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Abstract

This study presents a new approach to model a wireless radio network and
methodology to find optimal routing schedules for it. Our scheduling problem, as
most of them, is N'P-complete. Hence, linear programming models, which can be
used to reach an exact optimum, appeared to be unsuitable for our purposes because
of the high dimensionality of our problem. Therefore, we focused on developing a
graph representation of the scheduling problem which can be efficiently solved by
applying local search methods. In this work we applied taboo search heuristics as
suggested in literature.

The computational results show that the taboo search is suitable for solving this
kind of A'P-complete problems especially if a near-optimal solution suffices. This is
because the search can be terminated any time and by letting the procedure to run

long enough good solutions can be reached.
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1 Introduction 6

1 Introduction

In residential areas, where the settlement is quite dense but building dedicated lines
(ADSL etc.) would be too expensive, it is today possible to use radio network technique
to build a local area network. Nokia Inc. provides small wireless routers, the RoofTop-

routers, for this purpose.

The network is constructed as follows: each house has its own router, which transmits
and receives data packets to other routers via radio waves. One of the routers operates
also as a gateway, which is connected to the Internet via an optical cable. There has to be
a line of sight between the routers and the maximum range of a router is not more than
1500 meters. The target is to forward data packets as efficiently as possible from sender

to destination.

In radio networks only one router at a time can transmit data in its range and the
other routers inside sender’s range except the receiver must remain idle. This restriction

constitutes a difficult scheduling problem.

Transmission of a packet from its origin to its destination takes a certain time. This time
is referred to as transmission delay of the packet; evidently the smaller delay is the better
the schedule is. The efficiency of the network and the schedule as a whole is measured by
taking the maximum of the delays of the data packets and, hence the scheduling problem

is about choosing a schedule minimizing the maximum delay.

At hardware level, the scheduling problem is solved in a decentralized manner, that is,
the routers prioritize different packets, and agree on the sending periods with the other
routers within their own range. The goal of this work is to find an optimal centralized
solution for the scheduling problem, which is to be used as a benchmark when assessing

the quality of the applied routing heuristics.
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In scheduling theory literature the scheduling problem is typically described as a linear
programming problem or as a graph [15], [11]. Commonly applied traditional solution
methodology includes different methods related to linear programming, such as branch and
bound, branch and cut, Lagrangian relaxation etc., see [7]. These methods have, however,
lacked of practical usefulness due to the underlying complexities of the scheduling problem,
which has been appeared to be NP-complete. In practice, the N'P-completeness implies
that no algorithm exists that can solve the problem in polynomial time as a function of
the size of the problem. Hence, each solution algorithm takes an exponential time, which
means that a huge amount of CPU time is required if a large enough problem is being

solved.

These computational problems have generated a number of heuristic approaches for solv-
ing N'P-complete problems. Especially in our case, there is a number of heuristic ap-
proaches for solving scheduling problems. Those approaches include, e.g., taboo search,
simulated annealing, genetic algorithms and a variety of so called priority rules [2], [12].
The priority rules are easy to implement but they have proven to produce solutions that

are far away from optimal [7]. Therefore, they are left beyond the scope of this work.

The evolution of the heuristic solution methods was initiated in the early 1990’es when van
Laarhoven, Aarts and Lenstra [22] studied suitability of the simulated annealing. They
concluded that the simulated annealing was not a suitable heuristics but they argued
that taboo search methods could emerge an efficient methodology for some scheduling
problems. More recently, their work has been extended by many authors, see, e.g., [1],
[18], [16], [6], [2], [5], [19] and [8]. Hence, we take the taboo search as the basis of our

solution methodology.
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2 Radio Network Description

2.1 Assumptions

In this work we investigate a very short period of time, a snapshot, in the network. This
results to a network that can be described with a tree topology. The nodes of the tree
describe routers and the arcs describe links. The gateway node is on the top of the
topology. As the radio links are fixed for a short period of time, they can be handled like

normal cable links. The restrictions presented in the introduction remain the same.

To simplify the case the following assumptions are made:

1. There is no internal traffic in the network between the nodes, and hence all packets

from and to the Internet are routed trough the gateway node.

2. Each node has three states: idle, transmitting and receiving. There is a small setup

time when changing from state “transmitting” to “receiving” and vice versa.
3. The size of the data packets in the network is fixed.

4. When a node is transmitting data, all its neighbors within its range except the

receiver must remain idle.

5. All arcs are identical, so the duration of transmission of a packet is equal for each

router in the network. The maximum capacity of an arc is 24Mbps.

6. Each node transmits and receives data at the same constant rate, which is known

in advance.
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2.2 Basic Notation

Let us denote the set of routers by M = {M,..., My} and the set of packets by P =
{p1,-..,pn}. Each packet p; is being transmitted from the origin to the destination via
certain sequence of routers M; = {M;,, ..., M;, }. Transmission of packet p; from M;; to
M;

41 1s called as transmission operation and it is denoted by O;;. The durations of the

operations are known in advance and they are denoted by T;;.

A transmitting router interferes its neighbors and therefore we define the set of reserved

routers R;; € M that contains the routers being reserved during the operation O;;.

The sequence dependent setup times are taken into account in the model by denoting the
routers that transmit and receive data during an operation O;; by My, (O;;) and Mg.(O;;)

respectively. The setup time is denoted by T,.

Thus, we can identify three types of constraints characterizing the set of feasible schedules:

e The precedence constraints. A packet must be transmitted via the routers in a fixed

order M,.

o The disjunctive constraints. If two operations O;; and Oy reserve same routers,
ie., Rij(Rijy # 0, they cannot be completed simultaneously. This implies that

either O;; precedes Oy or vice versa.

e Setup constraints.

Let us denote the time when packet p; arrives to the network by 7 and the time when it
reaches the destination by Tl-f . Now the total transmission time of a packet can be defined

as

D, =T/ - 17
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To offer high quality of service for each user of the network we minimize the greatest D,
that is,

min max D;. (1)
pi

For a broader view regarding the fairness in telecommunications, see, e.g., [21]. We refer

the packet p;« giving the greatest delay D, to as critical packet.

This formulation of the underlying problem is somewhat similar to the well known job
shop scheduling problem (JSP) [6] provided that we interpret the packets as jobs consisting
of operations and routers as machines completing the jobs. However, JSP assumes in its
basic form that there are no setup times and performing an operation reserves only a
single machine. Moreover, the JSP assumes that the completion time of the last job

being completed is minimized.

JSP model has been generalized in literature to describe real manufacturing systems. For
instance, Choi and Korkmaz [8] have introduced how the sequence dependent setup times
can be taken into account, Mati, Nidhal and Xiaolan [16] have generalized the model to
include the reservation of multiple machines and Scrich, Armentano and Laguna [19]
have shown how the objective function can be varied. We combine these ideas to create

models for our purposes and to develop suitable solution methods for them.

2.3 Mixed Integer Linear Programming Model (MILP)

Let us denote the starting time of operation O;; by ;; and assume that T;; = T for each
O;;. Now we can represent the constraints presented above in terms of inequalities as

follows.

1. The disjunctive constraints
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tii +1; >ty or
’ ’ VRi; [\ Ry # 0. (2)
tijr + 11 >

2. Setup constraints

ti]‘ + Tl + Tv Z ti/j/ or V MTT(Oij) = MRe(Oz"j’) or
tyy + 11+ T, > t; Mrp, (Ojrjr) = Mge(O;5)

3. The precedence constraints

tigj+1) = tiy + T, + T VO. (4)
4. Additionally, the packets arrive to the packet’s arrival to the network

tij > Ty, (5)

By introducing a variable ¢ that satisfies
e >ty — T}, (6)
we obtain an optimization problem: mine subject to constraints (2)-(6).

The constraints (2) and (3), which are difficult or constraints, can be written in linear
form by introducing integer variables. Hence, the problem can be rewritten as a mized
integer linear programming (MILP) problem. If we assume that we have even an small
radio network that consists of six routers receiving and transmitting one packet, we obtain
an MILP problem with 204 variables and 424 inequalities. Hence, we have a problem that
is large to be solved by using traditional MILP-optimization methods, such as branch and

bound method or Lagrangian relaxation [6].
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2.4 Disjunctive Graph Representation

A schedule can be presented as a graph, see Figure 2 below representing transmission of
two packets as depicted in Figure 1. The graph presents each transmission operation O;;
as a node. The nodes are aligned such that each row in the graph corresponds to a packet.
You can imagine that each node contains a label that shows the set of reserved routers

Ri; and the durations Tj; explicitly. The durations are called the weights of the nodes.

M6

Packetl
Packet2

Figure 1: The radio network

The arcs present the order in which the operations are performed, i.e., an directed arc
from O;; to Oyjr, denoted by (O;;,Oyjr), indicates that the operation O;; is completed
before Oy ;. The solid arcs in Figure 2 correspond to the precedence constraints. The
slashed arcs represent the disjunctive constraints and they are referred to as disjunctive
arcs respectively. Initially, the disjunctive arcs are undirected and basically our problem

is to choose their directions optimally.

The setup times can be included in this graph representation by setting an additional

weight T, for an arc (O;;, Oy ;) if a setup is needed between operations O;; and Oy ;.

Suppose that we have one schedule, i.e., we have all the disjunctive arcs directed, as shown
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in Figure 2. Consider a path P = {0, ;,,...,0;,;,} in the graph and define the length of
a path as the sum of the weights of the nodes and arcs on the path. Hence, the length of
a path can be interpreted as a lower bound of the time lag between the operations O; ;,

and O, ;,. This is because the directed arcs give the completion order of the operations.

Figure 2: An example of a schedule

This representation allows us to determine the total transmission time for each packet p;.

Choose the operations O;; and O latter of which refers to the last operation of the

ijmax
packet p;. Now we can calculate a critical path for p;, that is the longest path from O;; to

@)

ijmax- 1tS length equals the total transmission time of the packet and hence we are able

to compute the transport delays of the packets for the schedule as shown by Corment,

Leiserson and Rivest [10].

The critical path can be found by transforming the longest path subproblem as the shortest
path problem by switching the signs of the weights of the arcs and nodes. Hence, it is
possible to apply Bellmann-Ford algorithm [5] or Depth first search (DFS) to find out
a complete completion order of the operations that can be employed to compute the

corresponding maximum delay as presented by [10].

Note that the schedule described by a directed graph is feasible provided that the graph is
acyclic, i.e., there are no cycles in the graph. This result can be shown easily by assuming
the controversy. Suppose that there is a cycle {O;;, Oyjr, ..., O;;}, which implies that the
operation O;; needs to be completed before O;;. On the other hand, if there is no cycle

in the graph, a path P gives a completion order of a certain subset of operations.
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Figure 3: An example of an improved schedule

We denote the set of feasible schedules by S. We also interchangeably refer the schedules
to as solutions and respectively the set of feasible schedules to as the set of feasible

solutions.
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3 A Taboo Search Algorithm

The basic idea in local search methods is to define a neighborhood for each solution,
iteratively search for the best solution by exploring this neighborhood and thus gradually
reach the optimum (c.f. steepest ascent methods [4] in nonlinear programming). The
Figures 2 and 3, where a disjunctive arc is redirected, give a simple illustration on how a

solution can be locally improved by reversing one or more disjunctive arcs.

This iterative exploration of the neighborhood does not, however, guarantee a global
convergence of the method but convergence to a local optimum only. Hence, a taboo list
is additionally defined in taboo search methods. A taboo list declares a certain subset of

the neighborhood as taboo to prevent the algorithm to terminate in a local optimum.

To favor good solutions it is also often defined an aspiration criteria. It allows the algo-
rithm to choose a taboo neighbor as the next solution if a taboo neighbor solution is the

best solution reached so far. This kind of aspiration criteria is referred to as elitism.

Recall that we aim to minimize the objective function f(x) = max D; over feasible so-
lutions € 8. Let us now denote the neighborhood of a solution z € S by M (z) C S.
Assume that taboo search has generated a sequence (1,xs,...,2;) of solutions. More-
over, denote the taboo neighbors by T (zx,zg_1,..., Tk k), the neighbors satisfying the
aspiration criteria by A and the best solution found so far by z* and its the related

maximum delay by f* = f(2*).The parameter K is referred to as length of the taboo list.

Now, the generic rough formulation of the taboo search is given as follows: [13]

1. Set £ =0 and choose an initial solution =y € S
2. Choose the next solution xy 1 = argmin{ f(z)|z € N (xp)\T (xx, Tk—1, - -, 2k—x) J A}

3. If fagyr) < f*, set a* = xpyy and f* = f(apyq).
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4. Set k =k + 1. Go to step 2.

The choice of the initial solution zy and the neighborhood A and the definition of the
taboo list 7 are strongly problem dependent. In the following subsections we describe

how the neighborhood and the taboo list are chosen in our scheduling problem.

3.1 Generating the initial solution

We fix a arbitrary total order between the packets. Using this order as basis we generate
a feasible initial solution for the taboo search. For any two transmission operations O
and O' reserving a common router we define a order by using the order between packets
which these belong. Namely if p is the packet that O belongs and p’ is the packet that O’
belongs, then we create a arc (O, 0") if p < p’ and (O', O) otherwise.

3.2 Neighborhood Structure

The neighborhood structure applied in our case is based on reversals of the disjunctive
arcs on a critical path of a critical packet as alluded in Chapter 2.4. This approach is
reasonable because it pays attention on reordering the operations that are limiting the

performance of the current solution.

In our case, a neighbor of a solution z is obtained by reversing an arc on a critical path of
a critical packet, and the whole neighborhood N (z) can be generated by reversing each
of those arcs separately. This choice of the neighborhood follows the ideas presented in

JSP literature.

It is also possible to define more sophisticated neighborhood structures. Typically those

structures require reversing of more than one arc at a time, see, e.g., [18], [3] and [14].
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However, this makes the neighborhood larger and, hence, its exploration requires more

CPU time.

3.3 Taboo List

The taboo list is commonly defined through arc reversals, too. Simply, once an arc
is reversed it is forbidden to re-reverse it for K next iterations. Most of the existing
implementations of the taboo search presented in JSP literature use this approach, see,

e.g., [18].

Besides the selection of the neighborhood structure, the choice of the length of the taboo

list plays a crucial role when fitting the algorithm to the problem being solved.

If K is too small the algorithm terminates to a local optimum only, because the set of
taboo neighbors in too small and hence the algorithm is greedy in searching the best
solutions locally. Likewise, too large values of K may prevent the algorithm to converge

even to a local optimum.
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4 Implementation of the Solution Method

We have implemented the taboo search method for our scheduling problem by applying

C-++ programming language [20] and the standard template library (STL) [17].

Here the implementation is presented roughly; for technical details we suggest the reader

to familiarize oneself with the source code.

4.1 Inputs

The program takes as an input a data matrix presenting the network topology, that is, the
routers and the arcs describing which routes the data flows through the network. Because
we assume that each router transmits packets of constant size at constant rate, the traffic
in the data network is presented by entering the time it takes to transmit a packet and
the time interval between individual packets to be transmitted or received. The input is

given as a text file. The times are given as integers.

4.2 Outputs

The implementation offers a variety of options to represent the solution to support varying
user needs. It is possible to view the optimal schedule using one of three different output
options, or using an arbitrary permutation of those. The output is printed in a text file

too.

First output option produces a list of transmit-receive events in chronological order. At
each row time of the event, transmitting router, receiving router and related the job is

printed. In case of multiple coincident events each of them is printed out on separate row.
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Second output option produces a table of events in a router oriented form. Each row
of the table describes events in the data network at a single moment. The first column
contains event and other columns contain the possible event in the corresponding router.
Events are described with following notation: ’s’ refers to sending (transmitting) a packet,

't receiving a packet. Packet number is presented in brackets after event type.

Third output option produces a table of events in a packet oriented form. As in the second
option, each row of the table describes event(s) in the net at a single moment. The first
column contains the event times in chronological order of and other columns contain the
possible event related to the corresponding packet. Sending-receiving event of packet at
issue is described with notation ’s>r1’, where ’s’ refers to the sending router and ’r’ to the

receiving router.

4.3 Some Details of the Implementation

A text file containing the matrix representation of the network topology and the network
parameters is passed for the main program. Class Initializer creates all the sending and
receiving tasks in the radio network. After that, class Schedule builds up a feasible initial
schedule, which is being improved upon by the taboo search to gradually reach better and
better solutions. UML presentation of the main program and the relationship between
class Initializer and class Schedule are introduced in Figure 4. Figures 5 and 6 give details

of the Initializer and Schedule classes.

N 1 1 . 1.
MainProgram Initializer

Schedule

Figure 4: Rough UML representation of the implementation

Most important part in the algorithmic sense is the Schedule::MaxDelay routine which
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Initializer

+Initializer(): void
+getJobVector(): Jobl[]

IdleTask

Job

Task

+Job (int numTask):void
+addTask (Task t):boolean
+addTask (int taskNum, int
sender, int receiver, int
numreserved, int
preserved(], int
taskcost) :boolean
+getNumTask () :int
+getTaskCost () :int
+getNumReserved () :int
+getReservedRouter (int task
int numresrouter):int

+isIdleTask () :boolean
+getCost () :int
+reservesRouter ( int
router () ) :boolean
+getNumReserved () : int
+getReservedRouter (int
index):int

+IdleTask(int taskCost, int
jobld):void
+isIdleTask():true
+getCost () :int
+reservesRouter ( int
router()):false
+getNumReserved () :0
+getReservedRouter (int
index):-1
+getReceiver (
+getSender () :
+getJob(): int
+nodeSwilchWith (Task
&t):false
+toString () :String

1

+getReceiver () :int
+getSender(): int
+getdob(): int
+modeSwitchWith (Task
&t) :boolean
+toString():String

RealTask

+RealTask(int rec, int sen,
int res[], int numRes, int
cost, int job):void
+isldleTask():false
+getCost () :int
+reservesRouter ( int
router()): boolean
+getNumReserved () : int
+getReservedRouter (int
index):int

+getReceiver () :int
+getSender (): int
+getJob(): int
+modeSwitchWith (Task

&t) :boolean

+toString () :String

Figure 5: UML representation of the initializer class

TabooSearch

+TabooSearch (Schedule
&initialSchedule, TabooList
&initialTabooList)

+run() :void

+ chooseNextSolution ():void
+ updateTaboolList () :void

+ isTaboo (moves) :boolean

Schedule

tSchedule (int numJobs, int
numRouters, Job j[]):veoid
+copy (const Schedule

&s) :void

+dfs_visit(int task,
vector<int> &finished, char
visited([]):void

+dfs_search () :vector<int>
+DelayToTask (const
vector<int> order, int
task, int bound, vector<int>
scriticalpath) :long
+MaxDelay () : long
+MaxDelayEstimate ():long
+Neighborhood() :ScheduleTter
ator*

+flipArc(int nodel, int
node?) :void

+printSchedule (ostream
soutput, bool casel, bool
case2, bool case3):void

Graph

+Graph(int Size):void
+Graph(const Graph &graph)
+setArc(int from, int to): void
+getArc (int from, int to): char
+HlipArc(int from, int to): void

Pair

+Pair(Task t, long time)

Job

+defined above

Schedulelterator

+ScheduleTIterator (Schedule
&s):void
+NonPermanentFlip () :boolean

+0utOfCP () :boolean —

+next (struct move
*move) : Schedule*
+hasNext () :boolean

Move

+move (int £, int t)
+getFrom() :int
+getTo () :int
+setFrom(int i): void
+setTo(int i): void

Figure 6: UML representation of the schedule class
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calculates the maximum delay experienced during the snapshot. We take advantage of
the acyclicness of the schedule. We also noticed that one does not have to recalculate all

the delays after reversing one arc.

We calculate the earliest starting times of the operations by first using DFS to do a
topological sort and afterwards calculating the earliest starting time for each task. If we
have previously calculated the earliest starting times for some schedule and reverse an arc
(a,b), then we do not have to recalculate all the earliest starting times for new schedule.
To achieve this goal, we need to perform a DFS starting from node b and producing
new ordering only for the nodes affected by the reversion of the arc. Thus, we have to

recalculate the delays only for these nodes.

For interested reader more details can be found in the source code from the class Schedule.
The methods are MaxDelay for calculating maximum delays, dfs search for DFS and
InitializeDelays for calculating the earliest starting times. Routine flipArc recalculates
the maximum delay after flipping an arc. It uses partial dfs search to complete DFS

search only starting from a certain node.

Schedule graph is stored as a matrix which is suitable for dense graphs. We believe
schedules on the small networks to be rather dense, and on the other hand the limiting
factor in computational resources seems to be the computation speed, not the memory

taken by the program.
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5 Numerical Examples

The implementation was tested with two different cases. The first case represented a

simplified network and the other case was closer to a real network.

According to a real network the bandwidth was specified to be 24 Mbps and the transmis-
sion rate was assumed to be asymmetric: each router received 256 kbps from the Internet

and sent 128 kbps to the Internet.

As the transmission time of a packet was set to 1 ms, the following parameters were fixed:

e packet size 24kb (3kB)
e time interval between packets coming from Internet 100ms

e time interval between packets sent to Internet 200ms

The setup time was set to 3 ms.

When running the taboo search algorithm the following parameters were varied

e number of packets sent to and from the Internet
e maximum number of iterations

e the length of the taboo list

5.1 Small Scale Radio Network

We simulated the taboo search algorithm with a network described in Figure 7.
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Figure 7: The small scale network

The network consist of six routers (zero refers to the gateway router) and radio links

between them.

Four different small scale test cases are reported here to illustrate the features of our
solution methodology by completing 10000 iterations and setting the taboo list length to
10, 50 and 1000:

1. Each router receives one packet and transmits two packets. Maximum delay of the

initial solution was 246.

2. Each router receives two packets and transmits four packets. Maximum delay of the

initial solution was 646.

3. Each router receives four packets and transmits eight packets. Maximum delay of

the initial solution was 1446.

4. Each router receives eight packets and transmits 16 packets. Maximum delay of the

initial solution was 3064.

The results of these instances are presented in Tables 1-4 and Figures 8-11.

The results show that the quality of the solution is strongly dependent on the length of the
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Table 1: Reached maximum delay when each router transmits one packet and receives

two.

Length of the taboo list MaxDelay Relative improvement

10 224 8.94%
20 16 93.50%
100 15 93.90%

250

200 H

Current best solution
@
o

Q
S

50 H

0
[ 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Iteration round

Figure 8: Reached maximum delay as a function of iterations when each router transmits

a packet and receives two packets

Table 2: Reached maximum delay when each router transmits two packets and receives

four.

Length of the taboo list MaxDelay Relative improvement

10 624 3.41%
20 315 51.24%
100 120 81.42%
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Figure 9: Reached maximum delay as a function of iterations when each router transmits

two packets and receives four packets

Table 3: Reached maximum delay when each router transmits four packets and receives

eight.

Length of the taboo list MaxDelay Relative improvement

10 1424 1.52%
20 1221 15.56%
100 819 43.36%

1500 T T T T T T T T

1300 {1

1200 |

1100

Current best solution

1000 |

900 [

i i i i I i i i i
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iteration round

Figure 10: The reached maximum delay as a function of iterations when each router

transmits four packets and receives eight packets
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Table 4: Reached maximum delay when each router transmits eight packets and receives

16.

Length of the taboo list MaxDelay Relative improvement

10 3024 1.31%
20 2719 11.26%
100 2621 14.46%
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Figure 11: The reached maximum delay as a function of iterations when each router

transmits eight packets and receives 16 packets



5.2 A Realistic Large Scale Network 27

taboo list. During the first iterations the taboo list length of 50 seems to be working well
in our test cases. Nevertheless, a better solution is found in the long run when increasing
the length of the taboo list to 100. Hence, our empirical results support the conclusions
given in Chapter 3.3; especially, we see that the smaller the length of the taboo list is the

more likely the algorithm terminates to a local optimum only.

These observations suggest that perhaps the length of the taboo list should be varied

during the iterative solution process. However, this possibility was not tested here.

5.2 A Realistic Large Scale Network

This case is an instance of an imaginary but realistic network and the routers of the data
network were distributed with the following rule: 40% of the routers were linked directly
to the gateway and 40% of the routers were linked through two links to the gateway. The
rest of the routers (20%) were linked through three links. The network consisted of 41

nodes in total.

The first example reported here is an instance where each router received four packets and
transmitted two. Hundred iterations were computed and the taboo list length was 10,
30 and 50. Basically, this number of iterations is too small being a compromise between
comptation time and quality of results. Running this test instance took not more than

30 minutes on a Compaq Tru64 UNIX platform.

Figure 12 presents the maximum delay of the best solution found so far as the function
of number of iterations, and the table 5 presents the numerical values of the maximum
delays of the best solutions the algorithm had found by its termination. It can be seen
that the length of the taboo list really matters in this case, too. Also, we saw that our
methodology is suitable for solving this kind of scheduling problems. Nevertheless, in

large scale problems the lenght of the taboo list need to be carefully reconsidered and
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Table 5: The reached maximum delay when each router transmits one packet and receives

two packets.

Taboolist MaxDelay Relative improvement

10 361 23.35%
30 353 25.05%
20 343 27.18%
100 343 27.18%

then the solution process need to be continued long enough.
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Figure 12: The reached maximum delay as a function of iterations when each router

transmits a packet and receives two packets

Similar results are presented in Figure 13 and table 6 when the number of transmitted

packets was three and the number of received ones was six.
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Figure 13: The reached maximum delay as a function of iterations when each router

transmits three packets and receives six packets

Table 6: The reached maximum delay when each router transmits three and receives six

packets.

Tabulista MaxDelay

Relative improvement

0
10
30
20

1166
1161
1156
1143

10.24%
10.62%
11.01%
12.01%
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6 Discussion

Our scheduling problem is ANP-complete, and even one of the most difficult among
them [14]. Hence, solving it requires much CPU time even if an exact optimum is not
being searched. Our solution methodology was based on the assumption that an exact
optimum is not needed and therefore we heavily focused on applying the taboo search
heuristics. This approach appeared to be successful for our purposes because it offers a

relatively sound framework for solving large scale scheduling problems.

A common problem in the large scale optimization of the N'P-complete problems is that
not even a good estimate for the exact optimum is not typically known. This makes
the thoughtful analysis of the applied methodology difficult. Nevertheless, the presented
methodology offers a comparative benchmark for the scheduling heuristics applied at the
hardware level. Additionally, our framework offers a basis for improving existing solutions

generated by any other heuristics.

The formulation of the taboo search is strongly dependent of the underlying problem being
solved. The core of the taboo search involves definition of the neighborhood and choice
of the taboo list length. Likewise, the generation of the initial solution affects strongly
the performance of the algorithm. There is a variety of different possibilities to vary the
taboo search in certain types of scheduling problems discussed in literature. Nevertheless,
systematic variation of our solution heuristics is not within scope of this work but is an
interesting area for future research. Especially, references [3], [7], [8], [12], [16], [18]
and [19] and references in them provide a variety of ideas on how to develop our taboo
search method. Basically, the simplest modifications include testing whether enlargement
of the neighborhood by allowing reversions of multiple disjunctive arcs is reasonable or
not. Also, a deeper understanding of the implications of the taboo list length is needed

and it would be interesting to test varying it during the iterative solution process.

More than 95% of CPU time needed to run the algorithm is used when calculating the
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critical paths and the related maximum delays. Hence, development of an efficient ap-
proximation method to search the length of the critical path is needed. We suggest the

interested reader to grasp with [3] for some simple ideas.

Another interesting pattern in this problem is that by assuming constant periodic non-
bursty traffic in the network the optimal schedule will be periodic too. Periodic solutions
are described in literature, see, e.g., [9]. Nevertheless, the presented models are based on
searching an exact optimum and seem to be even more difficult to solve than the LP-
formulation given in Chapter 2.3. Hence, we do not have addressed this aspect seriously

so far but this could be an interesting area for future research as well.
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