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• Andritz Oy 2012-2018:

• Structural engineer doing FEM-analysis for thin-plated structures 

for recovery and power boilers

• Internships in Vienna, Graz and Stockholm during studies

• Full time employment 2015-2018

• Sweco Finland Oy 2018-2024:

• 2018-2020 FEM-analyst for demanding analysis (explosions, 
earthquakes, impacts etc.)

• 2020-2022 Project manager. Leading different FEM-analysis 

projects for different customers

• 2022-2024 Department manager. Leading a team of 6-8 people 

from various nationalities
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• AusculThing Oy, Medical device company with the aim of introducing 

AI-powered screening tools for heart sounds.

• Currently FDA-cleared product and starting sales in the U.S. 

• Accuracy 93% Sensitivity 91% Specificity 96 %

• Recently (21.9.2024) published article:
Automated analysis of heart sound signals in screening for structural heart disease 

in children
https://link.springer.com/article/10.1007/s00431-024-05773-3

• Currently looking for the first seeding round…

→ if you know any rich and easy-going investors let me know…

https://link.springer.com/article/10.1007/s00431-024-05773-3
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• Consider damped harmonic oscillator with the following 

dynamics

𝑥′′ 𝑡 + 2𝜉𝜔𝑥′ 𝑡 + 𝜔2𝑥 𝑡 = 0
𝑥 0 = 𝑢
𝑥′ 0 = 0
𝜔 = 1

• We want the oscillator to have an amplitude of 𝑥 = −0.4 at time 

𝑇 = 5𝑠

• Critical damping 𝜉,  𝜉~𝑓 𝜉 = 𝒩 𝜉 | 𝜇 = 0.1, 𝜎 = 0.02

• Target: From what initial condition 𝑢 should we release the system so at 𝑡 = 5 we “most likely” end up 

at 𝑥 = −0.4
→ Minimize on the expectation and observe the squared missed distance
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• Define map 𝑆 𝑥 = 𝑥 𝑇

• Our observable, the square missed distance  𝑔 𝑆(𝑥) = 𝑥(𝑇) − 𝑥∗ 2 and target 

𝑥∗ = −0.40

• Target is to decide on 𝑢 such that it minimizes the expected squared miss on the 

target

min
𝑢

𝔼 𝑥 𝑇 − 𝑥∗ 2 𝑥(𝑇) ~𝑃𝑆𝑓 𝜉 ]

where 𝑃𝑆𝑓 𝜉  is the density pushed forward through the system (more later…).

• What approaches do we have?
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• General case:

min
𝑢

𝔼 𝑔 𝑆(𝑥(𝑡, 𝑢|𝛼 ) |𝑥~𝑃𝑠𝑓(𝛼)

Target: minimize the expectation of an observable 𝑔 𝑥 depending on some dynamical 

system 𝑥(𝑡, 𝑢|𝛼) for some parametric uncertainty 𝛼~𝑓(𝛼) with respect to control 𝑢.

Dynamical system

observable control

Pushed forward 

distribution through 

the dynamical system

Uncertain parameter

Mapping or 

description of 

dynamical system
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• Question: How does the uncertainty distribution evolve through the dynamical 

system? I.e., given an initial distribution what is the output distribution?

• Simple example: how does the distribution develop from 𝑡 = 0 to 𝑡 = 5 when 

𝑥 0 = 1, i.e. what is the distribution of 𝑥 5 ?

𝑆 𝑥 ≔ −𝛼
𝑑𝑥 𝑡

𝑑𝑡
= 𝑥 𝑡

𝑥 0 = 1

𝛼~𝒩 0,1
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• Approaches:

1. Direct sampling and solving (Monte Carlo methods)

+ simple implementation

- Computational cost

- no direct way to compute gradients(?) → how to optimize?

2. Frobenius-Perron (FP) Operator

→ Analytical framework to study development of distributions of mappings (dynamical 

systems)

3. Koopman Operator

→ Adjoint to Frobenius-Perron operator
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• Frobenius-Perron (FP) Operator : Operator 𝑃𝑆 pushes 

the uncertainty (distribution) through the system to the 

output and is defined as:

න
𝐴

𝑃𝑆𝑓 𝑥 𝜇 𝑑𝑥 = න
𝑆−1 𝐴

𝑓 𝑥 𝜇 𝑑𝑥

• 𝑓(𝑥) is the probability distribution and 𝑥~𝑓(𝑥)

• 𝑆 𝑥 describes the system dynamics (diff. equation for 

example)

• If 𝑆(𝑥) is differentiable and invertible then:

𝑃𝑆𝑓 𝑥 = 𝑓 𝑆−1 𝑥
𝑑𝑆−1 𝑥

𝑑𝑥
(= “Change-of-variable” in probability theory)
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• The FP Operator on the observable can be interpreted as an expectation for some 

function (observable) 𝑔(𝑥) as:

𝔼 𝑔 𝑥 𝑥 ~ 𝑃𝑆𝑓(𝑥)] = න

𝑆 Ω

𝑃𝑆𝑓 𝑥 𝑔 𝑥 𝑑𝑥 = < 𝑃𝑆 𝑓(𝑥), 𝑔(𝑥) >

• One would like to optimize some decision 𝑢 on the expectation of the dynamical system’s 

outcome uncertainty in the:

• Input or initial values of the system

• Parameters of the dynamical system

Thus maximize/minimize on the expectation:   min
𝑢

 𝔼 𝑔 𝑆 𝑥 𝑥 ~ 𝑃𝑆𝑓(𝑥)]

• Problems: 

- FP operator difficult to determine and S(x) needs to be invertible and differentiable

- Numerical stability, original density domain might grow exponential when pushed 

through the system (explode)
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• Koopman Operator : Defined as:

𝐾𝑆𝑔 𝑥 = 𝑔 𝑆 𝑥

where 𝑔 𝑥 is some observable

• FP operator transports densities through maps of dynamical systems, Koopman 

operator provides a mechanism to pull-back functions.

• The Koopman Operator is adjoint to the FP operator, thus:

< 𝑃𝑆𝑓(𝑥), 𝑔 𝑥 > = < 𝑓 𝑥 , 𝐾𝑆𝑔 𝑥 >

𝔼 𝑔 𝑥 𝑥 ~ 𝑃𝑆𝑓(𝑥)] = 𝔼 𝐾𝑆𝑔 𝑥 𝑥 ~ 𝑓(𝑥)]

• Provides a way to ”Pull-back” the system to the original domain of the density and do 

the integration there
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• Benefits:

• Numerically stable

• Integration over known domain

• Fast to integrate (quadrature or other method)

Frobenius-Perron 

expectation aka “push-

forward”

Koopman expectation aka 

“pull-back”
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• Optimization problem is transferred to:

min
𝑢

 𝔼 𝑔 𝑆 𝑥 𝑥 ~ 𝑃𝑆𝑓(𝑥)] = min
𝑢

 𝔼 𝐾𝑠𝑔 𝑥 𝑥 ~ 𝑓(𝑥)]

• The Koopman operator 𝐾𝑆 does not need to explicitly known but it’s action is needed 

to be known, i.e.,

𝐾𝑆𝑔 𝑥 = 𝑔 𝑆 𝑥

• So we have

min
𝑢

 𝔼 𝑔 𝑆 𝑥 𝑥 ~ 𝑓(𝑥)]

• So solving this can be done with by coupling different solvers (ODE or PDE) and 

explicitly calculating the dynamics and doing the numerical integration
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• NOW THE “RESEARCH”: Possible to replace ODE or PDE solver with a 

Physics Informed Neural Network (PINN)

• Faster forward/computation times

• Possible to easily calculate gradient on control variables

• PINNs run efficiently in “batch mode” → one forward pass for multiple points 

→ efficient integration of expectations or higher order statistics

𝑆𝑂𝐿𝑉𝐸: 𝑥′′ 𝑡 + 2𝜉𝜔𝑥′ 𝑡 + 𝜔2𝑥 𝑡 = 0

𝑜𝑢𝑡: 𝑥(𝑡)
𝑖𝑛: 𝑡, 𝜉, 𝑢
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• Optimum at 𝑢∗ = 1.138277

Cost function and gradient descent with NN PINN and ODE solution for 𝜉 = 0.1 and 

𝑢∗ = 1.138277
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• Further question: How certain are we that our policy is the best and 

with what uncertainty? If we use our optimum how certain are we end 

up close to the target?

→ Use PINN to do MC-sampling and estimate some uncertainties
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Sampling 𝜉 with N=20 000 samples from 𝑁(0.1,0.02) and do forward passes (solve ODE) on the PINN 

and plot the distribution
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Conclusion:

1. PINNs can replace ODEs/PDEs for optimization 

tasks

→ Efficient batch mode evaluation

→ Gradients can be easily calculated from the 

PINN

2. Koopman Expectation seems to work 

3. Uncertainty quantification can efficiently be done 

with PINNs if distributions are known by direct 

sampling

→ Risk quantification

DE-solver

Statistical 

model

Decision

PINN

Koopman to 

evaluate 

expectations

Decision + 

Risk

Further question: Now the uncertainty quantification is done a-posteriori can we done it a-

priori or during the optimization process?
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