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Summary

This study discusses the achievable benefits of distributed computing concept in home
environment. The standpoint is in computational aspects and in relative speed-ups that
could be obtained. This study has an explorative nature, and therefore recognizing fields of

further studies have also been given weight.

To tackle the problem, two mathematical models (basic optimization approach and
simulation approach) have been formed. Besides these, the upper bounds of obtainable
speed-ups are approximated separately. Finally, results were compared by varying the
computational requirement of the problem and the number of slave devices while other

parameters were kept constant.

The results support the original assumption that computational problem should, in general,
be split between devices according to their computational performance. This is especially
the case, as the computational requirement of the problem increases causing the network to
become less of a restricting factor. Thus, the utilization of the network becomes irrelevant
for problems having large computational requirement. Packet size does not affect
remarkably to the division ratios as long as the computational problem can be decomposed
to sufficiently many distinct parts. All tested models imply that gained speed-ups are low

for small scale problems.

Even though tests probably give overoptimistic results, it seems that speed-ups (i.e. time to
compute on host solely per time to compute on all devises) of 10 could be achieved in
typical home environment when the host device is typical modern mobile phone. On the
other hand, if the central device is PC or laptop with relative large computational power,

speed-ups tend to limit, based on tests, only up to 2.

However, models used in this study have their limitations and therefore reader should keep
in mind that simplifications made can lead them far from reality in certain cases. Therefore
project team recommends following fields of additional study: What is the affect of
decomposition costs, how do multiple connection types in simulation affect in different
network topologies and more realistic modeling of complexity and computational

requirements.
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1 Introduction

1.1 Background

Many computational applications in science and engineering require up to teraflops of
computing capability [Kumm and Lea, 1994] and are therefore too time-consuming for
even the most powerful ordinary computers. The rapid development of information
networks has enabled the possibility to divide the problem to a number of smaller ones and
then distributing these to independent computing nodes which can process smaller
problems simultaneously. This kind of processing is known as Grid computing. According
to Grid Computing Info Centre [GCIC], “Grid is a type of parallel and distributed system
that enables the sharing, selection, and aggregation of geographically distributed
autonomous resources dynamically at runtime depending on their availability, capability,
performance, cost, and users' quality-of-service requirements.” Currently grid computing is
used in many computationally demanding scientific experiments and also several public
grid computing projects exist; the most well-known being the SETI@home project
[SETI@home]. In many of these, the computational data is distributed through the
Internet and the computing workload is divided between users who have voluntarily joined
the project. These projects are all strong proofs that extremely challenging computational
problems can be successfully handled and remarkable benefits gained if computing power

several order of magnitudes greater would be available.

Grid computing in the home environment was the initial working topic for the project
from Nokia. As our understanding of the issue grew this terminology was revised. The
term Grid computing is commonly used for large networks of computation units and in
which the availability of computing resources is not guaranteed. As Grid computing refers
to a virtual pool of resources that the user has access to, while in our examined
environment the computational resources are always available or the state of the system is
at least known, the term Grid computing is somewhat inaccurate to describe this
environment. Our study concentrates more on smaller networks, virtual pools of

computational nodes that can all be accessed and all of the resources in the nodes can be
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utilized by the user. Thus the environment examined is much closer to the qualities of

conventional distributed computing environments than those of Grids.

During the recent years computational tasks have also proliferated in home environment.
Mobile phone applications, digital photographing, computer and console gaming and
digital videos, among others, can be mentioned. However, not all of these devices have as
much computing power as normal PC does, though. Therefore interesting questions could
be: If more computing power was available, would it allow new benefits concerning the
applications on areas mentioned, and could the computing power of other devices be

utilized in that case?

1.2 Objectives and Research Problem

The client’s initial interest was to find out if it would be reasonable to utilize distributed
computing in the home environment. Answering this question became the focal objective
of the study. However, project group soon found out that the goal was vague and wide-
ranging as such and needed to be adjusted. Objective and research questions were
reworked and shaped with the client as the project proceeded and more insight was gained.
Restructured research questions were derived from project’s salient objective and are stated

as follows:

1. What kind of performance improvements can be achieved with distributed computing?

2. Which devices are essential in distributed computing in selected environments and problem types?

As for explorative study, building framework and drawing conclusions is complemented by
discovering the most essential fields for further research. Therefore an additional research

question is:

3. What are relevant felds to study this area further?

1.3 Delimitations of the Study

This study is explorative and concentrates on computational aspects and performance
analysis of distributed computing. In-depth dissection has been mostly omitted and several

important fields needed to be delimited, among others the following ones:
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e Applications and aleorithmic issues are not covered.
pp g

* Detailed examinations of different topologies are omitted

* This study does not concentrate on sensitivity analysis

e Network’s reliability analysis and fault tolerance of distributed computing networks

are outside the scope of this study

1.4 Structure of the Study

The structure of the study is presented in Figure 1. With test runs and analysis, preliminary

results related to achievable and measurable performance improvements (research question

1) and essential distributed computing network components (research question 2) are

obtained. Applied models should emphasize different aspects and delimitations to support

the finding of relevant fields of further studies (research question 3).

SR EE S EAEE S SESSE SR
= "

e

Simulation model

Y

Basic model

Bottleneck
examination

Creation of models =

Test runs

Resulis Conclusions

Figure 1. Structure of the study.

Further study
fields

Literature review
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Even though not discussed separately, also a brief literature review has been conducted
during the project. Its aim was to make the project team more conversant with distributed
computing as well as support the creation of mathematical models. Third purpose was to

avoid unnecessary work related to “refinding” further study fields.

1.5 Terminology

Perfectly decomposable problem is defined here — adapting the idea of the definition in
[Thiébaut 1995] — as a problem that can be partitioned effectively (i.e. incurring no extra

costs) to as many mutually independent sub-problems as is required.

Computing unit is a device that contributes in the computing process. These can be
divided to two groups: host devices (root node of the network) and surrounding devices
(leaf-nodes of the network). The latter ones are also referred here as slaves or terminal

nodes.

Host device is the central computer in the network that is the only computer distributing
the computing task to other computing devices in the network. Master is used as a

synonym.

Grid Computing is defined here as any computing that involves splitting the
computational task between two or more terminals. Distributed computing is used as a

synonym in this study.

Network has a star topology if and only if it has N nodes, one being the root node and n-1

leaf nodes. Distance from any leaf node to the root node is exactly one unit length Figure 2).
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Host

- Surrounding
devices

Figure 2. Star topology.
Environment is an element of the set E, which consists of all the different possible set-ups
of computing devices that are connected with certain communication links in compliance

with certain topology.
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2 Technology overview

This chapter gives brief overview of technology related aspects of the study. It deals with
technological background and the assumptions that have been made concerning the

devices and types of connections between them. Also the selected environments are briefly

described.

2.1 Computing Devices

Contemplation of computational devices has been limited to the following ones: Personal
computer, laptop, mobile phone, Console, PDA and DVB-T set-top box. These devices
have been selected for having significant computing power and being an integral part of
hardware of a modern home. As the timely focus of this study is in medium term (2+
years), it is probable that these devices are in large use then and have a status of commodity

utilities.

Computing power of each device is assumed to be directly proportional to the speed of
each CPU when measured in megahertz. Thus the computing power describes the number
of basic computational operations the processor can perform per unit time. The impact of
all the different processor architectures and designs is ignored. For example, it is known
that AMD Athlon XP 3200+ (nominal CPU speed of 2200 MHz) is roughly equal to Intel
Pentium 4 2600 MHz [Tom’s Hardware Guide 1].

Assumed computing powers for the computing units have been listed in Table 1.

Table 1. Computing powers of computing units.

Unit Computing power | Source

PC 2 800 MHz Uni Pentium 4 desktop SFF workstation [IBM 1]
Laptop 2400 MHz IBM ThinkPad G40 [IBM 2]

BT mobile phone 104 MHz Nokia 6600 [InfoSyncWorld]

WLAN mobile phone | 300 MHz Samsung SGH-i1700 [InfoSyncWorld]

PDA 400 MHz Palm Tungsten C

Console 733 MHz Microsoft X-Box

DVB-T box 166 MHz Nokia Mediamaster 260s [Nokia]
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2.2 Communication links

Each communication link has a capacity, certain rate it is capable of transferring data.

In theory, Bluetooth can transfer data as fast as 125kB/s [Phan]. It is assumed that the
speed of BT is 70kB/s, which appeared to be the realistic capacity in experiment where

several MPEG-4 files were transmitted over Bluetooth connection [Chia].

Bluetooth link has the following operational principle: Every new Bluetooth connection
creates a piconet, which has one master and maximum of seven slaves. Master can send
data to every slave simultaneously, but each slave reserves whole bandwidth when sending
data back to the master. This means in practice, as each data packet sent to slaves is

different, that only one master-slave pair can communicate at the time. [Forum Nokia]

Wireless LAN (IEEE 802.11b standard) can theoretically transfer data at the speed of
1441 792B/s [Phan]. In practice, packet errors due to non-optimal connection quality
make the real transmission rate lower. Sprague estimates the real throughput to be between

790kB/s and 920kB/s [Sprague]. Therefore the value of 850kB /s is used in this study.

Local Area Netwotks have usually data transmission capacity of 1,31MB/s (standard
Ethernet IEEE 802.3) or 13.1MB/s (Fast Ethernet IEEE 802.3u). The latter one is
assumed to be in use. As Fast Ethernet can transfer the data at relatively high speed, other
parts of the system usually become bottlenecks. Though, to keep mathematical models

simple, we have elided this performance reducing effect.

Full speed USB 1.1 (Universal Setial Bus) has a data transmission capacity of 1,5MB/s
[usb.org], which is theoretical value. In practice, the transmission speeds are lower, usually
between 112kB/s and the theoretical maximum value that can be achieved in multiple end
point transmissions [usb.org]. In this study USB has assumed to have a capacity of

1,5MB/s. This and other transmission rates have been aggregated in Table 2.

Each communication link has also a latency time, which is the time that occurs in every
transmission regardless of the size of the packet transmitted. Latency is caused mainly by
the need to condition the data before and after the transmission. Also the transfer itself
increases the latency since the communication channel has certain length that the

transferred data needs to travel with finite speed. The latencies of communication channels
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are also listed in Table 2. The values are only rough approximations because they are highly
dependent on the topology and number of devices among others and thus no single value
to match every situation can be given.

Table 2. Transmission rates of different communication links. These values were also used in
testing.

Link Transmission rate | Latency

(Bytes per second)
Bluetooth 71 680 50 ms [Forum Nokia]
Wireless Local Area Network (WLAN) | 870 400 20 ms [Lunheim et al., page 3]
Local Area Network (LAN) 13 107 200 20-30 ms [Infopen Archivum]
USB 1572 864

2.3 Terminal Nodes’ Connectivity and Topologies

Each surrounding device could have one or more communication links between it and the
host device. For example, PC and laptop can be connected with WLAN;, Bluetooth, LAN
or USB. The available communication links are presented below in Table 3.

Table 3. Available communication links between terminal nodes (marked with X) and environments
where those links are used (marked with A, B, C or D).

Bluetooth WILAN LAN (IEEE USB 1.1
802.3u)

PC X (B,D) X (C,D) X D) X D)
Laptop X X D) X X

PDA X D) - - X D)
Mobile Phone X (A,B,C) X (C,D) - -
Console - - X D) -
DigiBox X D) - - -

It is assumed that each surrounding device has only one primary connection (i.e. the one
that is most often used in normal situation) which is the only connection in use. In other
words, it is assumed that there exists exactly one communication link between the host and

each surrounding device.

Topologies are considered at the basic level. Most common ways to connect devices
together are bus, star and ring topology. In bus topology, all devices are connected in series.
Ring topology is in question when devices are connected in series and the first one and last

one in series are also directly connected to each other.
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2.4 Environments

Different computational devices, communication links and network topologies offer
various ways to form environments where distributed computing concept can be dissected.
We have selected four distinct home environment settings where analysis of developed

models will be made. These settings (selected environments) are:

A. Two to eight similar cellular Bluetooth phones connected in a piconet
B. A mobile phone connected to one or several similar PC computers
C. One PC connected to one to several similar cellular phones through WLAN.

D. A star network with one PC connected to various other devices

A & = B

b P K
n BT =
BT
- g ':_ . i'r"' ﬁ -
= I = pt L
# BT- " :

Figure 3. Four home settings of computing units. In the first setting (A) the problem host is cellular
Bluetooth phone that has formed a piconet. In the second setting (B) the problem host is a cellular
phone that communicates through a Bluetooth channel. In the third setting (C) a PC distributes its
problem though a WLAN to mobile phones. In the last setting (D) different devices from a home
environment provide computing to a PC communicating though various channels.

All network topologies are star networks (Figure 3). The device with a problem to be solved
is illustrated in the center of the network and is designated as the problem host device or
master in this paper. The surrounding devices are processing units that participate in

solving the problem by providing computing power.
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One simplification that has been made is that no data collision exists and the frequencies of
different types of wireless communication links do not have any interference. This is not
completely realistic because - as Urosevich argues — Bluetooth can destroy WLAN
connection (IEEE 802.11b) they are “even remotely coming into contact with each other”
[Urosevich]. All the necessary middleware software is assumed to be available and incurring

no additional costs to computing.
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3 Mathematical model

In this study, different types of models are used. Besides emphasizing different aspects to
consider in distributed computing, models have another task. The basic model is used to
give the lower bound for the avail that can be achieved using distributed computing for
various computational problems. The bottleneck examination is used to approximate the
upper bound of available benefit. The simulation approach is used to approximate the

most likely benefit obtainable from distributed computing.

3.1 Variables and Parameters

In this chapter we introduce the key variable and parameters by which we describe the grid
computing domain. A complete list of the variables and parameters used in this document

can be found in the appendix A.

3.1.1 The grid environment

The network has a star topology (Figure 2) and consists of M+1 computing units, with the
central device corresponding to index zero and the surrounding devices corresponding to

indices 1,...,m.

The time taken to perform the computation of a problem with computational requirement

Y on the jth device that has a processing power of C; is defined as

t

_y .
compute — I=1,...m 1)

G
Between the central device and each surrounding device it is assumed that there exists a
symmetric communication link. The time taken for a file of size X to move to or from the
-th . .
I" device is defined as

t =

transmit

, 2

tn | <
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where Sis the capacity denoted to transferring the file. Equation (2) is a simplification of
that presented by Culler et al [Culler et al. 1993]. In their paper the total message

communication time of a X bit long message was given by
X
T(Xa h) =0gg t+ |:g:| +hl + Oy (3)

where Ogng is the send overhead. This is the time that the processor is busy interfacing to
the network before the first bit of data is placed into the network. Sis the bandwidth of the
channel. h is the number of hops a message must across before artiving to the destination
and | is the length of each hop. Finally, Oy is the receive overhead, the time from the
arrival of the last bit until the receiving processor can do something useful with the
message. Some examples of capacities and channel lengths (latencies) can be found in Table
2. In the network examples presented by Culler et al. the send and receive overheads were
together smaller than one ms, although these networks were dissimilar to the ones of this
study. Thus, the same overheads do not inevitably apply. Still, applying (3) to a case, in
which a 100 kB message is sent over Bluetooth channel with capacity 723.3 kbps and
latency 50 ms, and assuming overheads are 1 ms, the time required to send a message
would consist of overheads of 0,001 seconds, latency of 0,05 seconds and 1,1 seconds to
push the message into the channel. Hence, equation (2) is not far from equation (3), when

package sizes are large (larger than 100 kB in Bluetooth networks).

3.1.2 The Task

The task is to compute a problem P by either solving it on the host device or by
distributing it into the computing network. To distribute problem P, it must first be
decomposed into N sub problems Pj. Decomposition is performed on the host device only.
Sub problems (Pg,...,Pn) are solved by sending each one to some computing device located
in the computing environment. Based on the answers of all pj the final answer to P is

composed. The time taken to solve the problem on the host device is denoted by Tsequential-

The time required to decompose the problem is denoted by Tdecompose, the time taken to
solve the set of sub problems is denoted by Telve, and the time taken to compose an

answer is denoted by Tcompose. The total time of solving P by distributing it is denoted by
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Taistributed, and is naturally based on the previously mentioned durations Tdecompose Tsolve and
Tcon‘pose‘ SUH, Td|str|butaj need not to be the sum Of Tda;ompow) Tg)|ve and Tdis[ributed, since the

decomposition, solving and composition can happen partly in parallel.

3.1.3 Problem characteristics

The problem P to be distributed is characterized by its computational workload Y, its
description, which has a size X in bytes (later referred to as size or description merely), and
its answer, which has a size Rin bytes (later referred to as answer merely). Similatly, each
sub problem p; has workload Vi, description X and answer I. If problem P can be divided

into wanton independent parts [, such that
Y=2y @
i=0

no extra costs will be incurred with the decomposition or composition, we call P perfectly
decomposable. In the development of the mathematical models (chapter 3.2) it is assumed
that the problem is perfectly decomposable, and thus it can be concentrated on modeling
the cost Tgisributed: The solutions should still be applicable to situations in which
decomposition and composition can be performed in parallel with other tasks, thus not
increasing the total time, or by small modification to situations in which the decomposition

and composition costs are fixed.

3.1.4 Performance metric

As performance metric, gain or relative speed-up G, resulting from distributing the

problem, is used. The gain is defined as

T .
G — sequential ) (5)
Tdistri buted

The same definition is also widely used in literature (see Kumm et al., for example).
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3.2 Basic Model

3.2.1 Assumptions

In the basic model we assume the problem P is decomposed into as many parts as there are

ji" computing device (] is

computing devices in the grid and the i" problem is sent to the
equal to i-1) . Hence, the amount of problems N is equal to the amount of computing
devices M1 in the grid. Furthermore, we assume that the decomposition is completely
performed before solving the set of sub problems {pi,...,pn} is started. For each sub
problem Pj we assume that the solving consists of the discrete steps of sending the problem
description X to the jth device, solving the sub problem pj on the jth device and sending
back the answer & of the i" sub problem to the host. Finally, we assume the complete set

of sub problem answers {ay,...,an} must arrive at the host before the problem can be

composed and said to be completed.

3.2.2 Derivation

The objective is naturally to minimize the time taken to solve problem P in the grid
environment. Based on the assumptions, the time taken to solve the complete problem P

depends on the individual solving durations {j in the following way

T

solve

= max(t) ©)

Based on the assumption the solving time of the first problem, computed on the host

device takes
=2 0

and the solving time on the surrounding devices takes

ti:ﬁ+i+i ©)

S G S
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Mathematical model

The idea is that we may split the total amount of calculations into N = M1 sub problems

in any desired way restricted only by equation (4). Also the capacity is split among devices

using the same network. This is done independent of time. Thus, if one device is devoted §

capacity it will have § capacity in use during the whole distributed computing process.

Because devices using one channel split the total capacity of that channel we have a

restriction as follows. If, for example, the first K devices use the same WLAN connection

and the WLAN capacity is Sman, then Sy,..., Sc are restricted by

k
DS < Suan
i=1

©)

Consequently, the decision variables are Y;:S and S:S. Before the model can be solved we

have to make some assumptions about the description sizes X; and the answer sizes Ii. We

assume there is a function x, which gives X based on Y in the following way.

x=K(y)
Additionally, we get I' from
=5
Now, we can write the optimization task as

ml n(TsoIve)
St

Y

solve
CJ

M+i+—’gm((yi) <T,

solve
S G Si

Y=>y
i=0
s <sy (one for each channel)

y, 20,520

(10)

(11)

(12)
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3.3 Bottleneck examination

The purpose of the examination is to give upper bound for the benefit that can be achieved
with the distributed computing concept. It is assumed that each surrounding device can
start computing as soon as the first bit of the sub problem is transferred. Transmission of
the data is possible to any number of communication links simultaneously as long as the
total capacity of communication links is not exceeded. Bandwidth sharing is assumed to
not to cause any extra costs. Data collision and other errors as well as the capacity taken by
error corrections have been omitted and no queuing delays are assumed to exist. Some of
these assumptions are partly unrealistic but the examination is mainly used in predicting an

upper bound for the relative speed-up achievable.

Data Transfer as a bottleneck

L]

I E $
be
=
=
]
j+ 3
x :
2 Transfer | Computing | Transfer
£
=
E -~
£8

time

L] E

II £ , Computing as a bottleneck
=
=
=
T
o
x
o
e Transfer | Computing | Transfer
Eo
£8 :

time

Figure 4. Bottleneck examination
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The principle of bottleneck examination is presented in Figure 4. Either the available
transfer capacity (case I) or the computing power (case II) forms a bottleneck. The transfer
capacity is measured as the total bandwidth of all communication links (Bps) and the
computing power as operations per second (approximated with CPU’s speed in MHz).
These two measures are linked together with complexity coefficient K. This is
simplification of the equation (10) as the linear dependence between problem
description and its computational requirement is assumed.

3.4 Simulation approach

Other type of problems besides those described in chapter 3.2, are the ones in which
problem cannot be divided to arbitrary parts but instead the problem consists of smaller,
independent sub problems of fixed size. This type of distributed computing paradigm is
called bag-of-tasks, described for example by Kuang et al. [Kuang et al., 1999]. Bag-of-tasks
type problems arise for example when same algorithm or function is to be applied to a
wide set of different parameters. In typical bag-of-tasks type problems, different sub
problems are not needed to be computed in any particular order. As long as there are tasks
to compute, one task at a time is picked from the “bag” of remaining problems and

computed.

3.4.1 Simulation model

To measure gains of distributed computing in the home environment when bag-of-task
type problems are examined, a simple simulation model was created. The model, presented
in Figure 5, is based on single-server type service centers for computation and transmission,
each of which can serve only one task at a time [Mak and Lundstrom, 1990]. The
computational problem consists of sub problems entering the system illustrated by the
incoming flow in Figure 5. The size of each sub problem is assumed to be normally

distributed.

Each sub problem must be solved by either the host or some surrounding device. If the
problem is solved by the host, no transfer costs occur. Therefore the sub problem is
immediately sent to host’s computing queue that follows FCES (First Come First Served)

principle - as do all the queues in this simulation model. After host has accomplished the
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given computational task, the solved sub problem enters the set of solved sub problems.
It is assumed that there are not any assembly costs and thus the time taken to solve the

problem is in this case simply teomp.

If the single task is solved by some surrounding device, the situation is bit more
complicated. The task is first copied to the system’s transfer queue. It can be sent to any
of the N surrounding devices. Assumption is that only one transfer can take place at the
time. Sub problems are transmitted one by one to the computing queues of the

surrounding devices.

The communication link has specific bandwidth and sub problem description certain size,
which both affect the transfer time firans. Each surrounding device has its own computing
queue. After the sub problems have been solved, they return to the transfer queue, which
therefore contains both sub problems to be solved and solved sub problems to be
transmitted back to the host. When solved sub problems reach the beginning of the
transfer queue they are transferred back to the host computer and then copied to the set of
solved sub problems. Thus also treceve depends both on the bandwidth and size of the sub

problem as well as the content of the transfer queue.
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Figure 5. Structure of the simulation model.

The decision to which surrounding device the sub problem is sent, is based only on the
current situation (fastest one of the nodes’ computing queues is selected). In other words,
the known information related to the distribution of new packets arriving to the system

after the packet in question, is not exploited in decision making.

The simulation model is limited to the situation where there is only one type of symmetric
communication link in use. Thus the use of simulation model is therefore restricted to the
environments A, B and C. The constructed simulation model is implemented with
MathWorks’ MATLAB software. The source code of the simulation program is presented

in appendix D.
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3.4.2 Simulation procedure

The simulation procedure was carried out so that the environments A-C were tested with
two sizes of problems, approximately 10MB and 100MB. The problems were divided into
50 and 500 fixed size packages of the size of X kB, X~N(20, 200). The problem represents
a signal processing problem type without compression, so the problem packages
transmitted to slaves and returned computed answers are of the exactly same size. The
simulation model allows this to be altered, but in our opinion this was a good basic
problem to take a deeper look into. One good reason to choose this problem type was that
our previous empirical study had resulted complexity parameter K for video conversion.
This parameter gives an estimate of how many computation operations is needed to

convert 1 byte of input data.

Other fixed parameters associated with this particular simulation were that the actual speed
of Bluetooth was set as 70kB/s and the speed of WLAN as 850kB/s. The environments A,
B and C consisted of mobile phones, with a CPU speed of 300MHz and PCs, with a CPU
speed of 3,2GHz (a common high performance CPU).

With simulation the differences between the computation times of distributed computation
and the time of computation with the sole host machine were compared. The relative
speed-up G and the division ratio of all the system’s devices with respective computing
environments were both calculated. This was done for both problem sizes for two reasons:
first of all, to double check the simulation procedure, and secondly to compare the ratios

for possible benefits of distribution related to computation problem sizes.
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4 Results

Test runs were made in different environments utilizing the various models presented
previously (basic, upper bound, and simulation). To give an idea of how various devices
can contribute to the computation in home environments, the presentation of results is
started with a simple example from environment D, where a particular fixed problem is
distributed exploiting the basic model (chapter 4.1). Thereafter, the other environments A, B
and C are examined keeping the environment fixed, the problem fixed and making use of

simulation (chapter 4.2).

In chapter 4.3 we will examine all three models concurrently. Contrary to preceding chapters
the problem and environments are not kept fixed, as the computational requirement and
the number of slaves in each environment are varied. The impact of different models,

environments and problems is depicted with the relative speed-up.

4.1 Results of the Basic Model

Here results are presented from a fixed environment D and a fixed problem description
size of 10 MB and the complexity coefficient K of 10,8 k/B. Computational requirement
and sequential solving time of the problem were derived using these mentioned values. The
environment and the problem are summarized in the last column of Table 4. The results
from this setting are presented in Fjgure 6. The left hand side of Figure 6 shows in what
proportion the problem is distributed to the devices in the environment and the right hand

side shows as a comparison the distribution of the computing powers of the devices.

Although the distribution of the problem reminded the distribution of computing powers
there existed also significant differences. PC as the master, laptop and Game console are in
dominant roles computing 88 percent of the task, a little more than their share of the total
computing power. Other devices such as hand-helds and the DVB box contribute only
marginally and do not offer remarkable speed-up per se, even if they are equipped with fast

communication link.
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The master PC performed nine percentage points more of the total computing than its
share of the total computing power is. This is due to the fact that the master device has
more computational time compared to slaves, as there is no need to perform transfer of the
problem over some communication link. Similarly, except for the game console, all slaves
did perform a smaller slice of the total computation than their share of the total
computational power of the network, because the transfer of each sub problem over the
communication link consumes part of their possible computational time. For example, the
laptop received eight percentage points less of the problem to compute than its share of
the total computing power was. On the other hand, the game console received more of the
computational problem than its share of the computational power was. This was because
the game console had the clearly fastest communication link (and did not share it). In other
wortds, although the computing power to a great extent guided the distribution, each
communication link’s capacity had also some significance. The situation would have been

different had the complexity coefficient been other.

Distribution of computation tasks Relative computing power of devices

1% 2%

13% 10%

< 1%
3%
1%

7%

4%
2%

49, 6%

Il Deskiop PC
Il Laptop
[ PDA (400 MHz)
[] PDA (123 MHz)
[ ] WLAN Mohile
[ BT Mohile

I Game Console
I DVB Box

34%

Figure 6. Distribution of computation tasks with the basic model in the environment D and relative
computing power of different devices in environment D.
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Results

4.2 Simulation results and analysis

It was observed that the changes in division ratios between 10MB and 100MB problem

sizes were marginal. The settings of the environment and the problem can be seen in Table

4 and the results from the test run are presented in Table 5.

Table 4. Environment set-ups that were used in the test of the basic model.

Environment A | Environment B | Environment C | Environment D
Master device rEr)nlggitlzo:)?wone \é\(}laﬁl: (r:r;gglle g|e_|szl§top PC (2.8 (DzeslgoF?Z;C
(104 MHz) MHz) :
Laptop PC (2,4 GHz)
PDA (400 MHz)
_ 4 Bluetooth Desktop PC 7 WLAN mobile Q?i&lﬁﬁo“ﬁe'*?%oo
Slave devices mobile phones (2.8 GH2) phones ngH‘zJ)hone (10 )
(104 MHz) (300 MHz) Game Console (733
g\};é)box (166 MHz)
Communication Bluetooth (560 | WLAN (6,5 WLAN (6,5 PILAN (6.5 Mopg)
channel(s) kbps) Mbps) Mbps) ooe ((1150’\"“;’!5;;)
Size (X) [MB] 10/100 10/100 10/100 10
(Tobquentiah fmin] 181 6.3 0.7 07
&‘;Tg:;’i‘%fg]emc'em (k) 10,8 10,8 10,8 10,8
Computational
requirement (Y) 113 113 113 113
[Hz*s*1019]
Table 5. Simulation results
Distributed computation Sole host
Environment A  10MB Problem 100 MB Problem 10MB 100 MB
Problem Problem
Total computing 216,5s 2165,2s 583,6 5941,1
time
Relative speed-up 2,7 2,7
Composition of Environment A
Devices Mobile Mobile1l Mobile 2 Mobile 3
0 (host)
Division ratios 36% 22% 22% 20%
Environment B 10MB Problem 100 MB Problem 10MB 100 MB
Problem Problem
Total computing 204,7s 1990,4s 583,6 5941,1
time
Relative speed-up 2,9 3

Composition of Environment B
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Devices Mobile 0 (host) PC1
Division ratios 32% 68%
Environment C  10MB Problem 100 MB Problem 10MB 100 MB
Problem Problem
Total computing 63,7s 620,5s 98,7 1006,2
time
Relative speed-up 1,5 1,6
Composition of Environment C
Devices PCO0 Mobile Mobile Mobile Mobile
(host) 1 2 3 4
Division ratios 60% 10% 10% 10% 10%

The simulation analysis clearly shows the fact that even in the case of sequential
transmission and over a relatively slow Bluetooth connection it is worthwhile to divide the
problems to slave devices. This does not necessarily apply to the problems that are time
consuming to decompose, but in this case of signal processing it is very fast and
straightforward procedure. In the Bluetooth connected environments the bottleneck for
distributed computation is the connection speed and in WLAN environment it is the

processing speed.

Model gives surely slightly over positive results, relative speed-ups being around 3 in the
Bluetooth environments and around 1,5 in the WLAN environment (C), for the latter the
reason being quite simply the fact that in CPU speed the PC matches the CPU speeds of
roughly 9 mobile phones. It can still be observed that the current high-end processing
devices used at home are — and can be used as powerful tools for computing complex and

time consuming problems.

4.3 Comparison of simulation, basic model and bottleneck

examination results

In this chapter results from runs with all three models (basic model, bottleneck
examination and simulation) are presented. Two separate simulations were done in each
examination, one in which the problem was split into 10 sub problems of equal sizes, and
another one in which the problem was split into 50 equally sized sub problems. Thus,
results are presented from altogether four approaches. The first part of the chapter

considers how relative speed-ups change when the computational requirement of the
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problem varies. And the second part considers how relative speed-ups change when the

environment vaties.

4.3.1 Varying computational requirement

In this part results from fixing the environment and varying the computational requirement
of the problem ate presented. This was done by first fixing the problem description size X
at 20 MB, 60 MB, 600 MB and 600 MB in the environments A, B, C and D, respectively.
The problem was to perform a task on this file, which takes anywhere from 5 to 120
minutes to perform when the computation is solely made on the master device, i.e.
Tsequential is in the interval [5 min, 120 min]. The file could, for example, be a video clip and
the task is some conversion process that is performed on this file. A five minute
conversion corresponds to the problem having the least computational requirement and
the two hour conversion corresponds to the problem having the highest computational

requirement.

In Table 6 the environments and problems are summarized. The complexity coefficient K
and the computational requirement Y were derived in each environment from the
computational power of the master device, the description size and the duration of solving
the problem on the master device solely (Tsauential). As both the description and
computational power of the master device triples and neatly triples respectively when
moving from environment A to B, the complexity coefficient interval is nearly the same
both in environment A and B. The same applies when going from environment B to C or
D, as the description size and the computational power of the master in environments C
and D are about ten times those in environment B. Thus the complexity coefficient stays

nearly constant from environment to environment.

Table 6. The environments and computational problems.

Environment A Environment B Environment C Environment D
Master devi Bluetooth mobile | WLAN mobile Desktop PC Desktop PC (2,8
fraster device phone (104 MHz) | phone (300 MHz) | (2,8 GHz) GHz)
Laptop PC (2,4 GHz)
. PDA (400 MH
4 Bluetooth Desktop PC 7 WLAN mobile PDA 2123 MHZ;
Slave devices mobile phones B 8 GHz) phones WLAN phone (300 MHz)
(104 MH2) ’ (300 MH2) G Console (735111
Digibox (166 MHz)
Communication channel Bluetooth (560 WLAN (6,5 WLAN (6,5 R
ommunication channel(s) Kbps) Mbps) Mbps) USB (12 Mbps)
LAN (100 Mbps)
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Size (X) [MB] 20 60 600 600
Sequential solving time 5120 5120 5120 5120
(T'sequential) [min]

Complexity coefficient (k)

FL2r8/B * 107 1,49-35.7 143-34.3 1,34-32,0 1,34-32,0
Computational requirement (V) | 5 5 7 90,0-2160 840-20200 840-20200
[Hz*s¥109]

The results of the runs can be seen in Figure 7. All models provide awfully low speed-ups

when the duration Tsequential Was set at 5 minutes. As Teequential Was increased speed-ups also

increased. When examining the upper bound curves in all environments, the following can

be perceived: At 5 minutes speed-ups are at about 1.5, 2.9, 1.2 and 1.6 in environments A,

B, C and D, respectively. The limiting factor is the network transmission speed. As the

computational requirement of the problem increases the network becomes less of a

restricting factor. At 20 to about 40 the upper bound of computational power is reached.

Thus, thereafter the restricting factor is the computational power of the slave devices and

no more speed-up is achieved when the computational requirement is increased from that

point on. The upper bound plateau settles at the sum of all computing devices in the

network divided by the computational power of the master.
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Figure 7. Relative speed-ups as a function of the computational requirement in the environments A,
B, C and D. The x-axis shows how many minutes it would take to solve the problem on the master
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device only, and the y-axis the relative speed-up. The problem parameters are summarized in 7able
6.

All the other models move beneath the upper bound, as naturally should be the case.
Furthermore, they all start at about the same starting point and converge to the upper limit
as the computational requirement increases. The reason for the difference between the
upper bound and the other models is that there existed moments during the runs when
cither the network was idle and/or the computing devices were idle in both the basic
model and the simulation models runs. The idle time is intuitively clear from the basic
model, because the slave devices do no computation during transfers over the network
(and vice versa). In all environments at least one of the simulation models outperformed
the basic model. This is because there was more idle time in the basic model solutions. In
other words, in the simulation runs the network and/or the computing devices were kept
to a greater extent busy. For example, in the simulations the first slave may start computing
already at the point when the first assignhment arrives, which arrives much sooner in
simulations than in the basic model since the packages are smaller and the network is
devoted to sending the first package only. Furthermore, as the device solves the first sub
problem it may concurrently receive more sub problems over the network. Also it is worth
noting that all models keep increasing somewhat although the upper bound has reached its
plateau. Partly as a consequence, the difference between the upper bound speed-up and the
speed-up of other models seems to be the greatest at the bottleneck turning-point. As the
computational requirement increases to infinity the network transmissions duration
become insignificant in comparison to the computational durations. Thus, how the
network is utilized is not so important, and furthermore the problems is split between the
different devices more and more according to their computational performance and the

computational performance is the sum of all computational performance.

Before leaving this section, closer look at the individual environments is taken, starting
from environment A. In this environment the upper bound increased linearly from 1
minute to about 40 minutes. For example at about the 20 minute mark the upper bound
and the simulation models are at about a speed-up of 3. From the view point of the
bottleneck model three Bluetooth phones (one master and two slaves) would be sufficient
to provide maximum speed-up to the 20 minute problem. This is although not the case for

the simulation models (or the basic model), since in the simulations more devices results in
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better utilization of the network (dissected in more detail on the next chapter). At about 25
minutes the simulation models start to increase more slowly than the upper bound model.
At 40 minutes the upper bound reaches its maximum speed-up of five and from thereon

the other models catch up.

In environment B the speed-up rises much more sharply than in environment A and the
upper bound reaches a maximum level of 10.3 already at little above the 20 minutes mark.
The reason for the steeper curve is that the WLAN network has much greater transmission
speed than the Bluetooth network. The speed-up in environment B is the greatest of all
environments, which is because the PC can as a slave, provide considerable computing
power. A little surprising is the fact that the simulation 10 outperforms the simulation 50.
This should not be possible and probably happens because of small rounding errors
downward at each discretion step in MATLAB code, and thus, as there are more packages,

rounding errors may sum up.

In environment C the upper bound reaches its limit of 1.7 at about 20 minutes. The slopes
of the models are much flatter than in the previous environments. Although using WLAN
technology the descriptions sizes sent over the WLAN are much larger, hence, the flatter
slope. The simulation 10 model deviates clearly from the other models and does not give
any speed up. This is because the packages in simulation 10 are too large to be sent to any
slave. In other words, the computation power of the master is nearly ten times the
computational power of the slaves. Thus, computing on sub-problem on a slave takes
about as long as it takes to compute ten sub-problems on the master. If one sub-problem is
sent to some slave the time taken to complete that problem is the bottleneck. Also remark

that the relative speed-up is much lower in environment C than in any other environment.

Finally, in environment D the upper bound reaches its maximum of 2.5 at 40 minutes.
What is special in the environment D is that the focus from crowded network to crowded
computational units happens at different minute marks for various sub networks or
transmission channels. As the simulation supports only one transmission channel

environments, no results of simulations can be presented in this environment.
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4.3.2 Varying number of slaves

In this part we present results from fixing the problem and varying the environment. Only
environments A, B and C were studied. The problem descriptions were fixed at 20 MB, 60
MB and 600 MB in environments A, B and C respectively. The required computational
time on the master device was fixed at about 40 minutes, i.e. Tsequentia = 40 minutes. The
complexity coefficient K and the computational requirement Y were derived in each
environment from the computational power of the master device, the description size and
the duration of solving the problem on the master device solely (Tsequential). Moving from
environment A to B, both the description and computational power of the master
approximately tripled, thus the complexity coefficient was nearly the same both in
environment A and B. The same applies when going from environment B to C, where the
description size and the computational power of the master in environment C are about
ten times those in environment B. Thus the complexity coefficient stayed nearly constant

from environment to environment.

In each environment the varying component was the number of slaves. In environment A
the number of slaves was increased from 1 to 7, in environment B the number of slaves
was increased from 1 to 7, and in environment C the number of devices was increased

from 4 to 9. Table 7 summarizes the environments and problems.

Table 7. The envitonments and computational problems.

Environment A

Environment B

Environment C

Master device

Bluetooth mobile
phone (104 MHz)

WLAN mobile
phone (300 MHz)

Desktop PC
(2,8 GHz)

Slave devices

1-7 Bluetooth
mobile phones

1-7 Desktop PC

4-9 WLAN mobile

(104 MH2) (2,8 GHz) phones (300 MHz)

Communication channel(s) Bluctooth WLAN WLAN

“ (560 kbps) (6,5 Mbps) (6,5 Mbps)
Size (X) [MB] 20 60 600
Sequential solving time
(T'sequential) [min] 40,5 40,5 40,5
Complexity coefficient (k)
v/ * 10°3] 12 11,6 10,8
Computational requirement (Y) 253 729 6800

[Hz*s%1079)]
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The results are presented in Figure §. In all environments the models start at some initial
level and increase to some upper bound as the number of devices is increased. Looking
first at the upper bound model, having 2, 2 and 5 devices in environments A, B and C
respectively, the upper bound starts at a speed up of about 2.0, 10 and 1.4 in environments
A, B and C respectively. In the beginning the bottlenecks are the computational powers of
the slave devices, and as the sum of the computational power of the slave devices increases
as the number of slave devices increases, the speed-up increases linearly with the number
of slaves. The upper bound reaches a maximum plateau level of 5.0 and 16 at 5 and 3
devices in environment A respectively B, and at some later amount of devices in
environment C. The restricting factor at the plateau level is the network. Hence, the logic is
in a sense reversed to the logic in the previous part where the computational requirement
increased and the plateau level was restricted by the computational power of the slaves. At
the plateau level, adding devices does not improve speed-up since the network through-put

is lower than that of the computational power of the slave devices together.

Looking at the other models besides the upper bound model, they all, except for the
simulation 50 model in environment B, are below that of the upper bound. The simulations
and the basic model all should always be below the upper bound level, and the exception in
environment B was probably because the problem is not of exactly the same computational
requirement for the upper bound and the other models. The difference is at the third
significant number. The reason why the other models are below (or should be below) the
upper bound is that there existed moments during the runs when either the network was
idle or the computing devices were idle in both the basic model and the simulation models
runs. Again at least one simulation outperforms the basic model. The reason is the same as
in the previous chapter, in the simulation models there is in general less idle time during the

run.

Further examinations look at individual environments starting from environment A. In
environment A the upper bound reaches its turnaround point at 5 devices. Simulation 50
reaches the same level two devices later. Apparently the network can not be fully utilized at
5 devices in the simulation 50 but at 7 devices the network is kept busy the whole time, i.e.
the network queue is full throughout the simulation. In the simulation 10 speed-up still

rises as the last device is added but does not reach as high as the simulation 50 model. The
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basic model is well below the other models but it should reach the upper bound as the

amount of devices reaches infinity.

In environment B the upper bound, the simulation 10 and the simulation 50 all reach their
maximum level already at three devices, ie. two slave desktop PCs. The incremental
increases are so large when adding PCs, thus, the simulations and upper bound all reach the
same level quite quickly and there is no big difference between the upper bound and the
simulations. Only the basic model lags behind. The increase in speed-up is largest in this
environment as the master device has quite low performance but the network speed is

relatively high (WLAN).

In the last environment C the saturation level of the network is not reached with 10
devices. The simulation 10 model is again inefficient as there is no point in providing sub-

problems to the other devices.
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Figure 8. Relative speed-ups as a function of devices in the network in the environments A, B and C.
The environments and problems are summarized in Table 7.

The notion that speed-ups increase relative linearly to the number of devices but reaches

some saturation level was examined also by Jongho Nang and Junwha Kim (1997). Their
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environment consisted of a desktop PC with a Superscalar SPARC 60MHz processor as
master device and several desktop PCs with MictoSPARC 50 MHz processors as slaves, all
connected in an Ethernet. In their setting the master device did not provide any
computational power. The problem was to encode a video clip into MPEG-1 format. Figure
9 shows some of their results. The different trajectories correspond to different distribution
schemes (different amount of packages). All distribution schemes resulted in an almost
linear speed-up when 1-18 devices were added. When more than 18 devices were added the

speed-up increase was limited resulting from the increased communication overhead.

Input Data : Compressed 500 frames, GOP : BBIBBPBBPBEP

Sbeédup

0 5 10 15 =20 105 30
Number of Workstations

Figure 9. Relative speed-up as a function of number of devices [Nang et al. 1997]

4.3.3 Varying computational requirement and varying number of

slaves

In the previous two chapters results from studying speed-ups when the computational
requirement of the problem is varying and when the number of slaves was varied were
showed. In both chapters one of the parameters was varied while the other one was kept
constant. Varying both parameters resulted in surfaces, where on the x-axis the number of
slaves varied, on the y-axis the computational requirement of the problem varied, and the

z-axis shows the relative speed-up that resulted was plotted. These results are presented in

Nokia Research Center 35 Danielsen, Hyténen, Kuusela & Yli-Anttila



Mat-2.177 Seminar on case studies in operation research Results

the appendix C. The results depicted above are just cross sections of the figures in

appendix C.
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5 Conclusions

Initial assumption about distributing the data as proportions of relative computing powers
of devices seems to be correct one. Testing the models did not gave any implications of
other type of behavior as long as computational tasks were lot more time consuming than
data transfer period, which is the case in signal processing, for example audio and video
packing and conversion. This is partly surprising, as queuing effects were assumed to have

greater impact than they did.

One interesting finding is that in environment A adding more than 5 mobile phones does
not have any affect to the performance. Thus Bluetooth technology as a standard, allowing
no more than one master and seven slaves in piconet, does not seem to be restricting

component with current computing powers available in mobile phones.

However, both models were relatively heavy simplifications of reality as has been discussed
in chapters before. Therefore it can not be stated that computing powers and bandwidths
would be the only relevant factors affecting the decision of how to distribute the tasks. But
more importantly, models gave clear evidence that computational performance can be

increased due to distributed computing.

Speed-up comparison was done in four home environments A, B, C and D. Environment
A consisted of phones connected in a Bluetooth piconet. Environment B consisted of a
phone to which PC:s provide computational resources over a WLAN channel.
Environment C consisted of a PC and several mobile phones that provided computational
resources over WLAN. The last environment D consisted of various devices providing

computational resources to a PC.

In a setting with a fixed problem and fixed environments, the speed-ups in environment A
were 2.7, in B 2.9 and in C 1.5. The examination in D of how the task is distributed by
using the basic model scheme for distribution revealed that in home environments the bulk
of computational power seems to lie in personal computers and gaming consoles. Thus,
these are the essential devices in performing computation for a PC. Furthermore, devices

such as handhelds, mobile phones, DVB boxes and other alike that posses limited
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computational performance in comparison to PCs or Gaming consoles, can provide only
marginal utility to the PC. This was also seen in environment C where the speed up was
lowest of all environments. Vice versa, the PC could provide considerable computational
gains for their weaker counterparts as was seen in environment B, where the speed-up was
largest. In the middle were speed-ups in environment A which were moderate. In this

environment similar devices interacted.

As a conclusion, it can be said that the achievable relative speed-ups depend on various
issues. The issues studied here were the environment, computational requirement of the
problem, the number of slaves in the environment and the distribution scheme. First of all,
the environment defines how much computational power is available in the slaves and

what kind of communication links are in use.

Second factor is the problem type relative to environment: In problems with large
computational requirement in contrast to the description size, the computational power of
the slaves could be more fully utilized as the network does not restrict performance as
much as in less computationally demanding tasks relative to the description size. Thus,
relative speed-up increases in environments as computational requirement increases. But, it
is restricted by the processing power of the slaves. In other words, as the computational
requirement increases to infinity the speed-up converges to the sum of all computing
devices in the network divided by the computational power of the master. Fixing the
environment as in Table 6, this upper bound in environment A was 5, in B 10.5, in C 1.7

and in D 2.5.

Third, increasing the number of slaves in the network increases the total amount of
computational power in slaves, hence, increasing speed-up, as long as the network
bandwidth does not restrict increases. Fixing the problem as in Table 7 showed that
increasing the number of slaves increased speed-up nearly linearly in the beginning, but as
the number of slaves was increased sufficiently the network started to get saturated and the
speed-up converged to an upper-bound. The upper bound in the environment A was 5.0
and 16 in the environment B. Showing that the WLAN technology provided a higher
speed-up saturation point, because of its higher bandwidth (although the master had higher
computational power in B). The upper-bound was reached at different number of slaves

for different distribution schemes. The simulation 50 converged fastest to the upper bound
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and approximately reached it at 6 slave phones in environment A and 2 slave PCs in
environment B. The faster converging in environment B was due to the higher
computational performance of the slaves. In environment C the upper bound was not

reached with 9 slave devices yet.

The last factor to bee mentioned was the distribution scheme. If the problem was divided
into smaller pieces (simulation 50), or if the problem is such that the computation on the
slave may start when the problem starts to arrive at the slave (upper bound) it may increase
the speed-up as leading to better utilization of the environment resources. This could be
seen in the upper-bound and the simulation 50 always outperforming the other distribution
schemes. This was because these schemes could more fully exploit the resources in the

environment, and thus, having less idle time during the runs.

Summarizing, the results are intuitively quite clear, the best situation in terms of speed-up is
when we have a lot of surrounding computational power, sufficiently fast networks,
computationally demanding problems relative to the description size, and we can utilize
resources efficiently. The speed-up then depends on (among others) how well these factors

are met.

5.1 Study’s focus and the real world

The results presented in this study are only guiding, since there are strong assumptions and
simplifications underlying them. In real life perfectly decomposable problems are rare and
there might exist multiple factors that delimit the efficiency of distributed computing. To
name a few: In this study no fixed costs existed. Thus, it was always lucrative to distribute
the problem. However in real life there might be considerable costs in composing and
decomposing the problem, setting up communication to slaves (e.g. setting-up a piconet in
Bluetooth environments), and in the need to transfer software components in advance of
any computation in slaves. Moreover, the distribution scheme might need to send control
information during the run, and thus communication link properties like latencies might
start to play considerable roles. This is particularly a weakness of our simulation
procedures, in which it was assumed that the master has perfect information of e.g.
computing queues of slaves. In addition, a fraction of computational power will be lost due

to the software controlling the distribution. Also other issues might need to be included,

Nokia Research Center 39 Danielsen, Hyténen, Kuusela & Yli-Anttila



Mat-2.177 Seminar on case studies in operation research Conclusions

like uncertainties of performance and the fact that different computers have different
hardware and system properties which significantly impact how well the a task of one
device can be solved on another. One reason why none of the above mentioned issues
were dealt with in this study is that their impact emerges from specific applications and

technologies.

It is though worth to noticing that with a few modifications our results can include some of
the issues mentioned above. As an example, consider a case where there does exist a
constant decomposition and composition cost, and decomposition and composition must
be done separately from other procedures. Assume the decomposition and composition
cost is all in all half of the time taken to solve the problem sequentially on the master
solely. This implies that the break even speed-up is 2, i.e. the distribution is worthwhile

only at speed-up above 2.

5.2 How to utilize the speed-ups

Since speed-ups are available, some questions naturally emerge. For example, what kind of
applications are and when are they attractive for distributed computing becomes an
important topic. From the view point of this study, applications that have properties similar
to the previously mentioned factors that enhance speed-up are most lucrative and this
study can provide some guidance into what kind of speed-up can be achieved. Still, no
absolute answers can be given since many issues affecting distribution emerge from the
application itself. First, the problem might be naturally situated on a particular device. For
example, a device (the problem owner) needing conversion of a small video-clip might be a
cellular phone with video viewing possibilities. Whether the problem might need
distributed computing or not in the first place depends on if it needs any speed-up at all
and what kind of speed-up. There might exist some threshold speed-up that in the eyes of
the application user is desirable or even necessary, but above this the utility to the user is
not so considerable. For example, a video-game that has an artificial intelligence might not
be appealing to play when responses from the computer take three minutes, but if one
minute responses can be achieved, i.e. relative speed-up of 3, the situation might be totally
different and the game might become interesting to play. The next issue is of course what
kind of speed-up the problem and the technologies are capable of. If the problem owner is

a low performance device it might gain considerable speed-up from a more high
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performance device. Still, it has to be considered what kind of devices can be assumed to
exist in the same environment as the problem owner. For example assuming that a mobile
phone has on average access to a piconet of 4 similar other devices, the results in this study
tells us what kind of possible speed-up we might achieve. The final speed-up then depends
at least on how large the computational requirement of the problem is relative to the
description size and how the application can be distributed on an algorithmic level. If, for
example, we have a mobile phone with the video conversion problem mentioned above,
we would require a speed-up of 2 in order to be able to view the video concurrently during
the conversion process. If there it is assumed that the phone is on average surrounded by
four similar devices, the video stream is of size 20 MB and would require conversion of 20
minutes, the problem is nearly perfectly decomposable, and can easily be decomposed to
10 smaller video clips (e.g. in one minute), then our results suggests that the threshold level
seems to be achievable and a speed-up of 2,5 is possible. Thus, further examination would

be desirable.

There are several domains in which distributable problems can be found. For example,
applications in signal processing, video and audio format conversions, and image
processing can be demanding. The signal can in many cases be split into smaller slices, thus
making it decomposable. As an example, MPEG coding schemes were presented by Nang
et al. (1997). Also, pattern recognition and voice recognition might have their appeals. In
voice recognition the front-end device recognizes characteristics of the voice. These
characteristics could be distributed for further processing. Delaney and Simunic (2003)
present a scheme for distributing voice recognition of mobile phones. Moreover, the
gaming domain is one that could also be source of applications. For example, artificial
intelligence might be a computationally demanding problem. Here for example the
problem of distribution probably is how a game tree should be traversed. Also, modeling
of physical movement and other concerns in real time games can be demanding. Besides
the above mentioned there probably exists a wealth of domains in which suitable problems

emerge, e.g. cryptography, mathematical (optimization) algorithms and so on.

Although this study was only concerned with computational speed-up, there are other
types of gains that can be achieved. In addition to computational power other devices may
contribute with storage and memory. Additionally other concerns might give the incentive

to distribute the problem. In Delaney’s and Simunic’s (2003) voice recognition example the
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primary reason mentioned for distributing the speech recognition done by a mobile device
is that it minimizes the battery consumption of the mobile device. Although dissimilarities
of devices is often a problem for distributed computing, dissimilarities can also lead to
interesting settings where one device has a certain weakness and utilizes another devices

strong ness on the same point.

In the future it is reasonable to assume that computational power in homes does increase.
Already, Moore’s law does give reasons to believe so. But, this does not guarantee much
more interesting settings for distributed computing. Other trends, however, that might
improve the benefits of distributed computing are converging hardware and systems (a
move towards this is the Sony patent application by Suzuoki et al., 2002) and higher
connectivity of devices in home environments. Furthermore, it is possible that smaller
devices like mobile phones, handhelds and other devices alike, which are connected and
can contribute to computation, may increase in number in future homes. To take a
somewhat futuristic view, in addition to the existing handhelds, in the future there might
exist robots, like the Sony Aibo dog, smart refrigerators and other home appliances that
might possess computational power that can be exploited. Hence, the relative
computational significance of weaker than PC devices might increase as they increase in
number. Similarly, Phan et al. (2002) denote that the sheer number of wireless mobile
devices is a reason per se why these devices are a great untapped resource, though their

consideration is in large grids like SETI@home.
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6 Proposals for further studies

This chapter discusses the aspect of pertinent further research as well as the possible future
developments on the field of distributed computing. A variety of, for some qualities,
extreme cases of modeling the problem is presented thus giving an overview of the

possibilities to develop or reformulate the modeling further.

6.1 Fixed-sized packages

If packages are required to be fixed-sized and can not be divided in a desired way, it could
be useful to know something about the contents of the packages and processing of them in
the system. By this we mean that when deciding about the allocation of the fixed-sized
packages the algorithm should take into consideration the contents and nature of the
ongoing processes and the queuing packages. In real life situations some packages could be
connected to each other so that they contain partly same data and the similar parts could be
computed faster using the same processing unit or the packages should be handled in
specific order or successively. This kind of study is omitted in our paper, but offers

conditions for better analyses of some computing problems.

6.2 Complexity

Complexity was by far the most difficult quality of the computing problems to model. This
is due to the fact that there is no indicator that would fit to all kinds of problems to
determine a comparable measure of complexity. We have modeled the complexity as a
“density” of computing operations in an amount of raw data processed. This amount of
computing operations is assumed by us to be constant in the data. This is not a very
realistic assumption in many problems and thus it would be a good improvement to

include a possibility to vary this value in the model.

This improvement would require a specific model for each problem type because the
problem types are very different in nature. For example, in a video format conversion or
compression problem the complexity could be a function of computing operations related

to the pixels on screen and the change in them. In a quiet scene with no movement and
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simple colors and shades the operations density would be low. On the other hand, in a

scene with a lot of movement it would be drastically higher.

The complexity modeling function for prime number calculations or chess problems, for
instance, would have to be completely different because these problems result in a problem
tree. This study aims to cover some more or less common cases to explain distributed
computing in home environment and devices, not going very deep into different specific
computing problems. Knowing what is wanted to compute, it would be an important step

to analyze specific problems further as well.

6.3 Simulation approach

The simulation approach could also be exploited in ways other than that was chosen in this
study. Describing the problem in detail is the most challenging part of the simulation. The
model used for simulation was actually chosen because of the aspiration to model a
computing problem with indiscriminate fixed-size packages that cannot be divided and
must be calculated as whole. The simulation of distributing computing problems can be
studied further and used to test different computing environments. The simulation model
used could handle only one type of connections, i.e. one speed, between devices at one
time (the speed can be altered, of course). This was mainly because in the end the primary
focus was on such environments in which connections were homogenous, and thus the
model was built to meet these systems. It would offer more flexibility, if the model could

include different connection speeds simultaneously.

6.4 Continuous stream of computational tasks

In this study the computational complexity has been kept fixed in each model. Also, in all
models tasks enter the system at the very beginning when the no time has elapsed.
Distribution might behave differently, and be much more difficult to model, if the
complexity coefficient were different for every sub-problem and the sub-problems would
enter the system in various times (i.e. there would exists a continuous non-deterministic
stream of problems). This might match the real life situation better since future tasks are
not deterministically known in every situation. For instance, user might decide to perform

certain new operation while the previous ones still in process.
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6.5 Literature Study

We pretty much started our study by looking into some literature in the field of
performance modeling and measurement of computational grids, applications and many
other fields related to grids and distributed computing. Initially we found no interesting
body of knowledge that could be utilized. Looking back the main reason for this was
looking in the wrong types of publications and databases (mostly periodical journals). Later
finding a wealth of conference papers dealing with interesting subjects we can conclude
that there exists a wealth of interesting information on grids and mobile phones connected
to grids. As there were not sufficiently time to complete a full literature study in the frames
of the course we refer future studies to take a closer look into literature, because fruitful

knowledge could be assemble thereof.
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Appendix A: Variables and coefficients

Table 5. The table outlines the variables and constants used in the document. The first column
indicates the symbol of the variable, the second column gives a description of the variable and the
last one denotes the measurement unit used in this study.

Symbol [Description Unit

P A computational problem that is to be solved. -

A computational sub problem of P. There are N sub problems py

Pi _

for P, and their union is (in some sense) the problem P.

The amount of computation needed to solve problem P. In the
study Y is measured as the product of the time taken to solve the
problem P on a particular device (e.g. on the host device) and the
Y processor performance of this device. That is, if processor (M)Hz*s
performance was measured as calculations per second and the time
to solve a problem is in seconds, the units would be calculations. In
this study we measured computational performance in MHz, thus
the unit of Y is MHz*s.
The amount of computation needed to solve sub problem p;. We
Vi define perfectly decomposable problems to have the property that |(M)Hz*s
the sum of all y; is Y.
The size of a file describing the problem P. In the document X s
X called description (of problem P) merely. For example, when the
problem is to encode a video clip from some original format, Xis
the size of the original video clip.

(M)Bytes

The size of a file describing sub problem pi. In the document, X; is
called description (of problem [j) merely.

(M)Bytes

The size of a file that is the response or answer to the problem P.
In the document, Ris called answer or response (of problem P)
merely. For example, when the problem is to encoding a video clip
from some original format, Ris the size of the encoded video clip.

(M)Bytes

The size of a file being the response to the sub problem pj. In the
ri document, I is called answer or response (of sub problem pi) (M)Bytes
merely.

‘The proportionality constant describing the size of the answer
17 relative to the description. When f is equal to 1, a sub problem none
requires as large an answer as description.

K A complexity coefficient of a sub problem pj, which is the ratio of Ho*s/B
Vi to Xi
n The number of sub problems P is divided into. pieces

‘The number of computing devices is M+ 1. The index 0 stands for
m the master or host device. The indices 1,...,Mate the surrounding [pieces
devices providing computational power to the host device.

The processing performance of the it processing unit. There are M (M)Hz
+ 1 processing units.
S The bandwidth of the communication link from the host to the i [(M)bps

Ci




device

'The maximum bandwidth of some communication link

Stechnology [technology, e.g. Sgr is the maximum capacity of a Bluetooth (M)bps
channel.
_ The length of the communication link. The time taken to send a (m)seconds
' minimum size package over a communication link (i.e. latency).
A constant in the interval [0,1] that indicates the proportion of
o processor capacity used while transmitting data over some none
communication link.
Taecompose|The time taken to decompose a problem P into N sub problems seconds
Tsolve The time taken to solve N sub problems seconds
The time taken to compose an answer to a problem P from N sub
Tcompose seconds
problem answers
The time taken to solve a problem P by distributing it. Tgigributed 18

Taistributed b T T T seconds

ased on decompose, ! solve and compose:

Tsequential [The time taken to solve a problem P on the host device only. seconds
The time taken to solve sub problem . tj is based on tj send, i solve

t; ' ’ seconds
and ti,receive-
The time taken to send the description X; to the device, which has

ti send seconds
been allocated to solve the sub problem p;.
The time taken to solve the sub problem P on the device allocated

ti solve . seconds

: for this task.

The time taken to receive the answer I} from the device, which

ti,receive seconds
completed sub problem pi.
The gain or relative speed up resulting from distributing a problem.

G This is measured as the ratio of Tsequential and Tgigributed- Also the  |[none

ratio Tsequential and Tsplve is used.




Appendix B: Simulation results
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Figure 10. Environment A with 10MByte packet.
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Appendix C: Model Comparison
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Appendix D: MATLAB code for simulation model

simul ation. m

L0 T
% SI MULATI ON PROGRAM FOR DI STRI BUTED COVPUTI NG

% 18.04.2004

% authors: Danielsen, Hytonen, Kuusela, Yla-anttila

%

% Thi s program simnmul ates distributed conputing with bag-of-tasks type

% problens in the environment of n conputing nodes connected to the host

% conputer via single communications |ink. The systemrecei eves subprobl ens
% that can either conputed on the host conputer or trasmitted over the

% communi cations link to other conputing nodes in the network.

% Load constants and generate probl ens used. Problens are structs defined
% in simconstants. mand they are generated with function

% gener at e_probl enms. m

si m constants;

probl ems = generate_probl ens(num prob);

% generate discrete tine steps
t = [t_start: delta_t: t_end];

% Here are the queues where problens are stored when they await transfer

% or conputation or are under transfer or conputation. Queues are struct

% arrays with tr_queue contai ning problenms awaiting transfer and host_queue
% and node_queue are the conputing queues for host computer and ot her

% nodes, respectively.

tr_queue = [];
host _queue = |
node_queue = {
for i=1: numn

des
node_queue{l,i

]
}
(0]
{(Li}y =11

end

% 1list for conpleted problens
ans_list =11;

% Lengt hs of different queues (in nunmber of problens). Queue |lengths are
% vectors with conponents xxxx_queue_| ength(i) corresponding to the |length
% of queue at tine t_start + (i-1) * delta_t.

tr_queue_length = zeros(1l, size(t,2));

host _queue_l ength = zeros(1, size(t,2));

node_queue_| ength = zeros(num nodes, size(t,2));

% nunber of operations left in each conputing node
host queue_calc = zeros(1l, size(t,2));
node queue_cal ¢ = zeros(num nodes, size(t,2));

% percent age of problens conpl et ed
subp_conmp = zeros(1, size(t,2));

% Main loop is calculated in delta t tine intervals. It first stores the

% current queue | engths and then checks if new probl ens have arrived to the
% system New problens are either copied to host queue or transfer queue

% dependi ng on whether it takes a shorter tinme to conpute the problemon

% t he host conputer than to transnmit the problemto sone ot her node,

% conpute it there, and transmit the aswer back to host node.

%

% BEG N MAI N LOOP

for i=1:. size(t,2)

% Store current queue | engths and percentage of problens cal cul ated



if size(tr_queue,2) >0
tr_queue_length(i) = size(tr_queue, 1);
el se
tr_queue_length(i) = O;
end

if size(host_queue,2) >0

host _queue_length(i) = size(host _queue, 1);

host _queue_cal c(i) = sun{[host_queue.calc_left]);
el se

host _queue_l engt h(i)

host _queue_cal c(i) =
end

0;

ol

for j=1: num nodes
i f size(node_queue{j}, 2
node_queue_| engt h(j,
node_queue_cal c(j,i)
el se
node_queue_ | ength(j,i)
node_queue_calc(j,i) =
end
end
subp_comp(i) = 100 * size(ans_list,1) / num_prob

”n O

i ze(node_queue{j},1);
um([ node_queue{j}.calc_left]);

=

% I ncom ng packet handling. Wen new probl em packets have arrived,
% conput e_on_node -funtion is used to determ ne on what node the problem
% will be calculated. The problemis then copied either to the host
% conputing queue or to the transfer queue to await transfer.
if size(problems,2) >0
if problems(l).time_i <= t(i)
probl ens(1).cal c_node = conpute_on_node(host _queue, tr_queue, node_queue,
problens(1));
if problens(1l).calc _node ==
probl enms(1). bytes_left = O;
probl ens(1).cal c_node = 0;
host queue = [host _queue' problens(1)]"';
problens(1) =1[];
el se
probl enms(1).bytes |eft = problens(1).bytes desc;
tr_queue = [tr_queue' problens(1)]"';
problens(1) =1[];
end
end
end

% Transmt queue handling. If there are packages in the transnmt queue,
%trans * delta t bytes of the first problemin the queue is transnmtted
% during the tinme step. If the transm ssion of the package is conpleted,
% and the package is not an answer of the problem problemis copied to
% t he conputing queue of the node is has been transferred to. If the
% conpl et ed package is an answer of the problem the problemis copied
%to the |ist of conpleted problens.
if size(tr_queue,2) >0
tr_queue(l).bytes left = tr_queue(l).bytes left - trans * delta_t;
if tr_queue(l).bytes left <=0
tr_queue(l).bytes left = 0;
if tr_queue(l).calc_left ~= 0
i ndex = tr_queue(1).cal c_node;
node_queue{i ndex} = [node_queue{index}' tr_queue(l)]';
tr_queue(l) =1];
el se
tr_queue(l).time_o = t(i);
ans_list = Jans_list' tr_queue(l)]';
tr_queue(l) =1];
end

end



end

% Host queue handling. If there are problens in the queue, conp_host *
% delta_t operations of the first problemare calculated. If the first
% problemis ready it is copied to the list of ready problens.
if size(host_queue,2) >0
host _queue(1l).calc_|left = host queue(l).calc_left - conp host * delt
i f host_queue(l).calc_left <=0
host _queue(l).calc_left = O;
host _queue(l).time_o = t(i);
ans_list = [ans_list' host_queue(l)]";
host _queue(1l) = [];
end
end

% Conput ati on queue handling. If there are problens in the node
% conput ati on queue j, conmp(j) * delta_t operations of the first prob
% are calculated. If the first problemis ready, it is copied to the
% trasfer queue to transmt the answer back to the host.
for j=1: num nodes
if size(node_queue{j},2) >0
node _queue{j}(1).calc_left = node queue{j}(1).calc_ left - conp(j)
delta_t;
i f node_queue{j}(1).calc_left <=0
node_queue{j}(1).calc_left = 0;
node_queue{j}(1).bytes left = node_queue{j}(1).bytes_ans;
tr_queue = [tr_queue' node_queue{j}(1)]";
node_queue{j}(1) = [];
end
end
end

end
% END MAI N LOOP

% Drawi ng the results

subpl ot (2, 2,1)

plot(t, subp_conp);

title(' Percentage of subproblenms conmpleted );
xl abel ("t [sec]');

yl abel (" %) ;

subpl ot (2, 2, 3)

plot(t, tr_queue_l ength);
title('Length of transfer queue');
x|l abel ("t [sec]');

yl abel (" subprobl ens');

subpl ot (2, 2, 2)

plot(t, [host_queue_ | ength; node_queue_l ength]);
title('Lengths of conputing queues');

xl abel ("t [sec]');

yl abel (" subprobl ens');

Nanes = [ Name_host; Nanes];

| egend( Nanes, 0);

subpl ot (2, 2, 4)

plot(t, [host_queue cal c; node_queue calc]);
title('Lengths of conputing queues');

x|l abel ("t [sec]');

yl abel (' operations');

sl = sprintf('\n% out of %l subprobl ens processed', size(ans_list,1),
num prob);
s2 = sprintf(' Total tine: % 1f\n', ans_list(size(ans_list,1)).tine_o);
di sp(sl);
di sp(s2);

at;

em

*



simconstants. m

7
% This .m-file is used to initialize paranmeters used in the sinmulation

% Subprobl ens are structs with follow ng fields:

%

% tine i ti me when problementers the system (sec)
%tinme_o ti me when problem | eaves the system (sec)

% byt es_desc size of problemdiscription (bytes)

% byt es_ans size of problem answer (bytes)

% bytes | eft size of problemnot yet transferred (bytes)

% cal ¢ operations required to solve probl em (operations)
% calc_|eft operations not conpleted (operations)

% cal c_node i ndex of node cal culating the problem

prob_type = struct('time_i"',0, "time_o',0, 'bytes_desc',0, 'bytes_ans',O,
"bytes left',0, '"calc',0, '"calc_left',0, 'calc_node', -1);

t_start = 0; % start tine of sinmulation (sec)
t _end = 1200; % end tinme of sinmulation (sec)
delta_t = 0.1; % | ength of one time step (sec)

num prob = 500; % nunber of subproblens to be cal cul ated
% Nanes and conputing power of surrounding nodes (in operations / sec)

Nanes = {'Mobile 1'; 'Mobile 2'; '"Mbile 3'; 'Mbile 4'};

conp = [5.33e8 5.33e8 5.33e8 5.33e8]";

num nodes = si ze(conp, 1); % nunber of surroundi ng nodes

% Nanme and conputing power of host conputer

Nane_host = {'PC (host)"'};
conp_host = 3200*1e6;
trans = 850 * 1024; % connection speed (bytes / sec)

k = 0.030031051* 1e6;



conmput e_on_node. m

function fastest_index = conpute_on_node(host_queue, tr_queue, node_queue, task)

% _________________________________________________________________________
% This function determ nes on which node the problem'task' takes shortest
%tinme to conpute. The function does not take into account other packages
% arriving to the systemat a later tine.

%

% PARAMS: host _queue array for problens to be cal cul ated on host

% tr_queue array for problens to be transnmtted to other nodes
% node_queue arrays for problems to be cal cul ated on nodes
% t ask new probl em entering the system

%

% RETURNS: index of the node on which the conputation takes shortest tine
% (0 if host is fastest)

% _________________________________________________________________________

% Load constants
si m constants;

% Cal cul ate the tinme needed to conpute the current problem on host conputer
%if the problens currently in the host queue are cal cul ated before this
% pr obl em
time_on_host = O;
i f size(host queue 2) >0
time_on_host = (sun([host_queue.calc_left])) / conp_host;
end
time_on_host = tinme_on_host + task.calc / conp_host;

% Cal cul ate the tine needed to transmt the package to other nodes with the
% current transmt queue | ength.
time_to_transmt = task.bytes_desc / trans;
if size(tr_queue,2) >0

time_to_transmt =tine_to transmt + (sun([tr_queue.bytes left])) / trans;
end

% Check if there are problens left to conpute on different nodes when
% the current problemarrives there and calculate tines to conpute these
% probl ens. The current problens on the transfer queue are added to the
% correspondi ng conputing queues.
time_on_node = zeros(num nodes, 1);
for i=1: num nodes
if size(tr_queue,2) >0
index = find([tr_queue.cal c_node] == 1i);
node_queue{i} = [node_queue{i}; tr_queue(index)];
end
if size(node_queue{i},?2) ==
time_on_node(i) = O,
el se

node_conp_time = sun([node_queue{i}.calc_left]) / conp(i);
time_on_node(i) = max([node_conp_time - tine to transnmt 0]);
end
end

% Get the conputation tinmes of the task on different nodes and add these
% to node tines

conp_times = task.calc ./ conp;

time_on_node = time_on_node + tine_to_transmt + conp_timnes;

% Cal cul ate the tine needed to send the answer and answer of the other
% probl ems back to host computer
byt es_sent _back = 0;
for i=1: num nodes
if size(node_queue{i},2) >0
byt es_sent _back = bytes_sent _back + sun{[node_queue{i}.bytes _ans]);
end
end
return_tinmes = zeros(num nodes, 1);



for i=1: num nodes
return_tinmes(i) = max([(bytes_sent back/trans)-conp_tinmes(i) 0]);
end

% Add return tinmes of other packages on the transfer queue before this
% package and tinme needed to transmt this package back to host
time_on_node = time_on_node + return_tines + (task.bytes ans / trans);

% Find the m ni mum of conputing tinmes and return it
if time_on_host <= min(tinme_on_node)
fastest _index = O;
el se
fastest i ndex
fastest_index
end

find(time_on_node == nmin(tine_on_node));
fastest index(1);



generate_probl ens. m
function packages = generate_probl ens(p)

% _________________________________________________________________________
% This function generates p problens used in simulation . m

%

% PARAMS: p nunber of problens to be generated

%

% RETURNS: (p x 1) -array of structs of type 'prob_type' (defined in

% sim constants. n
0

% Load constants
si m const ants;

% CGenerate (p x 1) array of problens 'prob_type'
packages = repmat (prob_type,p,1);

% CGenerate sizes for the tasks. In the environnent exam ned the size of
% probl em descri ption and probl em answer are equal in bytes and al
% problens arrive to the systemat tinet = 0.

packages(1l).tinme_i = 0;
packages(1). bytes_desc = (1024/5)*1024 + (1024/50)*1024*randn(1);
packages(1).bytes_ans = packages(1l).bytes_desc;
packages(1l).bytes |eft = packages(1).bytes desc;
packages(1l).calc = k * packages(1).bytes_desc;
packages(1l).calc_l eft = packages(1).calc;
for i=2: p
packages(i).time_i = 0;
packages(i).bytes desc = (1024/5)*1024 + (1024/50)*1024*randn(1);
packages(i).bytes_ans = packages(i).bytes_desc;
packages(i).bytes |l eft = packages(i).bytes_desc;
packages(i).calc = k * packages(i).bytes desc;
packages(i).calc_l eft = packages(i).calc;

end



