitsee onnistuakseen vain vahan informaatiota hairittévén
systeemin kayttamista tag uuksi sta, mutta toisaa ta hdirinnén teho yhta kanavaa kohden ei
ole yhta korkea kuin spot — héirinndssg, koska héirinndn teho jakautuu tasaisesti
hairittavan tagjuusalueen ylle. Comb-héirinnassa keskitytddn hairinnéssa samanaikai sesti
useaan eri kanavaan. Tassa tapauksessa hdirintdteho on korkeampi kuin barrage-
h&irinnassa, koska héirinta keskittyy tiettyihin kanaviin barrage-harinnassa kaytettévan
tagjuusalueen sijaan.

Swept -hairinta operoi tietyilla lahekkaisilla kanavilla ja héirintéd toteutetaan
suunnattujen antennien avulla. Swept-hairintd hairitsee vain yhta kanavaa kerralaan ja
koko hairintés gnaalin |ahettdjan teho keskittyy yhdelle kanavalle.

Hairintalaitteiden sijoitus
Hairintdsignaalin 1dhettga voidaan djoittaa monella tavalla. Eri sijoitusvaihtoehdot

asettavat kuitenkin ragjoitteita kaytettavalle hairitsijélle painon, tilavuuden jaliikkuvuuden
suhteen.

Yksi mahdollisuus on sijoittaa hairintalahetin taisteluajoneuvoon. Ajoneuvoihin voidaan
gjoittaa suhteellisen raskaita ja tehokkaita héirintd systeemejd verrattuna muihin
liikkuviin ratkaisuihin. Ajoneuvojen liikkuvuus on kuitenkin rgjoitettua taistelukentalla



Hairitsijdn kantamaa rgoittavat maastonmuodot erityisesti operoitaessa korkeilla
tagjuuksilla. Tavallisesti goneuvoissa kéytettavien hairintalahettimien teho on 1 — 10 kW.

Toisadta hairintél aitteisto voidaan Sijoittaa helikopteriin tai
miehittamattomadn/normaaliin - henkiloston  operoimaan  lentokoneeseen.  [Imasta
operoitaessa laitteiston liikkuvuus on suuri etu eivdtkd maanmuodot vaikuta
hairintaldhettimen toimintaan. llma-alusten koko ja painon kantokyky aiheuttavat
kuitenkin raoituksia hairintalaitteiston painolle ja teholle, jolloin puhtaassa tehossa
jéédaén verrattuna maasta operoitaviin ratkaisuihin. Tavallisesti ndiden laitteiden
héirint&teho on noin 1kW luokkaa.

Kevyita harintal aitteistoja voidaan levittda tykiston avullata sotilaat voivat kantaa niita
héirintatehon saavuttamiseksi. Kevyiden hairintéléhettimien teho vaihtelee 20 — 100 W:n
vdlillajane painavat normaalisti 10 — 15 kg.

Prikaatin viestiver kon toiminta hairinnan vaikutuksien alla

Tehdyissa kokeissa on todettu, ettd UMTS siviiliverkon toiminta on hyvin vgavaista, jos
elektronisen sodankaynnin keinoja kaytetdan verkkoa vastaan. Tehokkaalla siviilitahojen
ja taisteluyksikéiden yhteistoiminnalla voidaan kuitenkin taata paremmat viestiyhteydet
eri verkoissa toimiville. Lagale tagjuusalueelle kohdistuva héirintd ei ole kovin
tehokasta prikaatin Ad-Hoc verkkoa vastaan, jos verkon radiot kayttavét vaihtotaajuus-
mallia Jatkuvat muutokset tagjuudessa estévédt tehokkaan héirinndn yksikoiden
viestiyhteyksia vastaan. Yhteen kanavaan keskittyv&4 hairintdd voidaan kayttda, jos
vastustaja saa selville kaytettdvan |dhetysavaimen tai jos héirinnalla kyetéén rikkomaan
radioiden tahdistus.

Pataljoonataso on prikaatin viestiverkon haavoittuvaisin osa. Yhteydet patajoonan
yksikoistéd komentopaikalle ovat pitkat eivatka yksikot voi normaalissa tilanteessa ottaa
muihin tukiasemiin yhteyttd. Jos vastustaja |0ytéa viestiverkon kriittiset osat, se voi
héiritd tiettyja tarkeimpia solmuja ja estdd suunnatuilla antenneilla kaikki pitkét
radioyhteydet lamauttaen prikaatin viestitoiminnan. Ad Hoc -—verkkoa vastaan
toimittaessa hairitsjdn olis tehokasta kayttdd useita eri hairintdldhettimid, jotka
toimisivat samaan alkaan eri taguusalueilla. Talloin on kuitenkin mahdollista, etta
ongel mia syntyy oman viestiverkon ja héirinnén sekaantumisesta.

Viestiverkon toimintavarmuus paranis, jos myds komppanioilla oliss omat Ad Hoc —
solmut, joiden avullane voisivat olla yhteydessd muihin solmuihin VHF-aueella. Taloin
olisi hyvin vaikeaa |6ytaa prikaatin viestiverkosta erityisen haavoittuvia osia. Toinen
mahdollisuus olisi taktisten internet palveluiden kayttdminen yksikkotasolla. Myos tassa
tapauksessa yhteydet muihin ké&ytt&jiin muodostettaisiin tukiasemien kautta.



Malli yhteyksien toimintatodennékoisyyksien
maarittamiseks

Yleista Monte-Carlo-menetelmista

Monte-Carlo on yleisnimitys stokastislle agoritmeille, joita kéytetéédn yleensa
laskennallisesti raskaiden ongelmien ratkomiseen. Erityisen pajon Monte-Carlo
menetel mi& kaytetaén laskennallisessa fysiikassa, klassinen esimerkki on moniulotteisten
maaréttyj en integraalien numeerinen ratkai seminen.

Tassa projektityossd tarvitsemme vain kaikkein yksinkertaisinta Monte-Carlo
menetelmé4, ns. Hit-or-miss-menetelmaa. Y ksinkertai suudestaan huolimatta Hit-or-miss
tarvitsemassamme erityistapauksessa selvinnee seuraavan esimerkin avulla, vaikkakin
matematiikkaan perentyméttéman voi olla vaikea |6yt&a yhteytta integraalil askentaan.

Ha uamme laskea yksikkOympyran, eli ympyrén, jonka sdteen pituus on yksi, pinta-alan.
Tama voidaan tehda Hit-or-miss-menetel mall& seuraavasti.

1) Piirraympyra, jonka sdde on yksi jasen ympérille yksikkonelio.

2) "Heittele’ satunnaisesti No kappa etta pisteité nelion sisalle.

3) Laske ympyran sisdlle osuneiden pisteiden lukumaara N.

4) Ympyran pinta-alan osuus nelitn pinta-alasta, joka tassa tapauksessa on my6s
ympyran pinta-ala (silla nelion pinta-ala on yksi), on yksinkertaisesti No/N.

8l !
Matemaattisesti ilmaistuna edellisesséa approksmoitiin  yksikkdympyrén Lebesguen
mittaa. Y hteys integraalilaskentaan 10ytyy siita etté kyseinen tehtéva tarkoittaa integraalin

Of (X)dx f(x)=1, kun |x|<1 jaf(x) =0 muualla Q)

[04][o4]

ratkaisemista, jossa dx on Lebesguen mitta. Taman oivaltaminen e kuitenkaan ole
valttdmatonta tulevan ymmartdmiseks. Monte-Carlo menetelmien hyodyllisyys ja
katevyys eivat valttdmétta tulleet esille vield edellisestd esimerkista, silla kyseinen
integraali on hyvin helppoa ratkaista analyyttisesti. Jos kuitenkin halutaan arvioida ala
olevassa kuvassa esitetyn kappaleen pinta-alaa, jossa ympyran kaarta on hieman



modifioitu, eivat anayyttiset menetelmé enda toimi. Hit-or-miss toimii aivan kuten
ympyrankin tapauksessa, lasketaan taas kappaleen sisélle osuneiden pisteiden osuus
kaikista pisteista. Tassa tapauksessa standardit numeeriset menetel méatkin toimivat ilman
ongelmia, mutta Kkuvitellaanpa seuraavaks vastaava tehtdva epasdannolliselle
useampiulotteiselle kappaleelle. Deterministiset integrointimenetelméat karsivat niin
sanotusta moniulotteisuuden kirouksesta (" curse of dimensionality”): laskennan tyoméaara
voidaan kayttda vain hyvin pieniulotteisiin integraaleihin. Hit-or-miss-menetelma toimii
kuitenkin aina samallatavalla. Virhe k&yttaytyy ulottuvuudesta riippumatta kuten 1/ JN,
jossa N on ”heitettyjen” pisteiden lukumaard. Taman ominaisuuden takia Monte-Carlo-
menetelmét ovat usein ainoa mahdollinen keino ratkaista moniulotteinen integraali.

Toimintatodenndkoisyydet maarittavat algoritmit

Tassd tyossh méaittdemme  viestiverkon  radioiden  vdlisten  yhteyksien
toimintatodenndkoisyydet MATLAB-koodien avulla. MATLAB valittiin tyokalujen
toteuttamisympéristoksi, koska se on joustava ja tehokas vaihtoehto paljon
matriisil askentaa sislltavien a goritmien toteuttamiseen.

Olemme kehitténeet algoritmin, jolla voimme laskea arviot radioiden vélisten linkkien
toimintatodennakdisyyksille perustuen radioiden |8hetystehoon ja niiden vélisiin
etaisyyksiin (lue_verkko.m). Radioiden vélisten yhteyksien toimintatodennakdisyyksien
maédrittamiseen kaytdmme Monte-Carlo -menetelmiéd. Tarkastelemme kahta tapausta
Ensmmaisessa tgpauksessa médritdmme todenndkoisyydet, joilla ns. runkoverkkoon
kuuluvat radiot saavat yhteyden toisiinsa. Toisessa tapauksessa médritamme
todenngkdisyyden, jolla runkoverkkoon liittyva radio saa yhteyden toiseen samaan
verkkoon liittyvan radion kanssa Tapauksesta tekee mielenkiintoisen se, etta radiot
voivat liittyd useampaan kuin yhteen tukiradioon. Olemme kehittaneet molemmille
tapauksille Monte-Carlo-menetemiin perustuvat algoritmit, jotka ottavat parametreikseen
verkkoon kuuluvien radioiden ja niiden vélisten suorien (el siis muiden radioiden kautta
kulkevien) yhteyksien toimintatodennakoisyydet, sekd iteraatiokierrosten, el
"heitettédvien pisteiden” lukumddran. Seuraavaksi ndihin algoritmeihin liittyvien
g otiedostojen toiminnan.
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lue_verkko.m

Tama gotiedosto méaérittdd viestiverkkoon kuuluvien radioiden vaisten linkkien
toimintatodennakdisyydet radioiden etéisyyksien ja kantamien perustedla MATLAB-
koodi on esitetty liitteessa 1. Sy6tteend algoritmille on annettava kaikkien viestiverkkoon
kuuluvien radioiden djainti, kantama ja toimintatodennakdisyys teksti- tai Excel-

valisten suorien linkkien toimintatodenndkdisyydet ja Nx1-vektorin, joka sisdltéa
viestiverkon radioiden toimintatodenndkoisyydet. Esitetd&n seuraavaksi agoritmin
toimintavaiheittain.

2)
3)

4)

solmujen toimintatodennékoisyydet. Tiedosto on laadittavaniin, etta

ensimmai sessa sarakkeessa ovat radioiden P-koordinaatit, toisessa sarakkeessa
radioiden I-koordinaatit, kolmannessa radioiden kantamat ja neljannessa radioiden
toimintatodenndk6isyydet. Huomattavaa on, etté seka koordinaatit ja kantamat on
annettava samassa yksikdssa ja sarakkeet on erotettava tabul aturilla, jos tiedot
annetaan txt-tiedostona. Koska vain radioiden etéisyyksilla on merkityst&, voidaan
kartan nurkkaan méarittda nol | api ste, jonka mukaan radioiden P- jal- koordinaatit
voidaan helposti méarittaa. Tiedoston nimi luetaan parametrina. Tiedot voidaan
sy6ttéa myos Excel-tiedostona. Ajotiedosto tunnistaa tiedostonimen paétteen
perusteella onko kyseessa .txt- vai .xls-tiedosto. Esimerkki tekstitiedostosta on
annettu liittessa 5 (kohdeorganisaati olta saatu esi merkkiverkko).

Tallennetaan seuraavaksi radioiden toimintatodenndkoi syydet solmut-vektoriin ja
luodaan NxN-matriisi radioiden etéisyyksien laskemista varten.

L asketaan radioiden etéisyydet koordinaattien perusteella Pythagoraan lauseen
avulla.

L asketaan radioiden vélisten linkkien toimintatodennakdisyydet. Tassa
hyddynnetdan apufunktiota linkki_tn, joka laskee kahden radion véalisen linkin

toi mintatodenndk6isyyden radioiden etéi syyden jalahettdvan radion kantaman
perusteella. Linkin toimintatodennakdisyytta on approksimoitu paloittain
méaéaritetylla lineaarisella funktiolla, jonka on esitetty graafisesti kuvassa 2.
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Kuva 2. Viestiyhteyden toimintatodenndkdisyyden approksimointi radioiden vélisen
etdisyyden (yksikkd 1000m) avulla.

Kuvassa 2 kantamaksi on annettu 5000 metrid. Kuten kuvasta nakyy, muodostuu funktio
kolmesta eri osasta. Kantamaa pienemmilla etdisyyksilla todenndkdisyys vaimenee
hitaasti ja kantamaa vastaavalla etéisyydella todenngkdisyys on vield 0.8. Taméan jalkeen
todennakdisyys laskee jyrkasti ja etéisyydelld 1.2 x kantama toimintatodennakdisyys on
endd 0.2. Tasta eteenpdin toimintatodennakdisyys aenee hitaasi kohti nollaa ja
etdisyydella 2 x kantama se héviaa kokonaan.

Tama funktio on hyvin yksinkertainen, mutta se pavelee tdman tyon tarkoitusperia
riittavan hyvin. Tassd tydssa sivuutamme linkin toimintatodennakoisyyteen liittyvan
radioteknisen ongelmakentén ja jét&mme nain huomioimatta mm. maaston vaikutuksen
toimintatodenndkoisyyteen. Funktio on kuitenkin laadittu niin, ettd sitd on helppo
muuttaa ja parantaa tarkempien linkkien toi mintatodennakoi syyksien saamiseksi.

laske TNmatriisi.m

Tama gjotiedosto (ks. liite 2) maarittéd runkoverkkoon kuuluvien radioiden vélisten
yhteyksien toimintatodenndkoisyydet. Parametreiks annetaan yksittéisten radioiden
toimintatodenndkoisyydet N:n pituisessa vektorissa (solmut) ja radioiden valisten suorien
yhteyksien toimintatodenndkoisyydet NxN kokoisessa matriisissa (linkit). Solmut-
vektorin perustaalla radioille voidaan gatellaindeksit 1,...,N. Taman lisdks gjotiedostoa
editoimalla voi halutessa muuttaa simulaatiokierrosten madraa (rounds). Itse algoritmi
toimii siten, etta arvotaan redisaatioita stokastisesta verkosta ja tallennetaan muistiin
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kunkin realisaation tapauksessa toimivat yhteydet (Hit-or-miss). Lopuksi lasketaan
kuinka suuressa osassa tgpauksia yhteys toimi kunkin parin ja kummankin suunnan
kohdalla. Tdmé on toteutettu seuraavasti:

1) Luodaan NxN matriisi (onnistuneet), jonkakaikki akiot ovat nolliatoimivien
yhteyksien lukumaérien tallentamiseen.

2) Aloitetaan silmukka, jonka kukin kierros vastaa yhté iteraatiokierrosta

3) Arvotaan, mitka solmut toimivat, jatallennetaan niiden indeksit
suuruug érjestyksessi M -pituiseen vektoriin (toimivat).

4) Arvotaan, mitka toimivien solmujen valisista yhteyksista toimivat jailmoitetaan
tulos MxM matriisissa (runko), jonkaindeksit menevét samallatavalla, kuin
edellisessa kohdassa luodun vektorin. Matriisin alkion arvo 1 vastaa toimivaa
suoraa yhteyttd ja O toimimatonta suoraa yhteytta.

5) Korotetaan edellisessi kohdassa luotu matriis M :nteen potenssiin, jolloin
saadaan uusi MxM matriisi (yhteydet). Matrisin akion arvo O vastaa
toimimatonta yhteytté (suoraa ja epasuoraa) janollasta eroava arvo toimivaa
yhteytta.

6) Tutkitaan mitka yhteyksista toimivat edel lisessé kohdassa luodun matriisin avulla
jakasvatetaan toimivien yhteyksien tapauksessa 1. kohdassa luodun matriisin
vastaavaa alkiota yhdella

7) Paataan kohtaan 2, jos iteraatiokierrosten lukumaéré on pienempi kuin haluttu,
muuten edetdan seuraavaan kohtaan.

8) Jaetaan 1. kohdassaluotu matriisi kierrosten lukumagral g, jolloin saadaan NxN
matriisi, jonka akiot kertovat yhteyksien toi mintatodenndkoi syyksien arviot.

Edellisen algoritmin 5. kohta saattaa vaikuttaa hieman epaselvéltd. Kohdassa esitetty
johtopaatds perustuu tunnettuun graafiteorian lauseeseen: Bindarisen yhteysmatriisin n:n
potenssin akio (i,j), vastaa i:sta j:hin menevien n:n pituisten polkujen lukumaérda. Nyt
emme ole Kkiinnostuneita polkujen lukumaardstd, vaan siita onko radioiden valilla
yhteytta, eli yhtéén polkua.

laske TN.m

Tama gjotiedosto (ks. liite 3) maarittéa kahden runkoverkkoon liittyvan radion valisen
yhteyden toimintatodenndkdisyyden. Toinen radiosta on |8hettdja ja toinen vastaanottaja.
Toimintatodennakoisyys on suunnattu todennakoisyys, ettd lahettdd saa yhteyden
vastaanottgjaan (verkko on epasymmetrinen). Verkkoon liittyvat radiot voivat liittya
mielivaltaiseen maérdan radioita ja ndiden " liittymis-yhteyksien” oletetaan toimivan. Itse
asiassa gjotiedosto siis maarittéd todenndkadisyyden, etta jostakin runkoverkosta valitusta
m:sta radiosta saadaan yhteys johonkin etukéteen valituista n:sta radiosta. Parametreina
algoritmi tarvitsee edellisessa osiossa esitellyn algoritmin parametrien lisaksi m:n
pituisen vektorin, jossa kerrotaan mihin runkoverkon radioihin lahettga liittyy (liitosl) ja
n:n pituisen vektorin (liitos2), jossa ilmoitetaan ne radiot, joihin vastaanottgja liittyy.
Taman jalkeen dgoritmi toimii seuraavasti:
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1) Luodaan N:n pituinen vektori (liitoslvek), jonkaakio on 1, jos lahettgjaliittyi
kyseisté akiota vastaavaan radioon, ja 0 muuten. Luodaan vastaava vektori
(liitos2vek) myds vastaanottgjan liitdnndille.

2) Luodaan muuttuja (onnistuneet) onnistuneiden yhteysyritysten maarén
tallentamista varten.

3) Aloitetaan silmukka, jonkakukin kierros vastaa yhté iteraatiokierrosta.

4) Arvotaan, mitk& solmut toimivat, jatallennetaan niiden indeksit
suuruug arjestyksessa M -pituiseen vektoriin (toimivat). L uodaan my6s vektorit
(liitetytd, liitetyt2), jotka kertovat liiténtdjen indeksit téssa vektorissa.

5) Arvotaan, mitka toimivien solmujen valisista yhteyksista toimivat jailmoitetaan
tulos MxM matriisissa (runko), jonkaindeksit menevét samallatavalla kuin
edellisessa kohdassa luodun vektorin. Matriisin alkion arvo 1 vastaa toimivaa
suoraa yhteytta ja 0 toimimatonta suoraa yhteytta.

6) Korotetaan edellisessa kohdassa luotu matriisi M :nteen potenssiin, jolloin saadaan
uusi MxM matriisi (yhteydet). Matrisin alkion arvo 0 vastaa toimimatonta
yhteytta (suoraa ja epasuoraa) ja nollasta eroava arvo toimivaa yhteytta.

7) Tutkitaan onko |ahettavasta radiosta yhteytté vastaanottavaan radioon ja
kasvatetaan 2. kohdassa luodun muutujan arvoa yhdella jos yhteys on olemassa.

8) Palataan kohtaan 3, jos iteraatiokierrosten lukumaaré on pienempi kuin haluttu,
muuten edetdan seuraavaan kohtaan.

9) Jaetaan 2. kohdassaluodun muuttujan arvo kierrosten lukuméarél l& Saatu tulos
on yhteyden toi mintatodennakoisyyden arvio.

Algoritmien vaatima laskenta-aika

Kohdeorganisaatio asetti tiettyja vaatimuksia algoritmien l|askenta-aikojen suhteen.
Kahden radion vélisen yhteystodenndkoisyyden méérittaminen tuli olla mahdollista
reaaliaikaisesti (laskenta-aika < 1 min). Toisaalta koko verkon yhteystodennakdisyyksien
maarittdminen sai viedd enemman aikaa. Nama laskenta-ai kavaateet koskevat normaalia
poytétietokonetta.

Tarkastellaan siis agoritmeja laske TN.m ja laske TNmatriisi.m. Naista edelliselle oli
asetettu erityinen vaatimus nopeudesta. Kohdeorganisaatio soveltaa luotuja mallega
viestiverkkoihin, joissa on 20 — 50 solmua. Laskentaaika riippuu kaytettévasta
simulaatiokierrosten médrasta seka analysoitavan verkon koosta. Riippuvuus
simulaatiokierrosten maarastd on luonnollisesti lineaarinen, silla simulaatiokierrokset
ovat odotusarvoisesti samanlaisia (verkon stokastisuudesta johtuen ne eivét ole aina
samanlaisia).

Simulaatiokierroksien vaikutusta kiinnostavampi tutkimuksen kohde on verkon koko.
Analysoimme agoritmien laske TN.m ja laske_ TNmatriisi.m vaatimaa |laskenta-aikaa
generoimissamme verkoissa, joissa solmuja oli 15 — 50. Ajoimme Kotitietokoneella
kummankin algoritmin 10000 kierroksella kullakin verkon koolla (8 eri kokoa) kolme
kertaa ja mittassmme laskentaan kuluneen ajan. Keskiarvot laskenta-gjoista eri verkon
kooillaon esitetty kuvassa 3.
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Kuva 3. Verkon koon vaikutus laskenta-aikaan.

Kuvasta nahddan, ettda koko verkon yhteystodennakoisyyksien laskemiseen
(laske_TNmatriisi) ei mene juurikaan kauemmin kuin yksittéisten verkkoon liittyneiden
radioiden yhteystodenndkoisyyden laskemiseen (laske TN). Tamd voi vakuttaa
yllattavalta, mutta selittyy sillg, ettd algoritmit eroavat toisistaan 18hinn& yhteyksien
tarkistamisen suhteen (tarkistetaan mistd on yhteys mihinkin). Laske TNmatriisi.m:ss&
tarkistetaan kaikkien solmujen véliset yhteydet, kun taas laske TN.m:ss8 vain [8hett&j8an
ja vastaanottgaan yhteydessa olevien solmujen yhteydet. Tastd seuraa, ettd kaikkien
yhteyksien todenndkoi syyksien laskeminen vie vain vahan enemman aikaa.

Kuvasta ndhdaan myos, etta simulaatiokierroksia ollessa 10000, toteutuu
kohdeorganisaation vaatimus laske TN.m:n laskenta-gjalle kaikissa verkon kokoluokissa.
Laske TNmatriisi.m voi halutessa gjaa suuremmallakin simulaatiokierrosten maaralla,
koska tassa tapauksessa kaytetylle laskenta-gale el ollut rgoituksia.

Varianssianalyysi: tulosten epavarmuus

Tutkimme verkon yhteystodenngkdisyydet méérittévien algoritmien antamien tulosten
epdvarmuutta (laske TNmatriisi.m ja laske TN.m). Tutkimuksen kohteena on tulosten
epdvarmuuden  riippuvuus  simulaatiokierrosten  lukuméérastd seka vastaavan
yhteystodenndkoisyyden suuruudesta.

solmuparien valisten yhteyksien todenndkoisyydet (laske TNmatriisi.m). Tassa
tapauksessa saadut tulokset on yleistettdvissa myo6s algoritmiin, jossa verkkoon
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liitytéan(laske TN.m), silla tam& on erikoistapaus, jossa kasitellddn vain tiettyd
solmuparia lagjemmassa verkossa. Anayysin  kohteeksi olemme  valinneet
kohdeorganisaatiolta ssamamme esimerkkiverkon (ks. liite 5), sill se vastaa parhaiten
todellista sovellustilannetta.

Tulosten epavarmuuden riippuvuus simulaatiokierrosten
lukumaarasta

Tulosten epavarmuuden riippuvuus  simulaatiokierrosten méardsta on  erittéin
kiinnostavaa algoritmin kaytdnndn soveltamisen kannalta. Kun tulosten hajonta ja
varianssi on méaéritetty tietylle simulaatiokierrosten lukuméérélle, tieddmme kuinka
tarkkojatuloksiaagoritmi pystyy ko. kierrosméaaralla antamaan.

Ajoimme laske_ TNmatriisi.m-gjotiedostolla ~ kohdeorganisaatiolta ~ saamamme
esimerkkiverkon 1gpi 1000 kertaa annetulle simulaatiokierrosten (rounds) méérélle.
Simul aatiokierrosten méérind k&ytimme 100, 1000, 3500, 7000 ja 10000:tta. Koska
verkossa oli 22 solmua, ssimme kustakin gjosta 1000 22x22-todenndkoisyysmatriisia.
Naistd méaritimme aritmeettisen keskiarvon ja otoskeskihgjonnan kullekin matriisin
akiolle. Keskiarvon ja otoskeskihajonnan |askemiseen kaytettiin kaavoja(2) ja (3):

o 1g

X_nia:lxn (2)
T8

s—Jn_lgm X) 3)

22x22-matriisia on epakaytannollistd kasitella kokonaisena, joten laskimme matriisin
alkioiden keskihajontojen maksimin ja keskiarvon. Keskihajontojen minimi on kaikissa
tapauksissa nolla, koska yhteystodennakoisyysmatriisin diagonaalialkiot ovat aina
ykkosid. N&in ollen minimin analysointi el tassd tapauksessa ole mielekastd. Naista
laskimme 95 % luottamusvélit (2s vastaa keskim&drin 95 % luottamusvalid).
Poytétietokoneel ta tehtyihin simul aatiogjoihin laskenta-aikaa kului kaiken kaikkiaan noin
kahdeksan tuntia. Saadut tulokset on esitetty taulukossa 1.

Taulukko 1. Tulosten keskihajonnat eri simulaatiokierrosten lukumaérilla 2s vastaa 95
% luottamusvalid. Taulukossa on annettu keskihajontojen keskiarvo ja maksimi yli
todenndkoi syysmatriisin alkioiden.

Simul aatiokierrosten lkm 2s (keskiarvo) 2s (maksimi)
100 0.057522 0.2554
1000 0.014324 0.074534
3500 0.007794 0.040898
7000 0.005197 0.021812
10000 0.004967 0.01916
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Saadut tulokset on esitetty graafisesti kuvassa4.

0,3
2*s
0,25
0,2 ——avg
—8— max
0,15 4
0,1 -
0,05 \\L
—0
O T hd T T # T ? 1
0 2000 4000 6000 8000 10000 12000
rounds

Kuva 4. 95 % luottamusvalin koko 2s eri simulaatiokierrosten lukumaarilla. Max vastaa
keskihajontojen maksmiajaavg keskiarvoa

Kuvasta 4 ndhdéaén, ettd 95 % luottamusvalin koko pienenee eksponentiaalisesti
simulaatiokierrosten lukumédran funktiona. Simulaatiokierrosten lisédmisesta 7000
10000:een e ole ldheskan niin paljon hydtya kuin lisyksesta 1000->3000.
Tarkkailemalla taulukon 1 arvoja havaitaan, etta keskimaarin tuloksissa saavutetaan
kohdeorganisaation kannalta haluttu taso (0.02-tarkkuus) jo 1000 simulaatiokierroksen
tapauksessa. Kuitenkin kun tarkkaillaan huonointa tapausta (maksimikeskihgonta),
havaintaan, etta tamé taso saavutetaan vasta 10000 simulaatiokierroksen tapauksessa.
Maksimikeskihgonta edustaa yleista tapausta. Nayttéisi sis siltad, ettd 10000
simulaatiokierrosta on sopiva simulaatiokierrosten lukuméaara kaytannon sovelluksia
gatellen.

Epavarmuuden korrelaatio vastaavan yhteystodenn&koisyyden
kanssa

Tarkastellaan seuraavaksi onko yhteyden toimintatodenndkoisyyden ja algoritmin
antaman virheen koon vdlilla yhteytta. Toisin sanoen, onko niin, ettd mitd suurempi
yhteystodenndkdisyys sitd suurempi todenndkoisyyden epavarmuus? Jos asia olisi néin,
suhteelliset virheet todennakdisyyksissa saattaisivat olla samaa |uokkaa.

Tarkastellaan kutakin tapausta (smulaatiokierrosten |km = 100, 1000, 3500, 7000,
10000) erikseen. Aiemmin saatuina tuloksina on yhteystodennakoisyysmatriisin
keskiarvo ja vastaava otoskeskihgjontamatriisi. Tulokset voidaan ryhmitella pareiksi
(yhteystodennakoisyys, 95 % luottamusvalin koko) ottamalla vastaavat akiot edella
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mainituista matriiseista. N&in saadaan 222 = 484 mittausparia yhteystodennakéisyyden ja
luottamusvalin koon yhteydesta. Asian tutkimiseksi piirrettiin viisi kappaletta (kullekin
simul aatiokierrosten lukumé&ardlle) kuvagjia: 95 % [uottamusvali
yhteystodenndkoisyyden funktiona. Alla on esitetty ndma kuvagat tapauksissa

simul aatiokierrosten Ilkm = 1000 ja 10000.
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Kuva5. 95 % luottamusvalin koko (2 * otoskeskihajonta) yhteystodennékdisyyden
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Kuva 6. 95 % luottamusvalin koko (2 * otoskeskihajonta) yhteystodennakoisyyden

Kuvagien piirtamisen liséks havaintoaineistolle laskettiin korrelaatiot Pearsonin
otoskorrel actiota eli kaavaa (4) kayttaen:

Qos

: (Xi - )_()(yi - 7)
My =~ ,missa s, ja s, ovat otoskeskihgjontoja 4)
(n- Ds;s,

{0l
[y

L asketut otoskeskihagjonnat eri tapauksissa on esitetty taulukossa 2.

Taulukko 2. Korrelaatio yhteystodennakoisyyden ja 95 % luottamusvalin koon (2 *
otoskeskihgjonta) valilla eri simulaatiokierrosten lukumaarilla.

Simul aatiokierrosten lukumaara Korrel aatio todenndkoisyyden ja
[uottamusvalin koon valilla
100 0.0359
1000 -0.0438
3500 -0.0701
7000 -0.0518
10000 -0.2296
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Kuvia 5 ja 6 vastaavat kuvat muille simulaatiokierrosten maérille kuin 1000 ja 10000
olivat hyvin samankaltaisia kuin edella esitetyt kuvat. Kuvista 5 ja 6 havaitaan selvasti,
ettd yhteystodennékoisyyden ja luottamusvalin koon valilla ei ole suoraa yhteytta. Tama
nadhdaan myos tarkastelemalla taulukon 2 korrelaatiota. Kaikki korrelaatio ovat |ahella
nollaa. Ainoa korrelaation arvo, joka poikkeaa nollasta merkittavasti, on viimeinen
tapaus, jolloin simulaatiokierrosten lukumaérad oli 10000 — téll6in korrelaatio oli -0.2269,
joka e ole suuri arvo. Kuvien ja taulukon perusteella voidaan siis sanoa,
yhteystodenndkoisyyden epavarmuuden (luottamusvdi) ja yhteystodenndkoisyyden
suuruuden valilla el ole selvéa yhteytta

Kuvien 5 ja 6 seka muista tapauksista piirrettyjen kuvagjien perusted|a nayttaisi silta, etta
suurimmat epavarmuudet gijoittuvat todenndkdisyysvalin keskelle. Valin  péissi
(p1[001 ja pl[091.0]) epavamuudet nayttéisivit olevan pienempia.
Kohdeorganisaation kannalta kiinnostava on erityisesti loppupda pl [0.91.0], silla
taloin todenndkoisyyden toisellakin dessmaalilla on merkitysta. Tulokset nayttavét tassa
mielessd suotuisilta, koska epavarmuus pienenee todenndkoisyysvalin loppupdissi
Kuitenkin téytyy muistaa, ettd analyys koskee vain yhta verkkoa, eik& talloin kata yleista
tapausta.

Malli tukiasemien tarkeyden maarittamiseks
keskeisyysmitoilla

Keskeisyysmitoilla pyritéan vastaamaan kysymykseen, "Mik&a solmu tai mitka solmut
ovat tarkeimmat/keskeisimmét solmut verkossa?’, tai nimenomaan tassa tapauksessa
"Minka tukiasemien toiminta tulis turvata engisijaisesti?’ Keskeisyysmittoja kaytetdan
yleisesti verkkoteoriassa kuvaamaan verkon solmujen tarkeytta. Keskeisyysmittoja on
useita erilaisia ja ne mittaavat solmujen térkeytta hieman eri tavalla [1]. Téssa tydssa
kéytamme solmujen keskeisyyden méarittamisessi seuraavia mittoja: strength, closeness
ja betweenness. Naistd mitoista betweenness on monimutkaisin ja sopii parhaiten
armeijan viestiverkon tukiasemien téarkeyden mittaamiseen.

Painojen laskeminen

Edella editetyt keskeisyysmitat voidaan laskea sekéa painottamattomille ettd painotetuille
verkoille. Koska viestiverkon linkeille on mééritelty toimintatodenndkoisyydet ja ne
vaihtelevat huomattavasti eri linkkien valilla, on selvaa, etté yhteydet solmujen valilla
eivat ole samanarvoisia, ja ndin ollen keskeisyysmittojen laskemisessa kannattaa ottaa
huomioon linkkien toimintatodennakdisyyksien perusteella mééritetyt painot.

Closeness ja betweenness -algoritmeissa etaisyysmitan laskemisessa kaytetdan linkin
padtesolmujen vélista etaisyyttd, eli pituutta, joka yleensa maédritelld8n painon
k&anteislukuna. Kuten aikaisemmin on todettu, tassi tapauksessa linkin péitesolmujen
valinen etaisyys (I) on jarkevaa méaaritella linkin toimintatodenndkoisyyden (p)
negatiivisena luonnollisena logaritmina, eli | = -In(p). Logaritmillehan tunnetusti patee
log(ab) = log(a)+log(b) janéin ollen useamman solmun kautta kulkevan reitin pituus on
verrannollinen reitin toimintatodennakdisyyteen, joka lasketaan kertomalla yksittéisten
linkkien  toimintatodennakdisyydet keskendan. Tassa |dhestymistavassa myos
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erikoistapaukset, jossa linkin toimintatodenngkoisyys on nolla tai yks, tulee otettua
jarkevasti huomioon. Kun linkin toimintatodenndkoisyys on yksi, eli linkki toimii
varmasti, linkin p&étepisteissi sjaitsevien solmujen etéaisyydeksi toisistaan saadaan nolla,
eli viesti saadaan aina menemaan solmusta toiseen. Kun linkin toimintatodenndkoisyys
on nolla, eli solmusta toiseen ei saada suoraa yhteyttd, solmujen valiseksi etéisyydeksi
saadaan dareton.

Strength —keskeisyysmitan laskemisessa tarvitaan taas linkin etdisyyden sijasta linkin
painoa. Paino (w) saadaan laskettua helposti etdisyyden (1) kaanteislukuna, eli w= /I =
V-In(p).

Kuva 7. Solmujen painojen laskeminen.

Kuva 7 esittéa yksinkertaisen esimerkin, jossa solmuun tulee kolme linkki& Linkkien
toimintatodennakdisyydet ovat & b ja c. Linkkien pituudet lasketaan seuraavasti:

[,=-Ina I,=-Inb I ,=-Inc

Ja painot vastaavasti:
1 1 1 1 1 1
Waz____ b=_=__ c=_=__
[, Ina [, Inb I Inc

Josa=0.9,b=05jac=0.1, niin

[,=011 [,=069 |.=230 ja w,=949 w, =144 w, =043

Eli linkin a pituus on selvasti pienempi kuin linkin b pituus, jonka pituus on puolestaan
selvasti pienempi kuin linkin ¢ pituus. Vastaavasta linkin a paino on selvasti suurempi
kuin b:llg, jonka paino puolestaan on selkedsti cn panoa suurempi. Eli linkin

toi mintatodennakdisyyden suuruus vaikuttaa merkittavasti linkin pituuteen ja painoon,
kuten pitaakin.
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Strength —keskeisyys

Painottamattomilla verkoilla yksinkertaisin keskeisyysmitta on degree. Degree —mitta
kertoo sen montako linkki& on kiinnitetty kyseiseen solmuun. Painotetuilla verkoilla
degree —mittaa vastaava mitta on strength. Strength —mitta toimii samalla tavalla kuin
degree, mutta nyt linkkien painot otetaan huomioon. Strength —mitta on siis kaikkien
kyseiseen solmuun kiinnittyneiden linkkien painojen summa. Tassi tydssa tarkasteltu
viestiverkko el ole symmetrinen, vaan solmuun tulevan linkin toimintatodenndkdisyys
voi olla eri kuin solmusta ldhtevan linkin toimintatodenndkdisyys. Nan ollen
tarkastellaan erikseen kahta mittaa: in-strength ja out-strength. In-strength kuvaa
solmuun tulevien lenkkien vahvuutta ja out-strength solmusta léhtevien linkkien
vahvuutta.

Tarkastellaan jadlleen kuvan 7 tapausta, jossa solmuun on kiinnittynyt kolme linkki&.
Linkkien toimintatodenndkoéisyydet ovat a, b ja c. Solmun strength —mitta | asketaan:

S=W, +W, +W,

Tarkastellaan tapausta, jossa solmuun tulevien linkkien toimintatodenndkoisyydet ovat a
= 0.9, b=0.5jac =0.1 jasolmusta lahtevien linkkien a=b = ¢ = 0.5. Néaill& arvoilla
Saadaan:

Sp =W, W, + W, =9.49+1.44+0.43=11.36

c,in

Sot = Waor T Woour T Weour = 1.44+1.44+1.44=4.32

Huomataan, etta in-strength ja out-strength saavat merkittavasti erilaiset arvot, vaikka
linkkien toi mintatodennakdisyyksien summaon sama. Tama johtuu siitd, ettd [ahelld yhta
olevat todenndkoisyydet saavat hyvin suuren painon, koska yhteys toimii suurella
varmuudella. Pituuksia laskettaessa erot eivét ole aivan néin suuria.

Srength —mitat antavat jonkinnakoisen kasityksen siitd, mitka solmut ovat keskeisia

paljoatuijottaa. Ne toimivat 1&hinna muiden mittojen tukena ja vertail ukohteina.

Lyhyimman polun laskeminen

Sekd closeness ettd betweenness -keskeisyysmitat perustuvat geodesic pathin, eli
lyhyimmén polun laskemiseen. Painottamattomilla verkoilla polun pituus tarkoittaa sita
kuinka monta linkkia on kyseisella polulla kuljettaessa solmusta A solmuun B. Lyhin
polku on puolestaan se polku, jota pitkin paéstéan vahimmalla linkkimaarall & solmusta A
solmuun B. Painotetuilla verkoilla ei tarkastella solmujen valilla olevien linkkien maaréa,
vaan linkkien pituuksa. Lyhin polku on siis se, jota pitkin kuljettaessa linkkien
pituuksien summa on lyhyempi kuin millédn muulla polulla kyseisten solmujen valilla
Voi olla, etta lyhyimpia polkuja on myos kaksi tai useampia.

Lyhyimpien polkujen laskemisessa kaytimme Dijkstran agoritmia[2], joka |askee kaikki
etdi syydet annetusta aloitussolmustai seuraavasti:
1) Etéisyydet solmustai muihin solmuihin tallenetaan taulukkoon jajokaisen solmun

kohdalle merkit&an joko ”exact”, jokatarkoittaa, etta etéisyys solmujen vélillaon
|askettu tarkasti, tai ” estimated”, joka tarkoittaa, etta etéisyys solmujen valillaon
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arvioitu. Aloitetaan siten, etta merkitadan solmun i estimoiduksi etéisyydeksi O ja
muiden solmujen estimoiduiksi etéisyyksiksi o.

2) Valitaan niistd solmuista, joiden merkki on " estimated”, se solmu, jonka estimoitu
etdisyys on pienin ja merkitadn kyseisen solmun kohdalle " exact”.

3) Tutkitaan tarkastetavan solmun valittdmia nagpureita, eli niitd solmujamista on
suora yhteys tarkasteltavaan solmuun. Lisétaan tarkasteltavan solmun etéisyyteen
sen janaapurisolmun vélinen etéi syys ja muutetaan saatu summa nagpurisolmun
estimoiduksi etéisyydeksi, jos se on pienempi kuin kyseisten solmujen nykyinen
estimoitu etaisyys.

4) Toistetaan askelta 2 niin kauan, kunnes ” estimated” —merkittyja solmuja el enda
ole.

Closeness —keskeisyys

muihin solmuihin, eli lyhyimpien polkujen keskiarvo. Closeness —mitta on sité pienempi
mitd keskeisempi solmu, eli solmusta péésee keskim&&rin StA nopeammin muihin
solmuihin mita pienempi sen closeness-arvo on. Kun lyhyimmét polut kaikkien solmujen
valilla on laskettu edelld esitetylla agoritmilla, closeness —mitta jokaiselle solmulle on
helppo | askea ottamalla keskiarvo solmun i laskettujen lyhyimpien polkujen arvoista.

Betweenness —keskeisyys

Betweenness —mitta kuvaa sité kuinka monella lyhyimmall&a polulla solmu i sijaitsee, kun
tarkastellaan lyhyimpia etdisyyksia jokaisen kahden verkon solmun valilla. Tama mitta
kuvaa sitd mitkd ovat verkon vaikutusvaltaisimmat solmut, eli minka solmujen kautta
viesti useimmiten liikkuu. Mit& suurempi betweenness —arvo kyseisella solmulla on sita
keskeisempi solmu on. Jos korkeimman betweenness- arvon omaava solmu poistetaan
verkosta, verkon solmujen véliset etéisyydet kasvavat yleensa kaikista eniten (eli tassa
tapauksessa viestiverkon toimintatodennakdisyys pienenee eniten). Betweenness —mittaa
voidaankin pitda varsin hyvand keskeisyysmittana, kun tarkastellaan viestiverkon
toi mintatodennak6isyyksia.

Betweenness —mitan laskemisessa kaytimme Newmanin algoritmia [2], jolla laskenta-
aika saadaan supistettua arvoon O(mn), koska laskutoimituksia tarvitaan vain m kertaa n.
Yksinkertaisella agoritmilla, jossa kaikki polut kéydasn erikseen |&pi, tarvitaan mn?
laskutoimitusta ja | askenta-aika on O(mn? ). N&in ollen kayttamalla Newmanin algoritmia
laskuaikaa saadaan supistettua huomattavasti. Newmanin algoritmin toimintaperiaate on
Seuraava:

1) Lyhyimmét polut solmustaj kaikkiin muihin solmuihin lasketaan kéyttaméalla
Dijkstran dgoritmia painotetuille verkoille.

2) Jokaiselle solmulle k asetetaan muuttaja by , jolle annetaan arvoksi 1.

3) Kaikki solmut k kéydaan |8pi aoittaen siitd solmusta, jonka etaisyys solmuun j on
suurin. Taman solmun by —arvo lisdtdan jokai seen kyseisen solmun

kesken. Esimerkiksi, jos solmullak on kaksi lyhinta polkua, molempiin edeltgjiin
lisataan arvo by/2.
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4) Kun kaikki solmut on kéayty l&pi, tuloksena saadut arvot by kuvaavat sita kuinka
monellalyhyimmalla polulla solmu k on mukana, kun tutkitaan solmun j
lyhyimpi& polkuja. Polun paétepisteet lasketaan my6s kuuluvaksi lyhyimpaan
polkuun. Arvoa by pidetdan juoksevanaja betweenness- mitta lasketaan kaikille
mahdollisille n:lle arvolle solmustaj. Lopulliset juoksevat by -arvot ovat tarkka
betweenness- mitta jokaiselle solmulle k.

keskeisyys.m
Keskeisyysmittoja laskeva MATLAB-funktio on nimeltéan keskeisyys.m (ks. liite 4).

Funktiolle  annetaan  syOtteena  linkit-matriisi,  joka  gSsdltdéa  linkkien
toimintatodenndkoisyydet. Funktio palauttaa betweennes —arvovektorin (betw), jossa on
kaikkien solmujen betweenness-mitta. Lisdksi funktio palauttaa hal uttaessa closeness (cl)
-, out-strength (str_out) — ja in-strength (str_in) —arvot vektorimuodossa. Funktio piirtéa
my6s kuvagjat kustakin keskeisyysmitasta. Kuvagjissa on estetty kunkin solmun
prosentuaalinen keskeisyysmitan osuus verrattunamuihin solmuihin.

Mallin ominaisuuksien analyysi yksinkertaisessa verkossa

Kuva8 esittda yksinkertai sen verkon, jossaon viis solmuajaviisi linkkia. Taman verkon
tapauksessa esitetdan miten kuvan verkosta voidaan | askea edel & esitetyt keskeisyysmitat
strength, closeness ja betweenness. Lisdks keskeisyysmittoja vertaillaan keskendan ja
tehdaan johtopaatoksia linkkien keskei syydestéa.

Kuva 8. Esimerkkiverkko.

Linkkien toimintatodennakdisyydet ovat seuraavanlaiset:

¢l 09 0 0 Ou
09 1 07 08 0y
P=é0 03 1 02 O0u
é a
& 0O 08 06 1 0.9(J
g0 0 O 09 1H
L asketaan toi mintatodennakdi syyksien avulla linkkien pituudet. Saadaan seuraavanlainen
matriisi:
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0 0.1054 Inf Inf Inf u
0054 0 03567 02231 Infy
Inf 12040 0 16094 Inf U
Inf 02231 05108 O 0.1054
Inf Inf Inf 01054 0 §

—
I
D> D> D> D> D> (D> D~

Kun linkkien pituudet muutetaan painoiksi, ssadaan painomatriisi:

0 94912 0 0 0 0
04912 0 28037 44814 O U
0 08306 0 06213 0 U
0 44814 19576 0 94912
0O 0 © 94912 0

I
D> D> D> D> D> (D> D~

In-strength ja out-strength saadaan laskettua painomatriisista helposti. Solmuun tulevien
linkkien vahvuudet, €li in-strength solmulle i saadaan laskemalla sarakkeen i alkioiden
arvot yhteen. Solmusta l8htevien linkkien vahvuudet, eli out-strength solmulle i saadaan
puolestaan laskemalla rivin i alkioden summa. Painomatriisi W:sta saadaan seuraavat
vahvuudet:

out-strength: $51=9.49 s =16.77 S3=1.45 Su=15.93 s5=9.49
in-strength: 51=9.49 s,=1480 s3=4.76 S4=1459 s5=949

Huomataan, ettd solmun kolme in-strength arvo on selvasti suurempi kuin out-strength
arvo. Nain pitdakin olla, koska solmuun tulevien linkkien todennakdisyydet ovat selvasti
suuremmat  kuin solmuista léhtevien linkkien todennakdisyys. Kuva 9 esittéa
prosentuaaliset in-strength-osuudet kullakin solmulla ja kuva 10 prosentuaaliset out-
strength-osuudet. Kuvista huomataan vielakin selvimmin, ettd solmu 3 on strength —
mitoille mitattuna selkeasti vahiten keskeisn. Kun katsotaan verkon rakennetta ja
linkkien todennakdisyysmatriisia, huomataan, etté linkkien todenndkoisyydet vaikuttavat
strength- arvoon huomattavasti solmujen dSjaintia enemman.
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in-strenght
0.35 T T T

0.3+ =

prosenttia kaikista vahvuuksista

1 2 3 4 5
tukiasema nro

Kuva9. Verkon solmujen in-strength-arvojen prosentuaaliset osuudet.

out-strenght
0.35 T T T

prosenttia kaikista vahvuuksista

1 2 3 4 5
tukiasema nro

Kuva 10. Verkon solmujen out-strength-arvojen prosentuaaliset osuudet.
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Nyt siirrytddn closeness ja betweenness —arvojen tarkasteluun. Lasketaan ensiks
lyhyimmeét polut Dijkstran agoritmilla. Ssadaan seuraavanlainen matriisi:
0 01054 0.4620 0.3285 0.43390
0.1054 0 03567 0.2231 0.32853
1.3093 1.2040 0 14271 153250
0.3285 0.2231 0.5108 0 0.10543
& 04339 0.3285 0.6162 0.1054 0 H

[02)]
0
1
D> D> D> D> (D> (D~

Closeness-arvo solmulle i saadaan laskettua summaamalla yhteen rivin i kaikki akiot.
Solmuille saadaan seuraavat closeness-arvot:

c1=132 ;=101 c3=547 c;=117 cs=1.48

Kuten arvoista néghddan, solmu 3 saa selvasti suurimman arvon, joka tassa tgpauksessa
tarkoittaa sitd, ettd se on keskimaarin kauimpana muista solmuista Kuva 11 nayttéa
solmujen prosentuaaliset closeness —osuudet (t&ssd siis mita pienempi prosenttiosuus sita
keskeisempi solmu). Kun vertaillaan tété kuvaa strength —osuuksien kuviin, huomataan,
ettd molemmat keskeisyysmitat antavat hyvin samanlaisen tuloksen solmu 3 on selke&sti
muita epakeskeisempi ja solmut 2 ja 4 ovat jonkin verran keskeisimpia kuin solmut 1 ja
5.

Closeness
0.7 T T T

0.6+ =

o o o
w S a

prosenttia kaikkien polkujen pituudesta

I
N

0.1

tukiasema nro

Kuva1l. Verkon solmujen closeness-arvojen prosentuaaliset osuudet.
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Betweenness —arvot saadaan laskettua lyhyimpien polkujen matriisin avulla Newmanin
algoritmilla. Tulokseksi saadaan:

b1= 50 b2= 14.5 b3= 50 b4= 12.5 b5= 50

Arvoja tarkastelemalla huomataan, etta solmut 2 ja 4 ovat selvésti keskesimmét ja
solmut 1, 3 ja 5 ovat kaikki yhta epdkeskeisé. Kuva 12 esttéd betweenness —mittojen
prosentuaaliset osuudet kussakin solmussa. Tama tulos eroaa merkittévasti strength- ja
closeness —mitoista, joiden mukaan solmu 3 on selvasti epakeskeisn. Kun tarkastellaan
verkon rakennetta (kuva 8), betweenness —mitan keskeisyysarvio tuntuu huomattavasti
jarkevammalta kuin muiden keskeisyysmittojen tulokset. Kuvasta néhdédan, etté solmut 2
ja 4 ovat verkossa keskelsmmassd asemassa. My6s solmu 3 nayttdisi olevan
keskeisemméssa asemassa kuin  solmut 1 ja 5. Kun tarkastellaan
toimintatodenndkoisyysmatriisia huomataan  kuitenkin, ettd solmun 3 linkkien
toimintatodenndkoisyydet ovat selvasti pienemmét kuin muiden solmujen valilla Muut
keskeisyysmitat painottavat néitd pienia toimintatodennakdisyyksia huomattavasti
enemman kuin verkon yleista rakennetta. Betweenness —mitta ndyttaisi taas pystyvan
ottamaan huomioon sekd verkon rakenteen, ettd linkkien toimintatodenndkoisyydet
solmujen keskeisyyttd médritettdessd. Nain ollen voidaan todeta, etta viestiverkon

jastrength- ja closeness- arvoja kannattaa pitaé 18hinna lisainformaati ota antavina.

Betweenness

T

prosentissa poluista

tukiasema nro

Kuva 12. Verkon solmujen betweennes-arvojen prosentuaaliset osuudet.
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Sovellusesimerkki luotujen tyokalujen kaytosta

Havainnollistetaan seuraavaksi tekemiemme funktioiden toimintaa rajoitetun esimerkin
voimin. Sovellamme MATLAB-algoritmeja yksinkertaiseen viestiverkkoesimerkkiin,
jolloin saamme laskettua annetulle viestiverkolle erindisid tunnuslukuja Téaman
informaation avulla pyrimme analysoimaan viestiverkon ominaisuuksia kuten solmujen
ja linkkien térkeyksia ja viestiverkon Kkriittisid viestipolkuja. Analyysin perusteella
pyrimme lopuks ottamaan kantaa siihen, miten saadun informaation perusteella verkkoa
kannattaisi vahvistaa, ta hyokkaysnakokulmasta mita yhteyksia ja solmuja vastaan olisi
jarkevinta hyokata suurimman hairion aikaansaamiseksi.

Otamme tarkastelun alle viestiverkon, joka koostuu yhteensd 9 tukiasemasta. Kyseinen
viestiverkko el vastaa prikaatin viestiverkkoa, joka koostuu yli 20 solmusta. Suppeampi
esimerkki havainnollistaa kuitenkin paremmin algoritmien toimintaa ja analyysissa
saatavat tulokset ja pdatelmét patevat myos suuremmille viestiverkoille. Alla on esitetty
tekstitiedosto, joka sisdtaa verkon tiedot sarakkeittain jarjestyksessa P- ja I-koordinaatit
(metreind), tukiasemien radioiden kantamat (metreind) ja  tukiasemien
toi mintatodenndkoisyydet.

860 7540 3000 0.97
2430 5320 3000 0.97
5100 5830 4000 0.97
4980 8010 3000 0.97
9750 2520 1500 0.95
4530 980 3000 0.97
8320 3880 3000 0.97
9010 540 1500 0.95
8420 7860 3000 0.97

Kuvaan 13 on havainnollistettu viestiverkon rakennetta sijoittamalla tukiasemat annettuja
koordinaatteja vastaaville paikoille.
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A

10km
Kuva 1l3. Tarkasteltavaverkko kartalla.

v

Syobtetédn seuraavaksi tekstitiedosto lue verkko.m-gotiedostoon. Taulukossa 3 on
esitetty algoritmista saadut linkkien toimintatodennakdisyydet. Esimerkiksi matriisin
ensmméisella  riviltA voidaan lukea tukiasemasta 1 ldhtevien linkkien
toimintatodennakdisyydet. Diagonaalilla on aina ykkds &, koska solmulla on aina yhteys
itsensé kanssa. Huomattavaa on, ettéd matriisi ei ole symmetrinen, joka tarkoittaa sita, etta

radiosta A e valttamatta ole yhteytta radioon B, vaikka yhteys on olemassa radiosta B
radioon.
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Taulukko 3. Esimerkkiverkon linkkien toimintatodenndkéisyydet (akio a ij vastaa
yhteyttta solmustai solmuun j).

1,00 0,82 0,12 0,15 0,00 0,00 0,00 0,00 0,00
0,82 1,00 0,82 0,19 0,00 0,10 0,00 0,00 0,00
0,37 0,86 1,00 0,89 0,14 0,19 0,81 0,09 0,81
0,15 0,19 0,85 1,00 0,00 0,00 0,06 0,00 0,36
0,00 0,00 0,00 0,00 1,00 0,00 0,17 0,15 0,00
0,00 0,10 0,09 0,00 0,05 1,00 0,10 0,12 0,00
0,00 0,00 0,19 0,06 0,87 0,10 1,00 0,39 0,17
0,00 0,00 0,00 0,00 0,15 0,00 0,00 1,00 0,00
0,00 0,00 0,18 0,36 0,04 0,00 0,17 0,00 1,00

Kuvassa 14 on esitetty graafisesti tukiasemien vélille muodostuneet yhteydet. Nuolen
suuntailmaisee mihin suuntaan linkki toimii.

A

v

10km
Kuva 14. Viestiverkkoon muodostuvat linkit.

Kuva 14 pdjastaa miten epdsymmetrinen muodostuva viestiverkko on. Vaikka
esimerkkiverkon koko on suhteellisen pieni, on pdatelmien teko ilman aputyotkaluja
hyvin vaikeaa elle mahdotonta.

31



Syotetddn seuraavaksi linkkien toimintatodennakdisyydet sisdtdva taulukko 3 ja
tekstitiedostossa ilmenevét solmujen toimintatodenndkoisyydet laske TNmatriisi.m-
komentotiedostoon ja lasketaan  kaikkien  solmujen  vélisten  yhteyksien
toimintatodennakdisyydet. Alla oleva taulukko 4 sisaltéi ndma todenndkoisyydet.

Taulukko 4. Solmujen valisten yhteyksien toimintatodennakdi syydet

1,00 0,81 0,71 0,68 0,52 0,25 0,59 0,32 0,62
0,84 1,00 0,83 0,78 0,61 0,29 0,69 0,37 0,72
0,79 0,87 1,00 0,89 0,71 0,31 0,80 0,43 0,84
0,71 0,78 0,84 1,00 0,63 0,27 0,71 0,39 0,77
0,04 0,05 0,05 0,05 1,00 0,03 0,16 0,19 0,06
0,16 0,18 0,18 0,17 0,23 1,00 0,22 0,21 0,16
0,22 0,25 0,27 0,27 0,81 0,16 1,00 0,45 0,32
0,01 0,01 0,01 0,01 0,14 0,00 0,02 1,00 0,01
0,35 0,38 0,42 0,44 0,39 0,14 0,42 0,22 1,00

Koska matriisissa ei ole yhtdén nollia, viestiverkon jokaisesta solmusta paastéén
jokaiseen solmuun. Jos matriisi sisaltéisi nollia, joku tai jotkut solmut olisivat eristyksissa
muusta viestiverkosta ja viestiverkko olis rakenteeltaan susi. Taldin olis joko lisattéva
viestiverkkoon solmujatai jarjesteltava viestiverkon solmut uudelleen.

Esimerkkiviestiverkossa nédyttéisi olevan ongelmia etenkin solmujen 5 ja 8 kanssa, joista
lahtevét yhteyksien toimintatodenndkdisyydet ovat luokkaa <0.1. Tama selittynee sill&,
ettd solmut 5 ja 8 ovat liittyneitéd muihin solmuihin vain solmun 7 kautta, jolloin ne ovat
hyvin vahvasti riippuvaisia siitd. Lisaksi solmulla 8 on yhteys vain solmuun 5, mika
pienentda sen yhteyksien toimintatodennakoisyyksia huomattavasti. Viestiverkko ei toimi
riittava la varmuudella naiden solmujen osalta ja tésta syysta solmujen 5, 6 ja 7 radioiden
tehoja olis joko nostettava tai sitten nama solmut olis sijoitettava keskeisemmaélle
paikalle viestiverkossa. Solmujen vdlilla on sis havattavissa selvid eroja
aariesmerkkind solmut 3 ja 8, joista solmu 3 saa viestiverkon parhaat yhteyksien
toimintatodenndkoisyydet. Tahén syynad ovat solmujen radioiden kantamien erot ja
tukiasemien toimintatodennakdisyyksien eroavaisuus. Liséksi solmulla 3 on paljon
keskeisempi asema verkossa, koska silla on suora linkkiyhteys viestiverkon kaikkiin
muihin solmuihin, kun solmu 8 on yhteydessa vain solmuun 5. Solmun keskeinen sijainti
nayttaisi siis korreloivan vahvasti siita lahtevien yhteyksien toimintatodennakdi syyksien
kanssa. Viestiverkon kriittiset alueet sijaitsevat viestiverkon laidoilla, jossa sijaitsevilla
solmuilla on vain muutama yhteys muihin tukiasemiin. Taulukosta 4 luonnollisesti
nahdaan, ettd mita pitempi matka kahden solmun valilla on, sitd pienempi on yhteyden
toimintatodenndkoisyys.
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Lasketaan viela betweenness-agoritmilla keskeisyysmitat viestiverkon solmuille.
Kuvassa 15 on esitetty Betweenness-mitat verkon solmuille.

Betweenness
D25 T T T T T T T T T

0z

0.15

0.1

prosentissa poluista

0.05

tukiasema nro

Kuva 15. Betweenness-mitat viestiverkon solmuille.

Betweenness analyysin mukaan solmut 3 ja 7 olisivat térkeimpi& solmuja viestiverkossa
Tama on hyvinkin jarkeva tulos sillé ilman solmua 7 solmut 8 ja 9 eristyisivat kokonaan
muusta viestiverkosta. Solmu 3:n téarkeys selittyy sen keskeisyydella viestiverkossa
Néiden tulosten valossa ensisijaisen tarkedd viestiverkon toiminnan kannalta olis
solmujen 3 ja 7 toiminnan turvaaminen. Vastaavasti vihollisen toiminnan kannata
gateltuna hairintétoimet tulisi kohdistaa ennen kaikkea ndihin kahteen solmuun
suurimman vaikutuksen aikaansaamiseksi .

Tarkastellaan solmun 3 téarkeytta viestiverkon kokonai stoiminnan kannalta poistamalla se
viestiverkosta. Tama havainnollistaa tilannetta, jossa vihollinen héiritsee onnistuneesti
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Kuva 16. Esimerkkiviestiverkko ilman solmua 3.

Taulukossa 5 on esitetty solmujen valisten yhteyksien toimintatodenngkdisyydet, kun
solmu 3 on poistettu viestiverkosta.

Taulukko 5. Solmujen véliset toimintatodenndkdisyydet ilman solmua 3.

1,00 0,78 0,27 0,04 0,08 0,04 0,03 0,10
0,78 1,00 0,28 0,04 0,09 0,04 0,03 0,10
0,27 0,28 1,00 0,10 0,04 0,11 0,05 0,34
0,01 0,01 0,02 1,00 0,02 0,16 0,19 0,03
0,08 0,09 0,04 0,15 1,00 0,11 0,16 0,03
0,04 0,04 0,11 0,81 0,10 1,00 0,43 0,17
0,00 0,00 0,00 0,14 0,00 0,02 1,00 0,00
0,10 0,10 0,35 0,18 0,03 0,19 0,09 1,00

Vertaamalla taulukkoa 5 taulukkoon 4 ndhdaén, ettd solmun 3 poistaminen laskee
vahvasti melkein kaikkien muiden yhteyksien toimintatodenndkoisyyksid. Téama tukee
Betweenness-agoritmin tulosta. Viestiverkkoesimerkissi vain yhden solmun poistaminen
alheuttaa kdytannossa koko viestiverkon luhistumisen. Solmun 3 rooli viestiverkossa on
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tassi mielessa ylikorostunut ja sen tueks keskeiseen asemaan olisi Sirrettava joku toinen
solmu tai koko viestiverkon rakenne olisi mietittava uudelleen. Analyysin perusteella
voidaan vetda johtop&dtds, etta Betweenness-algoritmi kuvaa hyvin viestiverkon
solmujen tarkeyttd ja sen antamien tulosten perusteella voidaan priorisoida solmujen
suojaustatai toisaata viestiverkkoa vastaan harjoitettavaa hairintaa.

Demonstroidaan vield funktion laske TN.m toimintaa tarkastelemalla tilannetta, jossa
radio A liittyy solmuihin 2 ja 6 l8hettd8kseen viestin radiolle B, joka on liittynyt
solmuihin 4 ja 9. Lasketaan yhteyden toimintatodenndkoisyys laske TN.m-
komentotiedostolla, antamalla funktiolle j&lleen parametreina linkkien ja solmujen
toimintatodennakdisyydet ja vektorit, jotka kertovat mihin solmuihin radiot liittyvét (A =
[26] jaB =[49]). Kuval7 ilment&atilannetta.

Kuval7. Kaksi erillista radiota liittyy runkoverkkoon.

Tulokseks saadaan 0.81, joka on suhteellisen hyvéa yhteyden toimintatodennakdisyys.
Liittymalla useampaan runkoverkon solmuun ssavutetaan suurempi yhteyden
toimintatodenndkoisyys, kun liityttéisiin vain yhteen solmuun.
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Pohdinnat ja yhteenveto

Projektitydn  tuloksena saatiin @ kaks  erillista maliaa malli  viestiverkon
todennakdi syyksien laskemiseksi jamalli viestiverkon solmujen térkeyden mittaamiseksi.

Viestiverkon toimintatodenndkoisyydet méartittdva malli néista toteutettiin Monte Carlo
—simulaatioon perustuen. Alun perin idean oli 18hestya ongelmaa minimikatkog oukkojen
kautta, mutta tdma l&hestymistapa hyléttiin, kun oivallettiin, ettda Monte Carlo —
simulaatiolla haluttuihin tuloksiin  pdastda huomattavasti yksinkertaisesmmin ja
katevammin. Tahan malliin gssdltyy kolme MATLAB:la ajettavaa tiedostoa
lue_verkko.m, laske TNmatriisi.m jalaske TN.m. Naiden avulla voidaan koordinatti- ja
kantamatietoina annetulle viestiverkolle laskea yhteystodenndkdisyysmatriisi (kertoo
todennankoisyyden, ettd solmusta i saadaan yhteys j:hin) seka méirittda kahden
runkoverkkoon liittyvan radion yhteystodenndkoisyys. Kohdeorganisaation antamiin
tavoitteisiin  laskenta-gjan ja laskentatarkkuuden suhteen paastiin vaitsemalla
simulaatiokierrosten lukumaéraksi 10000. Talloin laskenta-aika poytatietokoneessa on
20-50 solmua sisaltavissa verkoissa luokka 5 — 60s molempien algoritmien tapauksessa.
Algoritmien antama tarkkuus on talléin 0.02 (95 % havainnoista kuuluu vélille

p+0.02).

Malli viestiverkon tukiasemien (solmujen) tarkeyden mittaamiseks toteutettiin
keskeisyysmittoja kayttdmalla. Malliin liittyy MATLAB-tiedosto keskeisyys.m, joka
laskee annetun verkon solmuille keskeisyysmitat out-strength, in-strength, closeness ja
betweenness. Néistd Puolustusvoimien viestiverkon tapauksessa kayttokelpoisin on
betweenness. Betweenness-arvo mittaa tehokkaasti solmujen téarkeytta verkossa, kuten
havaittiin edella esitetyssd sovellusesimerkissd, joissa suurimman betweenness-arvon
omaavan solmun poistaminen verkosta aiheutti sen, etta kaikki yhteystodenndkoisyydet
laskivat merkittavasti.

mainittu hyodyllisen tiedon tuottaminen esim. viestiverkkojen suunnittelua ja elektronista
sodankéyntia varten toteutui osittain. Raportin koko e antanut periks lagamittaista
anayysia otollisesta verkon rakenteesta yms.; siigpd kohdeorganisaation kannata
hyddyllista tietoa on tuotettu vain mallien ja sovel lusesimerkkien muodossa.

Valitsemamme lahestymistavat ongelmiin (Monte Carlo —smulaatio ja keskei syys-mitat)
ovat erittéin onnistuneita. Vakka luodut mallit ovat onnistuneita ja sopivat hyvin
tarkoituksiinsa, voidaan niitd halutessa kehittéd edelleen. On mahdollista, etta
todenndkoisyysmallien kayttdmaa laskenta-aikaa voidaan pienentda sirtymalla esim. C-
ohjelmointikiel een. Todenndkai syyksien tarkkuutta on kuitenkin vaikea kasvattaa, mikali
pitaydytdan Monte Carlo —menetelmissa. Kuitenkin verkon todenndkoisyyksien
| askemi seen Monte Carlo —menetelmé on melko varmasti paras |&hestymistapa.

Solmujen tarkeytta mittaavaa malli nojaa betweenness-mitan arvioon solmujen
tarkeydesta. Betweennes-mitan heikkoutena voidaan pitda sitd, ettd se ottaa huomioon
pelkastdan lyhyintd (todenndkdisintd) polkua kulkevat reitit ja niiden varrella olevat
solmut. Viesti kulkee luonnollisesti myds muita kuin Iyhyimpia reittgga pitkin, néita
reitteja el kuitenkaan oteta solmujen keskeisyytta méaritettdessi huomioon. Betweenness-
algoritmin muunnelmia, jotka ottavat myds muut reitit huomioon, on kehitelty esim.
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Newmanin satunnaiskdvelyyn perustuva kehittyneempi betweenness-keskeisyys [3].
Kéaytanndssa ndiden algoritmien antamat tulokset eivéat kuitenkaan poikkea merkittavasti
kayttamastamme lyhyimpiin polkuihin perustuvasta algoritmista.
Ominaisarvovektorihagjotelmaan perustuva eigenvector-keskeisyys [1] on myos yleisesti
kaytetty keskeisyysmitta, joka voisi betweenness-keskeisyyden lisdks tuoda myo6s
olennaista tietoa viestiverkon tukiasemien keskeisyydestd. Algoritmin soveltamisessa
suunnatuille verkoille on kuitenkin omat ongel mansa.

Luotuja malleja voidaan kayttda suoraan avuksi Puolustusvoimien viestiverkoissa. Nama
uudentyyppiset verkot ovat ns. ad hoc-verkkoja, joissa viesti voi kulkea solmujen vélilla
kaikkia sdlittuja reitteja pitkin. Mallien avulla voidaan tutkia esmerkiksi optimaalista
viestiverkon rakennetta (mika viestiverkko kestdd parhaiten harinndn ja muut
hyokkaykset?) ja elektronisen sodankdynnin vaikutusta prikaatin toimintaan. Eras
kiinnostava |8hestymistapa jalkimmaiseen olis esim. tutkia skenaaricanayysin kautta
elektronisen hairinnan vaikutusta viestiverkon ja koko prikaatin toimintaedellytyksiin. Eri
skenaarioissa voitaisiin luoda todenmukaisia elektronisia hyokkayksid, joissa hyokkaga
estédtai hairitsee tiettyjen linkkien ja solmujen toimintaa.
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Liitteet

Liite 1: MATLAB-tiedosto lue_verkko.m

%% % %% %% % %% %% %% %% % % % %% % %% %% % %% % %% % % %% % %% %% % %% % %% % %% %% % %% % %% %%
% lue_verkko.m

%% % %6%%% % %% % %% % %% % % % %% % %% %% % %% % %% % % %% % %% %% % %% % %% % %% %% % %% % %% %%
% Laskee koordinaatti- ja kantamatiedoista linkkien ja solmujen toiminta-

% todennékoisyydet.

% Parametrit: teksti- tai exel-tiedosto

% Palautusarvot: solmut (solmujen toimintatodennékdisyydet) ja linkit

% (linkkien toimintatodenn&kdisyydet)

%% % %6%%%% % %% %% %% %% % % % %% % %% %% % %% % %% % % %% % %% %% % %% % %% % %% %% % %% % %% %%
function [solmut, linkit] = lue_verkko(a)

%luetaan data

b = length(a);

if(t == a(b))

matriisi = load(a);
else

matriisi = xIsread(a);

end;

[M,N] = size(matriisi);

%solmujen toimintatodennékoisyydet
solmut = matriisi(:,4);

%lasketaan eri solmujen véliset etéisyydet

etaisyydet = zeros(M);

form=1:M
forn=1:M
etaisyydet(m,n)= sqgrt((matriisi(m,1) - matriisi(n,1))"2 + (matriisi(m,2) - matriisi(n,2))"2);
end

end

%lasketaan linkkien toimintatodennékoisyydet voimaa-funktion avulla
linkit = zeros(M);
form=1:M
forn=1:M
%lasketaan nimen omaan tn., ettd on yhteys m:sta n:aan
%nama eivat ole symmetrisia
linkit(m,n) = linkki_tn(matriisi(m,3), etaisyydet(m,n));

end
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end

function tod = linkki_tn(kantama, etaisyys)
%approksimoidaan paloitteisella lineaarisella funktiolla
% etaisyydella O todennékdisyys 1, kantaman paéssa tod 0.8,

%1.2kantaman paassa tod 0.2 ja 2*kantama tod on 0

if(etaisyys > 2 * kantama)
tod = O;
elseif(etaisyys <= kantama)
tod = ((-0.2*(etaisyys / kantama)) + 1);
elseif((etaisyys > kantama) && (etaisyys <= 1.2*kantama))
tod = - 3 * etaisyys / kantama + 3.8;
else
tod = -0.25 * etaisyys / kantama + 0.5;

end;

Liite 2: MATLAB-tiedosto laske_TNmatriisi.m

%% % %% %% % %% %% %% %% % % % %% % %% %% % %% % %% % % %% % %% %% % %% % %% % %% %% % %% % %% %%
% laske_TNmatriisi.m

%% % %6%%% % %% % %% % %% % % % %% % %% %% % %% % %% % % %% % %% %% % %% % %% % %% %% % %% % %% %%
% Laskee verkon kokonaistoimintatodenn&koisyydet.

% Parametrit: solmut (solmujen toimintatodennékdisyydet) ja linkit

% (linkkien toimintatodennakdisyydet).

% Palautusarvot: TNmatriisi (yhteystodennéakdéisyysmatriisi, jonka alkio

% a_ij sisaltdd todennékoisyyden, ettd solmusta i saadaan yhteys j:hin).

%% % %6%%% % %% %% %% %% % % % %% % %% %% % %% % %% % % %% % %% %% % %% % %% % %% %% % %% % %% %%

function TNmatriisi = laske_TNmatriisi(solmut,linkit)

%%% %% %% %% Alkuarvot %%%%%%%%%%%
% Simulaatiokierrosten lukumaara

rounds=10000;

Y%lteraatio alkaa
onnistuneet=zeros(length(solmut));

for round=1:rounds,

toimivat=[];
%arvotaan toimivat solmut
for i=1:length(solmut),

if solmut(i) > rand(1)
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toimivat=[toimivat,i];
end

end

%Muodostetaan matriisi vain toimiville solmuille
runko=zeros(length(toimivat));
for i=1:length(toimivat),
for j=1:length(toimivat),
if linkit(toimivat(i),toimivat(j)) >= rand(1)
runko(i,j)=1;
end
end
end
%L asketaan mistéa solmusta on yhteys mihinkin solmuun
yhteydet=runko”length(toimivat);
%Tutkitaan mitk& palat yhteydessa
for i=1:length(toimivat),
for j=1:length(toimivat),
if ynteydet(i,j) > 0
onnistuneet(toimivat(i),toimivat(j)) = onnistuneet(toimivat(i),toimivat(j)) + 1;
end
end
end

end

%L asketaan viestiverkon toimintatodennékgisyysarvio

TNmatriisi = onnistuneet / rounds;

% asetetaan vield TN_matriisin diagonaalit ykkosiksi
for i=1:length(solmut)
TNmatriisi(i,i)=1;

end

Liite 3: MATLAB-tiedosto laske_TN.m

9% % %% %% % %% %% %0 % %% % %% %% % %% %% % %% %% % % % %% % %% %% % %% % %% % %% %% % %% % %% %%

% laske_TN.m

9% % %% %% % %% %% %0 % %% % %% %% % %% %% % %% %% % % % %% % %% %% % %% % %% % %% %% % %% % %% %%

% Laskee todennakdisyyden, etté radiosta 1 saadaan yhteys radioon 2.
% Parametrit: solmut (solmujen toimintatodenn&koisyydet), linkit
% (linkkien toimintatodennakdisyydet), litosl (vaakavektori, joka sisaltaéa

% niiden solmujen numerot, joihin radiol on liittynyt) ja liitos2



% (vaakavektori, joka sisaltdé niiden solmujen numerot, joihin radio2 on

% liittynyt).

% Palautusarvot: TN (yhteystodennakdisyys).

%% % %% %% % %% %% %% %% % % % %% % %% %% % %% % %% % % %% % %% %% % %% % %% % %% %% % %% % %% %%

function TN = laske_TN(solmut,linkit,litos1,liitos2)

%%% %% %% %% Alkuarvot %%%%%%%%%%%
% simulaatiokierrosten lukumaara

rounds=10000;

%Muodostetaan bin-vektori, jossa 1 jos solmuun liitytdan
litoslvek=zeros(length(solmut));
litos2vek=zeros(length(solmut));
for i=1:length(liitos1),

litos1vek(liitos1(i))=1;

end

for i=1:length(liitos2),
litos2vek(liitos2(i))=1;

end

%lteraatio alkaa
onnistuneet=0;

for round=1:rounds,

toimivat=[];
liitetyt1=[]; % sisaltéda indeksit toimivat-vektorissa

liitetyt2=[];

%arvotaan toimivat solmut
for i=1:length(solmut),
if solmut(i) > rand(1)
toimivat=[toimivat,i];
if litos1vek(i) ==
litetyt1=[liitetyt1,length(toimivat)];
end
if litos2vek(i) ==
litetyt2=[liitetyt2,length(toimivat)];
end
end

end

%Muodostetaan matriisi vain toimiville solmuille
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runko=zeros(length(toimivat));
for i=1:length(toimivat),
for j=1:length(toimivat),
if linkit(toimivat(i),toimivat(j)) >= rand(1)
runko(i,j)=1;
end
end

end

%L asketaan mista solmusta on yhteys mihinkin solmuun

yhteydet=runko”length(toimivat);

%T utkitaan kulkeeko viesti arvotussa verkossa liitos1 -> liitos2
apu=0;
for i=1:length(liitetytl),

for j=1:length(liitetyt2),

apu = apu + yhteydet(liitetyt1(i),liitetyt2(j));

end

end

%Jos viesti kulkee, kasvatetaan onnistuneita
if apu >0

onnistuneet=onnistuneet+1;
end

end

%L asketaan yhteyden toimintatodennékdisyysarvio

TN = onnistuneet / rounds;

Liite 4. MATLAB-tiedosto keskeisyys.m

%% % %% %% % %% %% %% %% % % % %% % %% %% % %% % %% % % %% % %% %% % %% % %% % %% %% % %% % %% %%
% keskeisyys.m

%% % %% %% % %% % %% % %% % % % %% % %% %% % %% % %% % % %% % %% %% % %% % %% % %% %% % %% % %% %%
% Laskee halutut keskeisyysmitat annetun verkon solmuille ja piirtda

% kuvaajat mittojen prosentuaalisesta jakaumasta yli solmujen.

% Parametrit: linkit (linkkien toimintatodennakdisyydet).

% Palautusarvot: betw (betweennes), cl (closeness)

% str_out(out-strength), str_in(in-strenght).

% Palautusarvot ovat vektoreita, jossa on keskeisyysmittojen arvot

% kullekin solmulle.

%% % %% %% % %% %% %% %% % % % %% % %% %% % %% % %% % % %% % %% %% % %% % %% % %% %% % %% % %% %%

function [betw,cl,str_out,str_in] = keskeisyys(linkit)
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koko=size(linkit,1); %linkkimatriisin koko

sp=zeros(koko); %alustetaan shortest paths -matriisi

%lasketaan linkeille painot
for(i=1:koko)
for(j=1:koko)
painot(i,j)=-log(linkit(i,j));
end

end

%%% SHORTEST PATHS
for(i=1:koko)

solmut=zeros(koko,1); %alustetaan solmut
lapikaynti=zeros(koko,1); %0, jos estimated, 1, jos exact
apulk=solmut; %apumuuttuja, jotta 16ydetddn helposti pienin solmu, jota ei ole kayty

jo lapi

%muutetaan tutkittava solmu nollaksi ja muut &érettdmaksi
for(j=1:koko)

solmut(j,1)=inf;

apulk(j,1)=inf;
end
solmut(i,1)=0;
apulk(i,1)=0;

%Kaydaan vuorotellen kaikki solmut l&pi, aloittaen pienimmasta ei-lapikaydysta solmusta
while (min(lapikaynti) == 0)
[y,ind]=min(apulk);

%Kaydaéan lapi naapurisolmut, ja muutetaan tarvittaessa arvoa
for(k=1:koko)
if(painot(k,ind)+y < solmut(k,1))
solmut(k,1)=painot(k,ind)+y;
apulk(k,1)=painot(k,ind)+y;
end
end
lapikaynti(ind)=1;  %Merkitaan, etté kyseinen solmu on kayty l&pi
apulk(ind)=inf;

end

%Tallennetaan solmun i shortest paths

sp(:,i)=solmut;



end

%%% BETWEENNESS
betw=zeros(koko, 1); %alustetaan 'betweenness-laskuri'
betw_solmut=zeros(koko);
%muodostetaan yhteydet kertova matriisi (1, jos on yhteys, muuten 0)
for(i=1:koko)
for(j=1:koko)
if(linkit(i,j)~=0)
yhteydet(i,j)=1;
end
end

end

%K aydaan kaikki solmut jarjestyksessa lapi

for(i=1:koko)
b=ones(koko,1); %annetaan kaikkien solmujen b-arvoksi 1
spi=sp(i,:);
[spis,ind]=sort(spi); %lajitellaan shortest pathsien pituuden mukaan
kaytylapi=zeros(koko,1);%alustetaan taulukko I&pikaydyille solmuille

kaytylapi(i)=1; %ja merkitadn tutkittava solmu l&apikaydyksi

%Tutkitaan 1&himmé&t naapurit aloittaen kauimmasta solmusta
for(j=0:koko-1)
kaytylapi(ind(koko-j),1)=1; %merkitaan, ettd kaukaisin solmu on kayty lapi

predec=0;

%L asketaan monta edeltijad kauimmaisella solmulla on
for(k=1:koko)
if(yhteydet(k,ind(koko-j))==1 && kaytylapi(k,1)==0)
predec=predec+1;
end

end

%Kasvatetaan b-arvoa, jos solmu on tutkittavan ja kauimmaisen solmun valisella lyhimmalla reitilla
%b-arvoa kasvatetaan luvun tutkittavan solmun b-arvo/edeltdjien maéara verran
for(k=1:koko)

if(yhteydet(k,ind(koko-j))==1 && kaytylapi(k,1)==0)

b(k)=b(k)+b(ind(koko-j))/predec;

end

end
end

betw=betw+b; %lisatdan betw-lukuun tutkitun solmun betweenness-arvot
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end

%lasketaan betweenness_prosentit
betw_sum=sum(betw);
betw_pct=betw/betw_sum;
figure(1);

bar(betw_pct);

titte('Betweenness');
ylabel('prosentissa poluista’);

xlabel('tukiasema nro');

%%% CLOSENESS

%lasketaan shortest pathsien summat kussakin solmussa
cl=(sum(sp");

cl_sum=sum(cl);

cl_pct=cl/cl_sum;

figure(2);

bar(cl_pct);

titte('Closeness');

ylabel('prosenttia kaikkien polkujen pituudesta’);

xlabel('tukiasema nro');

%%% STRENGTH
%muutetaan painot siten, ettd vahvalla linkill& on suuri paino ja heikolla pieni
vahvuus=zeros(koko);
for(i=1:koko)
for(j=1:koko)
if(painot(i,j)~=0)
vahvuus(i,j)=1/painot(i,j);
end
end

end

%lasketaan out- ja in-strengthit
str_in=sum(vahvuus);

str_out=sum(vahvuus');

%lasketaan prosentit ja piirretdan kuvat
str_out_sum=sum(str_out);
str_out_pct=str_out/str_out_sum;
figure(3);

bar(str_out_pct);

title('out-strenght');



ylabel('prosenttia kaikista vahvuuksista');

xlabel('tukiasema nro');

str_in_sum=sum(str_in);
str_in_pct=str_in/str_in_sum;

figure(4);

bar(str_in_pct);

title('in-strenght’);

ylabel('prosenttia kaikista vahvuuksista');

xlabel('tukiasema nro');

Liite 5: Kohdeorganisaatiolta saatu esimerkkiverkko.

Tiedot ovat sarakkeittain jarjestyksessa P-koordinaatti, I-koordinaatti, kantama ja radion
toimintatodennakadisyys. P-koordinaatti, |-koordinaatti ja kantama on annettu metreiss.
9100 15200 10000 0.99
15400 21100 10000 0.99
18300 12200 10000 0.99
24100 18500 10000 0.99
30100 12700 10000 0.99
33200 18000 10000 0.99
5800 17200 5000 0.95
11900 27200 5000 0.95
13600 25400 5000 0.95
24100 22300 5000 0.95
29800 20600 5000 0.95
35400 22300 5000 0.95
39000 14700 5000 0.95
34400 14300 5000 0.95
18100 6800 5000 0.95
23200 10300 5000 0.95
14800 18900 5000 0.95
12100 9700 5000 0.95
41800 20800 2000 0.92
41700 19900 2000 0.97
39100 19600 2000 0.92
40200 16500 2000 0.91

46



