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1 Introduction

Predicting the remaining lifetime of a component is an important problem e.g.

in optimising system maintenance. The component lifetime is often modelled

using only a static probability distribution that does not take into account any

component monitoring data. Moreover, many wear and crack growth models

are purely deterministic even when it is known that the phenomena are

stochastic by nature.

In this work a small literature survey of different methods of lifetime prediction

is done. A probability model for predicting the remaining lifetime of a

component under some degradation mechanism is developed. The lifetime

predictions of such model should be updateable with degradation monitoring

data. Fatigue crack growth (FCG) is used as the case degradation

mechanism.

The probability model is realised as a Matlab program. Simulations with the

program are used to demonstrate the uses and benefits of this kind of model.

The Matlab program is handed over to the customer to be used after the end

of the project.

This work is part of VTT research project SYSTELI - Systems analysis in life

management.
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2 Summary of literary survey

2.1 Gibbs sampler

Gibbs sampler is also called alternating conditional sampling.

Let θ = (θ1,… , θd) be the parameter vector of interest and let y denote the

observed data. Each iteration of the Gibbs sampler cycles through the d

components of θ, drawing each component conditional on the value of all the

others. There are thus d steps in iteration t. At each iteration t, each θj
t is

sampled from the conditional distribution given all other components of θ: p(θj |

θ-j
t-1, y). Thus, each θj is updated conditional on the latest value of θ for the

other components, which are the iteration t values for the components already

updated and the iteration t-1 values for the others.

The sampling converges to a stationary distribution that is the joint posterior

distribution p(θ|y). (Gelman et al. 1995)

2.2 One dimensional linear Kalman filter

The purpose of a Kalman filter is to estimate the state of a system from

measurements that contain random errors.

Let xt denote the state variable. We suppose xt satisfy the linear equation xt+1

= Axt + wt, where wt is random process noise with mean E(wt)=0 and variance

Var wt = Q. We make a measurement yt of xt, which is related to xt by

equation yt = Bxt + vt, where vt is random measurement noise with mean

E(vt)=0 and variance Var vt = R. The measurement noise is not correlated

with process noise. From these data and an initial estimate xe of x0 with the

variance of error in this estimate, denoted P, the Kalman filter will give the

best estimate of x. (Joseph)

2.3 Acceptance – rejection sampling

Acceptance-rejection sampling is used for generating a sample value of a

random variable X with probability distribution πx. The steps are:
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1. Generate a candidate x of X assuming X is uniformly distributed.

2. Take from πx the probability P(X=x).

3. Generate a random number u from the uniform distribution on (0,1).

4. If P(X=x) > u, x is accepted as the sample value. If not, start again from

step 1.

The steps are repeated until the desired number of samples is achieved. (See

e.g. Chib and Greenberg 1995).

2.4 Bayesian analysis in fatigue crack growth models

Stochastic fatigue crack growth in steel structures subject to random

loading

Uncertainty in fatigue crack growth under service load conditions arises from

the statistical characteristics of crack growth under constant amplitude loading

and from random variable amplitude loading. This study generalises previous

stochastic fatigue crack growth models by incorporating a time-dependent

noise term described by arbitrary marginal distributions and autocorrelations

to model the uncertainty in the crack growth under constant amplitude

loading. A computationally efficient approach for handling wide-band random

loadings based on the rainflow method of stress cycle identification is also

developed. The method is illustrated with a fatigue reliability analysis. (Zheng

& Ellingwood 1998)

Model uncertainty and Bayesian updating in reliability-based inspection

In this paper, a Bayesian procedure is proposed to quantify the modelling

uncertainty, including the uncertainty in mechanical and statistical model

selection and the uncertainty in distribution parameters. The procedure is

developed first using a simple example and then is applied to a fatigue

reliability problem, with the combination of two competing crack growth

models and considering the uncertainty in the statistical distribution

parameters for each model. This Bayesian failure probability analysis can be

incorporated with information from non-destructive inspections performed on

the structure to derive more realistic reliability estimates. The procedure for

updating the mechanical model, probabilistic model, distribution parameter
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statistics and reliability is illustrated for the fatigue reliability problem. (Zhang

& Mahadevan 2000)

Bayesian analysis for the results of fatigue test using full-scale models

to obtain the accurate failure probabilities of the Shinkansen vehicle

axle

Bayesian analysis was performed to estimate an appropriate value of the

uncertain propagation rate of cracks that can be initiated at the wheelseat of a

Shinkansen vehicle axle. In the analysis, fatigue life distribution obtained by

numerical simulation that employed the crack propagation rate obtained from

small specimens was used as the prior distribution. Then it was modified by

the results of the fatigue test of full-scale models as additional information to

obtain the posterior distribution. It was indicated that the variances of fatigue

life distribution reduced through the analysis. By using the crack propagation

rate obtained from the posterior fatigue life distribution, the failure probabilities

of the Shinkansen vehicle axle in operation, that were calculated previously by

using the crack propagation rate due to the experiment of small specimens

were recalculated. The resulting probabilities of failure were almost the same

as those that were not modified, but were slightly lower. Although the

difference was not so significant, it was thought that more confident values of

the failure probability were obtained. (Akama 2002)

Reliability of aircraft structures under non-periodic inspection: a

Bayesian approach

This article proposes a Bayesian analysis methodology to determine

appropriate non-periodic inspection intervals of fatigue-sensitive aircraft

structures, so that their reliability remains above a prespecified minimum level

throughout their service life. The methodology is based on assumptions about

the probability distribution function of the time to crack initiation, the law of

crack propagation, the probability of crack detection and the failure rate before

and after crack initiation. The Bayesian approach proposed in this paper is

allows one to utilise judiciously the results of earlier inspections for the

purpose of determining the time of the next inspection and estimating the

values of several parameters involved in the problem that can be treated as
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uncertain. Numerical simulations verify the above-mentioned capabilities of

the Bayesian method. (Deodatis et al. 1996)

2.5 Models of fatigue crack growth (FCG)

Modelling FCG with the Paris-Erdogan equation

One of the most used expressions of crack growth rate is the Paris-Erdogan

equation

nKC
N
x )(

d
d ∆= ,

where x is the crack length, N is the time, ∆K = ∆K(x) is the stress intensity

amplitude, and C and n are constants. (See e.g. Kozin and Bogdanoff 1989,

Provan 1987.)

The parameters of the Paris-Erdogan equation are sometimes estimated from

existing data by using linear regression (Bigerelle & Iost 1999). Taking the

logarithm of both sides of the Paris-Erdogan equation, we get

KnC
N
x ∆+= ln ln

d
dln ,

which is linear in terms of lnC and n. If we now denote x = (1 ln∆K)T as the

vector of independent variables, β = (lnC n)T as the parameter vector and y =

ln dx/dN as the dependent variable, we can apply the familiar model y = xTβ +

ε, for which the parameters can be estimated with the least-squares method.

Applying the inverse transform, we end up with the model

nKCe
N
x )(

d
d ∆= ε ,

which fulfils the physically obvious demand of dx/dN being non-negative.

The problem with this model is that the standard assumptions of the linear

regression model demand that E(ε)=0 and Var ε is constant. This may not be

the case, which makes the least-squares estimates of the parameters

questionable. Furthermore, it is commonly known that ∆K depends on x,

which in turn makes its role as an independent variable ambiguous.
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Modelling FCG with Markov chains

Markov chain models have been developed for FCG by Bogdanoff and Kozin

(1985). This kind of model is based on the following assumptions:

1. The component is subject to repetitive ‘damage cycles’ with constant

severity.

2. The damage levels are discrete (or may be discretized): 1, 2,… , j,… , b.

Level b corresponds to a ‘failure state’, i.e. reaching that level marks the

end of the component’s lifetime.

3. The progress from state j is independent of the way in which state j has

been reached (the Markov property)

In addition, one more assumption is made in the case of a so-called one-step

model:

4. The damage level in one damage cycle either remains unchanged or

increases by one, and thereby cannot skip any levels.

If, in this context, the random variable “time (number of damage cycles)

needed to reach state b” - i.e. the component’s remaining lifetime - is denoted

by Wb, then its cumulative distribution can easily be calculated starting from

any distribution for the initial damage state, because

P(Wb < t) = P(The damage level at time t has reached b),

which in turn is πb(t) = π0Πt, where π0 is the initial distribution and Π is the

transition probability matrix of the model (for details see Bogdanoff and Kozin

1985).

Elementary model

FCG has also been modelled in the following, very simple way (Sheikh &

Younas 1995): the damage (crack length) D at duty cycle N is assumed to be

D(N) = D0Nβ,

where D0 = D(1) is the initial crack length (constant), and β ~ N(u,s2). Taking

the logarithm of this, we get

lnD(N) = lnD0 + βlnN,

which implies that lnD(N) is normally distributed with mean

E(ln D(N)) = lnD0 + lnN E(β)
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and variance

Var(lnD(N)) = (lnN)2Var β.

Now the distribution for the cycle N at which the damage reaches a critical

level Dc can be derived as follows:

P(N > N) = P[D(N) < Dc] = P[lnD(N) < lnDc]

= Φ [ ( lnDc – E(lnD(N)) ) / (Var(lnD(N)) )½ ].

The parameters of this model, namely, E(β) and Var β, can be estimated from

a measured data set Di = D0Nβi, or from a set of observed component lifetimes

Ni.

The most striking weakness of this model is that it allows dD(N) / dN = β D(1)

Nβ-1 to be negative, conflicting with reality.
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3 The models used in the computer program

3.1 Counting and updating the probability distributions of

cumulative damage

Let Xt denote the degree of damage, like the crack length, at time t. Xt takes

values from a discrete set {0,1,… , b}, where X=b means failure of the

component. Let P(X0 = i) = πi(0) be the probability that X=i at t=0, and π(0) =

(π0(0), … , πb(0)) is the initial distribution of X. We may assume that π(0) =

(π0(0), …  , πb(0)) = (1, 0, …  ,0), for example.

The transition probabilities of X from state i to state j form the transition

probability matrix Π:

( ) ( )iXjXP ttij ===Π=Π + |1 .

The transition probability matrix is assumed to be stationary, that is, same for

all t. Assuming that the damage is non-decreasing, the matrix Π is an upper

triangular matrix. Moreover, it is a band matrix, since the damage rarely grows

several units in one time step. For example in fatigue crack growth the band is

quite narrow in the left upper corner (small crack) and slowly widens to the

right lower corner (large crack).

We have measurements Y of the damage X. Y takes values from the same

set as X: yt ∈  {0,1,… , b}. The measurement is assumed to be inaccurate, and

dependent on the value of X according to the conditional probabilities P(Y = y

| X = x), x, y ∈  {0,1, … , b}. X is not measured at t = 0.

The marginal probability distribution π(1) of X for t = 1, where πi(1) = P(X1 = i),

is obtained directly from

( ) ( )Π= 01 ππ .

At t = 1 we make a measurement Y1 of X1, and want to update π(1) with the

result of the measurement, that is, we want the conditional probability

distribution π(1 | Y1). By the Bayes’ rule
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( ) ( ) ( ) ( )
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The probability distributions for following time steps are obtained by recursion

from the preceding distributions. Suppose we have the conditional distribution

π(T | Yt ≤T), where Yt ≤T denotes all the measurements Yt = yt with t ≤ T. If we

do not make a measurement at t=T+1, the conditional distribution of X for

t=T+1 is

( ) ( )Π=+ ≤≤ TtTt TT YY ||1 ππ .

If we do make the measurement at t=T+1 and thus have YT+1 = yT+1, we get

( ) ( )
( ) ( )

( )11

1111

1111

||
,|,|1

++

≤++++

++≤++≤

=
====

===+

TT

TtTTTT

TTTtTTTti

yYP
iXPiXyYP

yYiXPYT
Y

YYπ

where P(XT+1= i | Yt ≤T) is the ith component of π(T+1|Yt≤T) and

( ) ( ) ( )∑
=

++++++ =====
b

i
TTTTTT iXyYPiXPyYP

0
111111 | .

The remaining lifetime is predicted by repeatedly multiplying the current

conditional distribution with the transition probability matrix Π. From these

distributions we can see the probability that the cumulative damage has

exceeded the given limit (e.g. thickness of the pipe wall) at different time

steps.

3.2 Parameters used in the model

We denote by Xt the fatigue crack length at time t. Xt takes values from a

discrete set {0,1,… , b}, where b = 100, and X=100 means the crack has

penetrated through the component. We chose b = 100 because it can be

interpreted as the percentage of the component thickness. A real crack length

is assigned to a discrete crack length as indicated by its integer part.
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The crack length at the beginning is assumed to be zero or undetectable or

very small (less than 1% of the thickness of the component). The initial

distribution of X is thus π(0) = (1, 0,… , 0).

The assumptions and forming of the transition matrix Π and the probability

model of flaw sizing (the probabilities P(Y = y | X = x)) are presented below.

3.3 The transition probability matrix

Our transition probability matrix is based on simulated crack growth data. The

data is generated using the Paris-Erdogan equation.

The Paris-Erdogan equation for fatigue crack growth and a randomisation of

the equation were presented in chapter 2.5. For a single time step (dN=1) the

randomised equation becomes
nKCex )(d ∆= ε .

Provan (1987) gives that ∆K is roughly proportional to square root of x:

xK β=∆ , where β is constant. The amount of crack growth in one time step

is thus
nxCex )(d βε= ,

where C, n and β are constants and ε is normally distributed random variable

with mean E(ε) = 0 and variance Var ε = σε
2. The expected amount of crack

growth is thus dependent on the current crack length.

To generate data we used parameter values C = 0.005, n = 1.3, β = 1, and σε

= 1.7. The simulated data consisted of one hundred realisations.

For each state i, the numbers of single step transitions from state i to state j

(j=0,1,… , 100) in the data are calculated. These numbers are divided by the

total number of single step transitions from the state i, giving single step

transition probabilities from state i to states j. The transition probabilities are

assumed stationary, dependent only on the current crack length (i.e. the state

i).
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In real life applications the transition probability matrix can be formed using

actual crack growth data as we used simulated data. The matrix can also be

updated as new data is collected.

3.4 Probability model of flaw sizing

Simola and Pulkkinen (1998) have discussed probability models of flaw sizing.

We use their logit model of the relationship between the actual and measured

flaw sizes. The logit model assumes the relation

ξββ +
−

+=
− xd

x
yd

y lnln 10

between the measured flaw depth y and the actual flaw depth x. d is the

component thickness (x, y ≤ d), β0 ∈  (-∞ , ∞ ) and β1 > 0 are regression

parameters, and ξ is a normally distributed random error, ξ∼N(0, σξ
2). If we

denote 
yd

yz
−

= ln  and 
xd

x
−

+= ln10 ββµ , then ),N(~ 2
ξσµz . Z has the

cumulative distribution function FZ(a) = P(z<a) = Φ ((a-µ)/σξ), where Φ  is the

cumulative distribution function of the normal distribution N(0,1).

For probabilities P(Y = y | X = x) we need the cumulative distribution function

of measured flaw depth Y. From FZ(a) we get







+
=





+
<=



 <

−
=



 <

−
= a

a

Ya

a
a

Z e
de

F
e

de
yPe

yd
y

Pa
yd

y
PaF

11
ln)( .

Denoting a

a

e
de

â
+

=
1

 we get the cumulative distribution function of Y:

( ) 










 −

−
Φ=







−
= µ

σξ âd
â
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â

FâF ZY ln
1

ln .

In the following y and x denote elements from the discrete set {0,1,… , b} such

that y represents the real interval [ i, i+1) and x the interval [ j, j+1), where i

and j are integers. We have

( ) ( ) ( )
( ) ( ).||1

||1|
xXiFxXiF

xXiYPxXiYPxXyYP

YY =−=+=
=<−=+<===
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Here the condition X=x is approximated using the mean of the FY values at

the end points of the interval [ j, j+1):

( ) ( ) ( )[ ]1||
2
1| +=+=≈= jXiFjXiFxXiF YYY .

So we have
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.
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The parameters β0, β1 and σξ
2 can be modified to fit the measurements. We

have used as default values β0=0.06, β1=1.25 and σξ
2=0.22. These values are

the parameter estimates of an actual set of measurements (see Simola and

Pulkkinen 1998).
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4 About the program

Here is a short description of what the program does. The complete program

manual is in Appendix A.

The program asks you to give the following information.

§ The name of a previously created transition probability matrix (an excel

file) or the parameters for creating one as explained in chapter 3.3.

§ The name of a previously created measurement accuracy matrix (an excel

file) or the parameters for creating one as explained in chapter 3.4. A

measurement accuracy matrix contains the probabilities P(Y = y | X = x)

with rows corresponding to the x values and columns to the y values.

§ The measurement data (an excel file).

§ The probability distribution of the initial state.

The program plots three kinds of figures. These three figures are plotted using

no measurement data, using the first measurement data, using the first and

second measurement data, and so on. If you have given m measurements,

the program will produce 3*(m+1) figures. Examples of these figures are in the

manual in Appendix A (Figure 19, Figure 20 and Figure 21).

The first kind of figure plots the individual measurements, and a few predictive

realisations starting from the time of the last measurement Ty. The crack

length were a realisation starts is chosen from the probability distribution π(Ty)

by acceptance-rejection sampling (see chapter 2.3). The amount of crack

growth in each time step is chosen randomly from the corresponding row of

the transition matrix, weighting with the probabilities of the different

transitions. The program asks the number of realisations to be plotted and the

time span to be plotted.

The second kind of figure plots the predictive cumulative distribution function

and the predictive probability density function at the final state b. The

predictive cdf was discussed in chapter ‘Modelling FCG with Markov chains’
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(page 8). The predictive pdf is obtained from the predictive cdf by numerical

differentiation.

The third kind of figure plots a histogram of the state probability vector π(T1).

The program asks for the time T1.
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5 Results from sample simulations

Two sets of measurement data were used in simulations, each consisting of

five measurements taken at instants 100, 200, 300, 400 and 500. The

measurements are shown in Table 1.

Table 1 Measurement data used in simulations

Time Measurement set 1 Measurement set 2

100 0,7 0,2

200 3,4 4

300 12,5 20,9

400 22,1 43,2

500 48,2 40,1

For the simulations a transition probability matrix was generated using 100

realisations (see chapter 3.3) and this matrix was then used throughout all

simulations. In chapter 5.1 are presented the results from simulations using

the default variance σξ
2=0.22 in the flaw sizing model. For comparison the

results of the same form for cases of reduced and increased variance σξ
2 are

shown in chapters 5.2 and 5.3, respectively.

5.1 Default variance in the flaw sizing model

5.1.1 Measurement set 1

In Figure 1 different subsets (the individual measurements are marked by

star-symbols) of the measurement set have been used in determining the

probability distribution of the damage state at the time of the last

measurement in the subset. From this time and distribution 50 realisations of

crack growth have been simulated in each case.

We can see that as time grows, uncertainty of the crack length grows.

Comparing the situation at time 500 using no measurements and using four

measurements shows clearly how updating with measurements narrows the
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distribution. It can be noted in particular that using only the last measurement

provides about as vague a picture of the situation at time 500 as using only

the first measurement. It appears therefore that it is the combined effect of all

measurements that makes the information accurate.

In Figure 2 the probability of the final state has been plotted against time,

starting in each case from the time of the last measurement used. This is in

effect the cumulative distribution function of the lifetime of the component (see

chapter ‘Modelling FCG with Markov chains’ on page 8 for explanation). In

addition, the difference between each time step in these cdf’s has been

plotted for a numerical approximation of the corresponding probability density

functions. This shows how using more measurements gives a more centred

distribution for the component lifetime. The reason for the last case giving an

early high peak can be seen by comparing the last two plots of Figure 1: using

only the last measurement gives a more pessimistic picture of the situation.

Finally, Figure 3 shows the probability distribution of the damage state

calculated at time 600 in each case (the state probability vectors π(600)).

Again, this illustrates the more accurate information obtained by using more

measurements.

5.1.2 Measurement set 2

Figure 4, Figure 5 and Figure 6 show the same results for measurement set 2.

The main phenomenon here is the fourth measurement resulting in a very

pessimistic picture and the fifth measurement giving a corrective direction.

The notable difference from measurement set 1 is in which measurement

subsets give the most centred distributions. This seems to depend on how

well the measurement data is in accordance with the “mean behaviour”

determined by the transition probability matrix (depicted by the cases where

no measurements have been used), i.e. earlier recorded data.

Figure 1 and Figure 4 show how updating can also move the distribution.
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5.2 Reduced variance in the flaw sizing model

In this section a variance σξ
2=0.05 instead of the default value σξ

2=0.22 has

been used in the flaw sizing model. The simulation results are shown in

Figure 7, Figure 8, Figure 9, Figure 10, Figure 11 and in Figure 12 below. As

can be expected, the distributions are now more centred since measurements

are considered more reliable. However, the simulated realisations still show

that using all measurements narrows the distribution. Furthermore, the most

recent measurement has now a greater effect.

5.3 Increased variance in the flaw sizing model

Here, a variance of σξ
2=1.00 instead of the default value σξ

2=0.22 has been

used. Consequently, all results are now characterised by wide distributions

due to the uncertainty behind the measurements. Results are displayed in

Figure 13, Figure 14, Figure 15, Figure 16, Figure 17 and in Figure 18.
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Figure 1: Crack growth realisations with variance σξ
2=0.22, measurement set 1.
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Figure 2: The predictive cdf’s and pdf’s, variance σξ
2=0.22, measurement set 1. The

legend indicates the measurements used.
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Figure 3: Histograms of the state probability vector π(600). Variance σξ
2=0.22,

measurement set 1.
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Figure 4: Crack growth realisations with variance σξ
2=0.22, measurement set 2.
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Figure 5: The predictive cdf’s and pdf’s, variance σξ
2=0.22, measurement set 2. The

legend indicates the measurements used.
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Figure 6: Histograms of the state probability vector π(600). Variance σξ
2=0.22,

measurement set 2.
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Figure 7: Crack growth realisations with variance σξ
2=0.05, measurement set 1.
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Figure 8: The predictive cdf’s and pdf’s, variance σξ
2=0.05, measurement set 1. The

legend indicates the measurements used.
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Figure 9: Histograms of the state probability vector π(600). Variance σξ
2=0.05,

measurement set 1.
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Figure 10: Crack growth realisations with variance σξ
2=0.05, measurement set 2.
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Figure 11: The predictive cdf’s and pdf’s, variance σξ
2=0.05, measurement set 2. The

legend indicates the measurements used.
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Figure 12: Histograms of the state probability vector π(600). Variance σξ
2=0.05,

measurement set 2.
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Figure 13: Crack growth realisations with variance σξ
2=1.00, measurement set 1.
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Figure 14: The predictive cdf’s and pdf’s, variance σξ
2=1.00, measurement set 1. The

legend indicates the measurements used.



Prediction of remaining lifetime 34

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3
0 first measurements used.

P
ro

ba
bi

lit
y

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06
0.08

1 first measurements used.

P
ro

ba
bi

lit
y

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

2 first measurements used.

P
ro

ba
bi

lit
y

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

3 first measurements used.

P
ro

ba
bi

lit
y

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03
4 first measurements used.

P
ro

ba
bi

lit
y

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

5 first measurements used.

P
ro

ba
bi

lit
y

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

Only last measurement used

P
ro

ba
bi

lit
y

Crack length

Figure 15: Histograms of the state probability vector π(600). Variance σξ
2=1.00,

measurement set 1.
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Figure 16: Crack growth realisations with variance σξ
2=1.00, measurement set 2.
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Figure 17: The predictive cdf’s and pdf’s, variance σξ
2=1.00, measurement set 2. The

legend indicates the measurements used.
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Figure 18: Histograms of the state probability vector π(600). Variance σξ
2=1.00,

measurement set 2.



Prediction of remaining lifetime 38

6 Conclusions

We have created a computer program that calculates and updates predictive

probability distributions of the remaining lifetime of a component.

An updateable model can reduce the uncertainty of predictions of the

remaining lifetime. We showed that updating with measurements narrows the

probability distributions, and can even move the distribution.

It seems that using more than one measurement for updating will give sharper

distributions than using only one (the latest) measurement. The

measurements appear to have a combined effect that is more than just the

latest information.

We used fatigue crack growth as the test case. Other degradation

mechanisms could be modelled similarly, for example bacterial growth in food

industry. The main requirement is to have some monitoring data for the

generation of the transition probability matrix. Our computer model can easily

be scaled for different situations and environments.



Prediction of remaining lifetime 39

References

Akama M. Bayesian analysis for the results of fatigue test using full-scale
models to obtain the accurate failure probabilities of the Shinkansen vehicle
axle. Reliability Engineering and System Safety 75 (2002) 321-332.

Bigerelle M. and Iost A. Bootstrap analysis of FCGR, application to the Paris
relationship and to lifetime prediction. International Journal of Fatigue 21
(1999) 299-307.

Bogdanoff JL and Kozin F. Probabilistic Models of Cumulative Damage. John
Wiley & Sons, 1985.

Chib S. and Greenberg E. Understanding the Metropolis-Hastings Algorithm.
The American Statistician 49 (1995) 327-335.

Deodatis G., Asada H. & Ito S. Reliability of aircraft structures under non-
periodic inspection: a Bayesian approach. Engineering Fracture Mechanics 53
(1996) 789-805.

Gelman A., Carlin J.B., Stern H.S. & Rubin D.B. Bayesian Data Analysis.
Chapman & Hall, 1995.

Joseph P. Kalman filters.
http://ourworld.compuserve.com/homepages/PDJoseph/kalman.htm

Kozin F. and Bogdanoff J.L. Probabilistic models of fatigue crack growth:
results and speculations. Nuclear Engineering and Design 115 (1989) 143-
171.

Provan J.W. (ed.) Probabilistic Fracture Mechanics and Reliability. Martinus
Nijhoff Publishers, 1987.

Sheikh A.K. and Younas M. A reliability model for fatigue life characterization.
International Journal of Fatigue 17 (1995) 121-128.

Simola K. & Pulkkinen U. Models for non-destructive inspection data.
Reliability Engineering and System Safety 60 (1998) 1-12.

Zhang R. & Mahadevan S. Model uncertainty and Bayesian updating in
reliability-based inspection. Structural Safety 22 (2000) 145-160.

Zheng R. & Ellingwood B.R. Stochastic fatigue crack growth in steel
structures subject to random loading. Structural Safety 20 (1998) 303-323.



Prediction of remaining lifetime 40

Appendix

A The FCG program manual

A.1 Preface

This is the manual for Matlab program fcg.m, the program for predicting

fatigue crack growth. The growth is first predicted without any measurement

data and then with measurement data. The program asks for some

parameters and then plots figures of the predicted crack growth, the predicted

cumulative distribution function, the predicted probability density function, and

histograms of the probabilities of crack sizes at a user defined time.

Before you start to use the program fcg.m, please read through this manual,

or at least chapters A.2 and A.4.

This program was developed as a student case study for VTT Industrial

Systems in the spring 2002. The case study was part of the course “Project

work seminar in operations research”, organised by the Laboratory of

Systems Analysis in Helsinki University of Technology. The author of this

program is Ms. Tiina Komulainen. Send your questions and report problems

by e-mail to Tiina.Komulainen@hut.fi.

A.2 Requirements

You need to have Matlab version 6.1, Statistics Toolbox (for Matlab) and

Microsoft Excel installed on your computer.

For smooth operation move the following files to your Matlab work-folder:

accmeas.m

accmeas2.m

createfpaths.m

createpaths.m

distributions.m

fcg.m
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plotrealizations.m

plotstate.m

plottime.m

transmatrix.m

You will also need your measurement data, so move it also to the work-folder

for example as

measurements1.xls

A.3 The program files

The program consists of ten .m-files:

accmeas.m

accmeas2.m

createfpaths.m

createpaths.m

distributions.m

fcg.m

plotrealizations.m

plotstate.m

plottime.m

transmatrix.m

The main program file is fcg.m.

A.4 FCG program in brief

Here is a short description of the program and how it works.

1. The program asks if you want to create a new transition probability

matrix. If you do, the program asks for some parameters and whether

you would like to save the new transition probability matrix. If you

chose not to create a new transition probability matrix, you will have to

give the name of an existing transition probability matrix in excel-form,

e.g. tfmatrix1.xls.
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2. The program asks if you want to create a new measurement accuracy

matrix. If you do, the program asks for some parameters and whether

you would like to save the new measurement accuracy matrix. If you

chose not to create a new measurement accuracy matrix, you will have

to give the name of an existing measurement accuracy matrix in excel-

form, e.g. accmatrix1.xls.

3. The program asks you for the measurement data, which should be in

an excel-file. The data should be in two columns so that the

measurement times are in the first column and the measurement

values are in the second column.

4. The program asks you to give the probability distribution of the initial

state. You can use the default vector in which the initial crack length is

zero with probability p=1.

5. Finally the program asks you for the plotting parameters. It takes a

while and three figures for each measurement are plotted. See Figure

19, Figure 20 and Figure 21.

A.5  FCG program: the long version

A.5.1 Starting

Type
>fcg(1);

in the command window of Matlab. The program prints:
>This is a function for predicting fatigue crack growth

>

>If you press enter (ctrl), default value will be used!

A.5.2  Creating transition probability matrix

After the first two lines the program prints:
>1. Creating transition probability matrix

>
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>Do you want to create a new transition probability matrix?

Y/N [Y]:

If you choose ‘n’, the program asks you to give the name of the transition

probability matrix. The program does not accept false names, or files that do

not exist.

>Do you want to create a new transition probability matrix?

Y/N [Y]: n

>Give the name of the excel-file that contains

>   the transition probability matrix: tfmatrix.xls

If you choose to create a new matrix, the program prints the following

questions. If you want to use the default parameters displayed in brackets,

press enter (ctrl).

>Do you want to create a new transition probability matrix?

Y/N [Y]: y

>

>Parameters for transition probability matrix.

>Give the number of realizations (20):

The number of realizations should be around 100 for accurate estimates, but

it may take a while for the computer to count so many realizations.

>The length of the realizations (1000):

The length of the realizations should be around 1000 if you are going to use

the default parameters.

>Size of the crack in the beginning (0.01):

The size of the crack in the beginning should be something small, but not zero

or below zero.
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>Parameter c (0.005):

>Parameter beta (1):

>Parameter mm (1.3):

>Parameter sigma (s^2) (1.7):

Parameters c, beta, mm and sigma are designed for this case, so it is not

necessary to change them.

>The number of states (101):

The number of states in this program is the number of integer between zero

and the final size of the crack. So if the maximum size of the crack is 100,

then the number of states should be 101, because state 0 exists in this model.

>Rounding (0):

If you would like to have a smoother transition probability matrix, you can use

rounding. The rounding makes the probabilities under the defined number

zero. You should not use a rounding number bigger than 0.01!

>Do you want to save the transition probability matrix? Y/N

[Y]: y

>Give the name of the file (tfmatrix1.txt): tmatrix.txt

The program asks if you would like to save the new matrix. The name should

be .txt, because at this moment it is not possible to save a file in excel-form.

But you can later open with Excel the file you saved in .txt-form and save it

as .xls-file.

A.5.3 Creating measurement accuracy matrix

The program prints:
>2.Creating measurement accuracy matrix

>

>Do you want to create a new measurement accuracy matrix? Y/N

[Y]:
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If you choose ‘n’, the program asks you to give the name of the measurement

accuracy matrix. The program does not accept false names, or files that do

not exist.

>Do you want to create a new measurement accuracy matrix? Y/N

[Y]: n

>Give the name of the excel-file that contains

>the measurement accuracy matrix: accmatrix.xls

If you choose to create a new matrix, the program prints the following:
>Do you want to create a new measurement accuracy matrix? Y/N

[Y]: y

>

>Parameters for measurement accuracy

>If you press enter (ctrl), default value will be used.

>

>Parameter b0 (0.06):

>Parameter b1 (1.25):

>Parameter sigma (s^2) (0.22):

>Rounding (0):

These parameters describe how the measured values depend on the actual

crack lengths. By using rounding, you can make the measurement accuracy

matrix smoother so that all the numbers below the rounding number will be

rounded to zero.

>Do you want to save the measurement accuracy matrix? Y/N [Y]:

y

>Give the name of the file (accmatrix1.txt): accmatrix2.txt

The program asks you if you would like to save the matrix. The name should

be .txt, because at this moment it is not possible to save a file in excel-form.

But you can later open with Excel the file you saved in .txt-form and save is

as .xls-file.
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A.5.4 The measurement data

The program asks you for your measurement data, which should be in an

excel-file:
>3. The measurement data

>

>Measurement data should be in a n*2 matrix so that

>  measurement times are in the first column and

>  measurement values are in the second column

>Give the name of the excel-file that contains the measurement

data:

The data should be in two columns so that the measurement times are in the

first column and the measurement values are in the second column.

>Give the name of the excel-file that contains the measurement

data: mitt

>Give the name of the excel-file that contains the measurement

data: mittaus0.xls

The program does not accept false names, or files that do not exist.

A.5.5 The probability distribution of the initial state

The program asks you to give the probability distribution of the initial state:
>4. The probability distribution of initial state

>

>The width of the initial state vector should be 101 columns

>Do you want to use the default vector [1,0,...,0]? Y/N [Y]:

You can choose to use the default vector, where the initial state is zero with

probability p=1. If you choose to use your own initial state vector, it should be

in excel-form and contain in the one row as many states as the size of your

transition probability matrix, and the sum of the cells should be exactly 1.
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A.5.6 Plotting

The program asks for some plotting parameters. If you want to use the ones

given in brackets, press enter (ctrl).

>5. Plotting

>

>Give the time span to be plotted (1000):

>Give the number of realizations to be plotted (5):

>Give the time for the state probability vector to be plotted

(1): 400

Next the function calculates and plots three figures for each measurement

and for the case with no measurements. The case with no measurements is in

figures 1-3, the case with one measurement in figures 4-6, the case with two

measurements in figures 7-9, and so on.

Figure 19: Five realisations of fatigue crack growth with one measurement.
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Figure 20: Predictive cumulative distribution and probability density functions of

fatigue crack growth with one measurement.
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Figure 21: Probability histogram at time 400 with one measurement.


