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The spread of standard Bayesianism

Bayesian models are being used in an increasingly wide range of research
areas:

increasing accessibility of high-performance computing make
Bayesian statistical modelling a viable alternative to frequentist
statistical modelling;

Bayesianism is based on a conceptually and intuitively attractive
interpretation of probability;

standard Bayesianism offers a unified theory of epistemology and
decision-making;

perceived superiority of Bayes factors over null hypothesis testing;

analytically demonstrable desirable long-term convergence properties
of Bayesian models (De Finetti 1980, Zaffora Blando 2022);

computationally demonstrable desirable short- and medium-term
decision-theoretic properties (Radzvilas et al. 2021).
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SB and ignorance

A number of philosophical arguments suggest that standard Bayesianism
(SB) faces challenges when representing ignorance (severe uncertainty),
since it conflates two distinct epistemological concepts: equivocation and
ignorance:

equivocation (roughly) – an epistemic state where agent’s credences
are equally balanced among the relevant events;

ignorance (roughly) – an epistemic state where the agent lacks
justified credences about the objective probabilities of the relevant
events.
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SB and the “paradoxes of ignorance”

In some cases, changes in the extent of the credences’ equivocation and
ignorance correspond. However, two “paradoxes of ignorance” – the
paradox of ideal evidence and spurious precision – characterise cases
where this correspondence breaks down.
Example: A Bayesian-rational agent must predict the outcome of a coin
toss. The agent has no information about the coin, and so assigns a
uniform prior (0.5 : heads, 0.5 : tails).

The paradox of ideal evidence: after observing 10 mln. coin tosses
with 5 mln. heads and 5 mln. tails, agent’s beliefs are represented
by the same distribution (0.5 : heads, 0.5 : tails).

Spurious precision: Even in situations where the agent has no
information about the relevant set of events, agent’s credences must
be represented with a single probability distribution assigning a
precise probability to each event in the set.
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Imprecise Frequentism

In response to these issues, many philosophers have suggested that
the probabilities that we use to represent your belief states should be
“imprecise” – perhaps measured by some interval value rather than
a single real number;

imprecise Frequentism (IF) extends SB by representing agent’s
credence in an event’s occurrence via sets of probabilities, known as
IF credence sets and update them accordingly by a process known as
calibration.;

the proponents of IB consider a number of decision rules that take
into account the whole IF credence set when picking the best action.
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IF and decisions under ignorance

IF offers more representational power for situations of ignorance
than SB models;

like SB, IF has some desirable indefinitely long-term convergence
properties: under reasonable assumptions, the diverse probabilities in
the IF credence set will converge to the actual frequency of the
event;

indefinitely long-term convergence properties are of limited use for
the decision-theoretic performance assessment of IF models;

belief inertia in Bayesian models (Vallinder 2018, Peden 2022)
suggests that higher representational power of IF models may come
at a cost of decision-theoretic performance;

our study extends the agent-based computational methodology for
performance assessments of statistical methodologies (Kyburg and
Teng 1999, Radzvilas et al 2021) to IF decision models and
compares IF and SB performance in a classic decision problem.
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Basic decision problem

The decision-maker is observing a sequence of coin tosses. At
regular intervals, the system draws a random ticket price δ ∈ [0, 1].
The decision-maker has to choose an action, the payoff of which
depends on the outcome of the next coin toss: bet on ωh (state
where heads obtain) for price δ (action h), bet on ωt (state where
tails obtain) for a price (1− δ) (action t), or hold and get a
state-independent payoff of 0 (action a).

ωh ωt

h (1− δ) −δ
t (δ − 1) δ
a 0 0

Figure: Payoff matrix

Ω := {ωh, ωt} is the set of states, typical element ωi ;

C := {h, t, a} is the set of actions, typical element c ;

π : C × Ω → R is the payoff function that assigns a real number
π (c , ωi ) to each (c , ωi ) ∈ C × Ω according to matrix in Figure 1.
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SB credence revision model I

K := (Ω,Θ,S ,m, κ, p):

Ω is the set of states;

Θ :=
{
x ∈ R : x ∈ [0, 1]

}
is the set of possible coin biases towards

ωh, typical element θ;

m ≥ 1 is the number of observations;

S := {S ∪ s̃}, where S := Ωm and s̃ := ∅ is the set of observation
histories; typical element s;

κ : S → Z≥0 is the ωh event counting function, such that, for each

s ∈ S, κ (s) := n
({

(s)j ∈ s : j = ωh

})
, where n

(
·
)
is the

cardinality of the set;

p : S → ∆(Θ) is the credence function with prior p (s̃), such that,
for each s ∈ S and each θ ∈ Θ,

p (θ | s) := p (θ | s̃) p (κ (s) ,m | θ)
p (κ (s) ,m)

.
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SB credence revision model II

Beta distribution – a continuous probability distribution on [0, 1];

B (a,b) is a beta distribution, its shape is defined by a and b;

B (1, 1) is a uniform prior on Θ;

B (99, 1) is a non-inert prior biased towards ωh;

B (1, 99) is a non-inert prior biased towards ωt ;

p (θ|a,b) = θa−1 (1− θ)b−1

B (a,b)
is the probability of bias θ given prior

B (a,b);

p (θ | κ (s) ,m) :=
θκ(s)+a−1 (1− θ)m−κ(s)+b−1

B
(
a+ κ (s) ,b+m − κ (s)

) probability of bias θ

given history s.
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SB choice model

B := (C ,S , π, ψp):

C := {h, t, a} is the set of possible actions;
S is the set of possible histories;
ψp : S → ∆(Ω) is the aggregate belief function, such that, for any
history s ∈ S , ψp (s) ∈ ∆(Ω) is such that

ψp (ωh | s) :=
∫ 1

0

θp (θ | κ (s) ,m) dθ;

ψp (ωt | s) := 1− ψp (ωh | s) .

E [c | ψp, s] := ψp (ωh | s)π (c , ωh) + ψp (ωt | s)π (c , ωt) is the
expected utility of action c given history s;

SB optimal actions

BP,s :=
{
c ∈ C : c ∈ argmaxc′∈C

(
E [c ′ | ψp, s]

)}
. SB player chooses

according to uniform probability distribution (UPD) on BP,s if
n (BP,s) > 1.
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IF credence revision model I

Calibration’s reasoning is represented using a model
MF := {Ω,A, κ,S , λ}, where Ω is the set of states, A is the set of
considered significance levels with a typical element α, κ is the counting
function for ωh, S is the set of possible histories, and
φ : A× S → P ([0, 1]) is the function that assigns, to every significance
level-history pair (α, s) ∈ A× S , a Clopper-Pearson interval
φ (α, s) := (ϕL, ϕU) ∈ P ([0, 1]).
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IF credence revision model II

The lower bound ϕL ∈ [0, 1] and the upper bound ϕU ≥ ϕL of this
interval can be represented in terms of beta distribution quantiles:

ϕL = B
(α
2
;κ (s) ,m − κ (s) + 1

)
; (1)

ϕU = B
(
1− α

2
;κ (s) + 1,m − κ (s)

)
. (2)

For a significance level α and a history of m coin tosses s ∈ S with
κ (s) ≥ 0 “heads”, Calibration estimates the actual coin bias to be within
the Clopper-Pearson interval φ (α, s). Hence, they reject any values
ϕ /∈ φ (α, s).
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IF credence revision model III

Calibration’s expectation-based reasoning about actions can be
represented with a model DF := {Ω,A,S ,C , π,E}, where
E : C ×A× S → P (R) is a function that assigns, to every
action-significance level-history combination (c , α, s) ∈ C ×A× S , an
expected payoff vector E (c , α, s) := (E [c | ϕl ] , . . . ,E [c | ϕu]), where
ϕl = min (φ (α, s)), ϕu = max (φ (α, s)) and each expectation
E [c | ϕ] := ϕπ (c , ωh) + (1− ϕ)π (c , ωt) for every ϕ ∈ φ (α, s).
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IF credence revision model IV

For many of the decision rules that define specific calibration players, two
important terms will be the minimum and maximum expectations of an
action given a confidence interval. Given an action-significance
level-history combination (c , α, s) ∈ C ×A× S , we define the minimum
expectation of an action c as

Emin
c|α,s := min

E [c|ϕ]∈E(c,α,s)
(E [c | ϕ]) , (3)

and the maximum expectation as

Emax
c|α,s := max

E [c|ϕ]∈E(c,α,s)
(E [c | ϕ]) . (4)

Note how Emin
a|α,s = Emax

a|α,s = 0 for each (α, s) ∈ A× S , because a has a
guaranteed payoff of zero.



Outline Motivation SB model IF belief model IF choice models Testing setup Main results Conclusion

IF choice models: Maximin and Dominance

Ec|P,s :=
{
E [c |ψp, s] for each ψp ∈ ΨP

}
is the set of expected

payoffs associated with action c given P and s;

Emin
c|P,s := minE[c|ψp′ ,s]∈Ec|P,s

(
E [c |ψp, s]

)
is the minimum expected

payoff given P;

Emax
c|P,s := maxE[c|ψp′ ,s]∈Ec|P,s

(
E [c |ψp, s]

)
is the maximum expected

payoff given P;

Maximin choice

MP,s :=
{
c ∈ C : c ∈ argmaxc′∈C

(
Emin
c|P,s

)}
. UPD on MP,s if

n (MP,s) > 1.

Dominance choice

DP,s :=
{
c ∈ C : Emax

c|P,s > Emin
c′|P,s for all c ′ ∈ C

}
. UPD on DP,s if

n (DP,s) > 1.
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IF choice models: E-Admissibility, Hurwicz, Regret

E-Admissible choice

AP,s :=
{
c ∈ C : ∃ψp ∈ ΨP , c ∈ argmaxc′∈C

(
E [c ′|ψp, s]

}
. UPD on

AP,s if n (AP,s) > 1.

Hurwicz choice

HP,s,α :=
{
c ∈ C : c ∈ argmaxc′∈C

(
αEmin

c′|P,s + (1− α)Emax
c′|P,s

)}
, where

α ∈ [0, 1]. UPD on HP,s,α if n (HP,s) > 1.

Regret choice

RP,s,α :=
{
c ∈ C : c ∈

argminc′∈C

(
maxψp∈ΨP (maxc′∈C (E [c ′ | ψp, s])− E [c | ψp, s])

)}
. UPD

on RP,s,α if n (RP,s) > 1.
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IF choice models: Opportunity-risk-optimising choice

ψmin
P,s (ωh) := minψp′∈ΨP

(
ψp′

(ωh | s)
)
is the lowest belief in ωh given

P and s;

ψmax
P,s (ωh) := maxψp′∈ΨP

(
ψp′

(ωh | s)
)
is the highest belief in ωh

given P and s;

ψavg
P,s (ωh) :=

ψmin
P,s (ωh)+ψ

max
P,s (ωh)

2 is the average belief in ωh given P, s;

ψint
P,s (ωh) :=

ψmax
P,s (ωh)−ψmin

P,s (ωh)

ψmax
P,s̃ (ωh)−ψmin

P,s̃ (ωh)
is the confidence factor given P and s;

E
[
c | ψavg

P,s (ωh)
]
:= π (c , ωh)ψ

avg
P,s (ωh) + π (c , ωt)

(
1− ψavg

P,s (ωh)
)

is the average expected payoff of c given P and s;

ORO choice

OP,s :=
{
c ∈ C : c ∈

argmaxc′∈C

(
Emin
c′|P,sψ

int
P,s (ωh) + E

[
c ′ | ψavg

P,s (ωh)
] (

1− ψint
P,s (ωh)

))}
.

UPD on OP,s if n (OP,s) > 1.
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P,s (ωh) := minψp′∈ΨP

(
ψp′

(ωh | s)
)
is the lowest belief in ωh given

P and s;

ψmax
P,s (ωh) := maxψp′∈ΨP

(
ψp′

(ωh | s)
)
is the highest belief in ωh

given P and s;

ψavg
P,s (ωh) :=

ψmin
P,s (ωh)+ψ

max
P,s (ωh)

2 is the average belief in ωh given P, s;

ψint
P,s (ωh) :=

ψmax
P,s (ωh)−ψmin

P,s (ωh)

ψmax
P,s̃ (ωh)−ψmin

P,s̃ (ωh)
is the confidence factor given P and s;

E
[
c | ψavg

P,s (ωh)
]
:= π (c , ωh)ψ

avg
P,s (ωh) + π (c , ωt)

(
1− ψavg

P,s (ωh)
)

is the average expected payoff of c given P and s;

ORO choice

OP,s :=
{
c ∈ C : c ∈

argmaxc′∈C

(
Emin
c′|P,sψ

int
P,s (ωh) + E

[
c ′ | ψavg

P,s (ωh)
] (

1− ψint
P,s (ωh)

))}
.

UPD on OP,s if n (OP,s) > 1.
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IF choice models: Entropy-maximising choice

u : Θ → ∆(Θ) is a function assigning a uniform distribution on Θ;

Es :=
{
ψp ∈ ΨP : ψp ∈ argminψp′∈ΨP

∣∣∣ψp′
(ωh | s)−

∫ 1

0
θu (θ) dθ

∣∣∣ }
is the set of entropy-maximising belief functions given P and s;

Entropy-maximising choice

UP,s :=
{
c ∈ C : ∃ψp ∈ Es , c ∈ argmaxc′∈C

(
E [c ′ | ψp, s]

)}
. UPD on

UP,s if n (UP,s) > 1.
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Games

Game

A game is a sequence of 5 coin tosses. The player bets on the 5th toss;

Big data approach:

1000 tests for each player type and each coin bias;

each test consists of 1000 games, the player makes 1000 bets in
each test;

1000 randomly generated ticket prices for each test. Each player
type faces the same set of ticket prices;

considered coin biases: 0.1, 0.3, 0.5, 0.7, 0.9;

for each test with each coin bias, a computer-generated coin toss
history, each player type faces the same set of histories;

each player type bets in 5 million games.
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Players

Stan (SB player): prior B (1, 1);

IF (Generic IF player): P with p = B (1, 99) and p = B (99, 1);

IF player types:

1 Dominance;
2 E − Admissibility ;
3 Maximin;
4 Pessimist (Hurwicz with α = 0.75);
5 Intermediate (Hurwicz with α = 0.5);
6 Optimist (Hurwicz with α = 0.25);
7 Regret;
8 MaxEnt;
9 ORO.

Perfect recall within test, no recall between tests: Players
retained information about the history of coin tosses from
game-to-game within a particular test, but they do not retain any
information from one test to another.
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Analysis: average frequency per game record

For each player type and each coin bias, the average frequency per
game record over 1000 games and 1000 tests;

confidence interval for the average frequency per game value at 0.05
significance level computed over 1000 tests, i.e. the mean value
plus/minus the related standard error.
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Analysis: Wasserstein performance measure I

K := (K1,K2,K3,K4,K5,K6,K7) is the set of player choice
conditions with a typical element Ki where

Condition Description
K1 Directly choosing h.
K2 Directly choosing t.
K3 Directly choosing a.
K4 Randomising between h and t.
K5 Randomising between h and a.
K6 Randomising between t and a.
K7 Randomising between h, t, and a.

Table: Possible player choice conditions. Conditions from K4 to K7 never
occur for Stan and MaxEnt, because they never randomise.

Φ :={Dominance, E-Admissibility, Maximin, Regret, Optimist,
Intermediate, Pessimist, ORO, MaxEnt, Stan} is the set of player
types with a typical element ϕ.
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Analysis: Wasserstein performance measure II

σ : ϕ→ P (K ) is the choice condition allocation function, such that

σ (ϕ) :=

{
(K1,K2,K3) if ϕ ∈ {Stan,MaxEnt}
K = (K1, . . . ,K7) otherwise.

Λ : C × Φ → Yn
(
σ(ϕ)

)
, where Y := {y ∈ R : y ∈ [0, 1]}, is the

scoring function, such that,

Λ (h, ϕ) =

{
(1, 0, 0) if and only if ϕ ∈ {MaxEnt, Stan} ;(
1, 0, 0, 12 , 0,

1
2 ,

1
3

)
otherwise.

Λ (t, ϕ) =

{
(0, 1, 0) if and only if ϕ ∈ {MaxEnt, Stan} ;(
0, 1, 0, 12 ,

1
2 , 0,

1
3

)
otherwise.

Λ (a, ϕ) =

{
(0, 0, 1) if and only if ϕ ∈ {MaxEnt, Stan} ;(
0, 0, 1, 0, 12 ,

1
2 ,

1
3

)
otherwise.
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Analysis: Wasserstein performance measure II
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Analysis: Wasserstein performance measure III

Γ := {250, 1000} is the number of games with a typical element γ;

W
σ(ϕ)
c|θ,γ is the data-derived vector representing the mean number of

times when each Ki ∈ σ (ϕ) was met given c , θ and γ;

Wσ(ϕ) :=
{
Wh|θ,γ ,Wt|θ,γ ,Wa|θ,γ

}
is the set of performance vectors;

ξ : Θ×Φ× Γ → [0, 1] is the Wasserstein performance measure, such
that, for any (θ, ϕ, γ) ∈ Θ× Φ× Γ,

ξ (θ, ϕ, γ) :=

√√√√√√
[
1 −

(
Λ (a, ϕ) •Wσ(ϕ)

a|θ,γ

)
γ
−1

]
︸ ︷︷ ︸

Abstaining factor

·

√√√√√√√√√√√√



Normalizing
and scaling terms︷ ︸︸ ︷

1 −
(
2−1 −

∣∣∣2−1 − θ
∣∣∣)


∣∣∣θ −

(
Λ (h, ϕ) •Wσ(ϕ)

h|θ,γ

)
γ
−1

∣∣∣θ−1

︸ ︷︷ ︸
Goodness of fit in predicting

the frequency of heads

+

Goodness of fit in predicting
the frequency of tails︷ ︸︸ ︷∣∣∣1 − θ −

(
Λ (t, ϕ) •Wσ(ϕ)

t|θ,γ

)
γ
−1

∣∣∣(1 − θ)−1




.

(5)
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Average profit per game I

Overall Leader: Stan
IF Leaders: E-Admissibility, Optimist, Intermediate.
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Average profit per game II

Overall Leader: Stan
Worst performer: Maximin.
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Wasserstein performance (average frequency)

Coin Bias Games Standard Bayesian IF Leaders Regret Dominance MaxEnt Pessimist ORO Maximin
0.1 250 99.721 95.247 93.436 93.531 90.209 92.483 91.548 87.497

1000 99.861 98.172 97.483 97.480 96.226 97.123 96.555 95.422
0.3 250 99.955 97.031 94.673 94.665 91.484 92.257 89.766 83.683

1000 99.950 98.873 97.955 97.949 96.582 97.150 95.486 93.860
0.5 250 99.862 99.814 93.115 93.163 99.712 89.664 86.786 79.488

1000 99.979 99.977 97.417 97.441 99.972 96.135 94.215 92.322
0.7 250 99.966 97.268 94.916 94.721 91.761 92.479 89.888 83.670

1000 99.948 98.873 97.967 97.967 96.612 97.163 95.506 93.859
0.9 250 99.764 95.301 93.549 93.508 90.319 92.602 91.671 87.530

1000 99.939 98.240 97.551 97.554 96.309 97.190 96.630 95.375
Average 250 99.854 ± 0.097 96.932 ± 1.636 93.938 ± 0.704 93.917 ± 0.634 92.697 ± 3.490 91.897 ± 1.100 89.932 ± 1.729 84.374 ± 2.926

Performance 1000 99.935 ± 0.039 98.827 ± 0.635 97.674 ± 0.233 97.678 ± 0.227 97.140 ± 1.395 96.952 ± 0.401 95.678 ± 0.864 94.168 ± 1.128

Table: Performance measurements for 250 games and 1000 games. The players
are ordered by their average performances over 250 games (bold).
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Conclusion

The best performing IF players (IF Leaders) are E-Admissibility,
Optimist, Intermediate.

No considered IF model can match the performance of Stan. At
best, IF Leaders can match the performance of Stan, but never
exceed it. In most cases, Stan’s performance is better by a clear
margin.

The divergence in the initial IF credence set P slowed down their
convergence to the true coin bias. This sluggishness was a problem
even though the chosen set P is far from the most divergent possible
in IF epistemology.

This problem could be mitigated with a less divergent set P. Yet
that would make P less adequate from the perspective of modelling
ignorance.

The putative epistemological advantages of IF come at a pragmatic
cost, at least in this classic decision problem.
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