

Optimization Approaches for Line Planning in Linear Railway Systems

Viljami Uusihärkälä Master's thesis presentation 19th February 2024

The document can be stored and made available to the public on the open internet pages of Aalto University. All other rights are reserved.

- Introduction
- Models
- Results
- Conclusions

Introduction

- Line planning [1]
 - Part of public transportation planning [2]
 - Selecting lines and setting frequencies
- Two perspectives
 - Passenger: transfers [3], traveling time
 - Operator: costs
- This thesis:
 - Three passenger convenience metrics models
 - Linear PTN: modeling aspects

Pareto front in biobjective setting, adapted from [4]

19.2.2024

Base model

- Objective: minimize passengers' inconvenience function P(y)
- Common constraints
 - Fleet size (operator's interest) (1)
 - Ensure capacity to all passengers (2)
- E-constraint method [4]
- Optional terminal constraints:

$$\sum_{t \in V^T} z_t \le z_{\max}$$

 $x_l \leq M z_t$ for all $l \in L, t \in V_l^T$

$$\min_{x, y} P(y)$$
s.t.
$$\sum_{l \in L} x_l \leq \mathcal{F} (1)$$

$$\sum_{l \in L: e \in l} C \frac{\tau}{T_l} x_l \geq w_e \text{ for all } e \in E (2)$$

$$x_l \in \mathbb{N}_0 \text{ for all } l \in L.$$
Frequency of line l

Base model in passengers' perspective

19.2.2024

Congestion model

- Idea: Minimize congestion on all edges
 - Linearize objective: Maximize minimum edge availability factor λ
 - Require that
 - $\lambda \leq \lambda_e$ for all $e \in E$
- Linear PTN:
 - Simple path between all stations
 - No routing

 $\lambda_{e} = \frac{\text{available seats on edge } e}{\text{passenger load on edge } e}$ $\lambda_{e} = \frac{1}{w_{e}} \sum_{\substack{l \in L: e \in l}} C \frac{\tau}{T_{l}} x_{l}$ Frequency of line l

Direct passengers model

- Idea: Maximize the number of direct passengers
- Constraints:
 - No more direct passengers than demand between u and v
 - No more direct passengers than capacity on edge e
- Again: Linear PTN
 - No routing

Initial waiting time model

- Idea: Minimize the average waiting time 13 for the first train (weighted by demand)
- Assume:
 - Passengers board the first train
 - Passengers arrive uniformly distributed
 - Trains arrive uniformly distributed
- Objective function linearized with binary variable F_k : $\left(\sum_{l} f_l\right)^{-1} = \sum_{k} \frac{1}{k} F_k$

19.2.2024

Data

- Generated data (PTN and demand)
- 20-station PTN
 - Two 8-terminal stations configurations
- Two demand profiles
 - Unicentric
 - Bicentric
- Demand data represented in two ways
 - Origin-destination-matrix (OD)
 - Edge loads (w_e)

Aalto Universitv

School of Science

Bicentric demand profile

Results: Terminal stations

- Passengers' convenience improves when
 - More terminals are available
 - More trains are available
- ~100% of passengers can travel directly
 - If dictated by the objective function
 - If feasible
 - Regardless of fleet size & terminals

Bicentric demand profile

Results: Fleet size in congestion model

- Optimal shape in edge utilization, independent of fleet size
- Congestion peaks adjacent to important terminals

Results: Intercorrelations

- One model optimized, other models evaluated with the line concept
 - Optimized metric scaled to 1
- Evaluated metrics much worse when not considered in the objective function
 - Initial waiting time more so
- Direct passengers far from 100% when other models are optimized
 - Why: next slide

Results: Line concepts

- Line concepts very different between models
- Initial waiting time model
 - Only departing trains considered
- Direct passengers model
 - Long lines

Aalto University School of Science

- Congestion model
 - Most unique lines
 - Optimal edge utilization shape

Conclusions

- The three models yield quite different line concepts
- Linear PTN simplifies modeling
- Limitations
 - Generated data
 - Elementary models for applications
 - For instance, high number of unique lines
 - Conflicting passenger objectives

References

- [1] Schöbel, A. (2012). Line planning in public transportation: models and methods. *OR spectrum*, 34(3):491–510.
- [2] Desaulniers, G. and Hickman, M. D. (2007). Public transit. Handbooks in operations research and management science, 14:69–127.
- [3] Bussieck, M. R., Kreuzer, P., and Zimmermann, U. T. (1997). Optimal lines for railway systems. *European Journal of Operational Research*, 96(1):54–63.
- [4] Ehrgott, M. (1999). Multicriteria optimization. *Lecture Notes*.

Appendix: Congestion model

$$\begin{array}{ll} \max & \lambda \\ x, \lambda & \\ \text{s.t.} & \displaystyle \sum_{l \in L} x_l \leq \mathcal{F} \\ & \displaystyle \sum_{l \in L: e \in l} C \frac{\tau}{T_l} x_l \geq \lambda w_e & \text{ for all } e \in E \\ & \displaystyle x_l \in \mathbb{N}_0 & \text{ for all } l \in L \\ & \displaystyle \lambda \in [1, \infty). \end{array}$$

19.2.2024 15

Optimization Approaches for Line Planning in Linear Railway Systems

Appendix: Direct passengers model

$$\begin{aligned} \max_{x, d} & \sum_{u, v \in V} \sum_{l \in L^{uv}} d_{uvl} \\ \text{s.t.} & \sum_{l} x_{l} \leq \mathcal{F} \\ & \sum_{l \in L^{uv}} d_{uvl} \leq OD_{uv} \text{ for all } u, v \in V \\ & \sum_{l \in L: e \in l} C \frac{\tau}{T_{l}} x_{l} \geq w_{e} \quad \text{ for all } e \in E \\ & \sum_{l \in L: e \in l} C \frac{uv}{T_{l}} x_{l} \geq w_{e} \quad \text{ for all } e \in E, l \in L \text{ with } e \in E \\ & \sum_{\substack{u, v \in V: l \in L^{uv}, \\ e \in l^{uv}, u > v}} d_{uvl} \leq C \frac{\tau}{T_{l}} x_{l} \text{ for all } e \in E, l \in L \text{ with } e \in E \\ & \sum_{\substack{u, v \in V: l \in L^{uv}, \\ e \in l^{uv}, u > v}} d_{uvl} \leq C \frac{\tau}{T_{l}} x_{l} \text{ for all } e \in E, l \in L \text{ with } e \in E \\ & \sum_{\substack{u, v \in V: l \in L^{uv}, \\ e \in l^{uv}, u < v}} d_{uvl} \leq C \frac{\tau}{T_{l}} x_{l} \text{ for all } e \in E, l \in L \text{ with } e \in E \\ & \sum_{\substack{u, v \in V: l \in L^{uv}, \\ e \in l^{uv}, u < v}} d_{uvl} \leq C \frac{\tau}{T_{l}} x_{l} \text{ for all } l \in E. \end{aligned}$$

Aalto University School of Science

19.2.2024 16

Optimization Approaches for Line Planning in Linear Railway Systems

l

l

Appendix: Initial waiting time model

$$\min_{x, F, f} \sum_{u \in V} \left(\sum_{v \in V} OD_{uv} \frac{1}{2} \tau \left(\sum_{k}^{F_{max}^{euv}} \frac{1}{k} F_{e_{uv}k} \right) \right)$$
s.t.
$$\sum_{l} x_{l} \leq \mathcal{F}$$

$$\sum_{l \in L: e \in l} C \frac{\tau}{T_{l}} x_{l} \geq w_{e} \quad \text{for all } e \in E$$

$$\sum_{k}^{F_{max}^{e}} kF_{ek} = \sum_{l \in L: e \in l} f_{l} \quad \text{for all } e \in E$$

$$\sum_{k}^{F_{max}^{eux}} F_{ek} = 1 \quad \text{for all } e \in E$$

$$f_{l} \leq \frac{\tau}{T_{l}} x_{l} \quad \text{for all } l \in L$$

$$x_{l} \in \mathbb{N}_{0} \quad \text{for all } l \in L$$

$$f_{l} \in \{0, ..., f_{max}\} \text{ for all } l \in L$$

$$F_{ek} \in \{0, 1\} \quad \text{for all } e \in E, k \in \{1, ..., F_{max}^{eux}\}.$$

Aalto University School of Science

19.2.2024 17

Optimization Approaches for Line Planning in Linear Railway Systems

Appendix: Terminal importance

- Some terminals more important than others
- No regularity in selecting individual terminals
- Terminals closer to PTN ends are more important
 - Unicentric
 - Lines halting in the middle not as useful

Unicentric demand profile

Unicentric demand profile

