

Win probability estimation for strategic decision-making in esports

Master's Thesis Presentation

Perttu Jalovaara, 26.8.2024

Contents

1. Background

Esports analytics and win probability estimation.

2. Case study

Debiasing esports data using win probability estimation.

3. References

Background

Esports = the competitive practice of video games

- Growing in popularity for the past decade. [1]
- Major events can reach >100 million viewers. [2]
- Popular titles:
 - League of Legends
 - Counter-Strike
 - Valorant
 - Fortnite
 - o Dota 2

Esports analytics as an emerging field

"The use of esports-related **data** to assist with **decision-making** processes arising both in-game and outside of it." [3]

Win probability estimation in sports

"What is the probability that team A beats team B in this situation?"

- Central idea emanating from baseball analytics in the 1960s. [4]
- Common applications:
 - Player performance evaluation and prediction
 - Supporting managerial decision-making
 - Strategy optimization
 - Sports betting

Win probability estimation in esports

- Win probability models have been developed for popular games.
- Two commonly used model performance evaluation criteria:

Criterion	Description
Accuracy	Proportion of correctly predicted outcomes.
Expected Calibration Error (ECE)	Average difference between estimated win probability and true proportion of wins.

Applications are still lacking, especially strategy optimization.

Case study

Contextualized win probability statistics: ΔW and W

 ΔW = "What was the impact of purchasing the item?"

W = "In what situation was
the item purchased?"

Deep neural network win probability model for LoL

- Training set 350 000 LoL matches, testing set 50 000 matches.
- Calibration is crucial for providing reliable win probabilities!

Model	Accuracy [%]	ECE [%]
Baseline [5]	73.0	4.47
Fine-tuned [5]	73.8	0.57
Our model	75.9	0.90

References

- [1] D. Tang et al. "What is esports? A systematic scoping review and concept analysis of esports". Heliyon 9.12 (2023), article e23248.
- [2] Riot Games. "League of Legends Esports Breaks World Championship Viewership Record". League of Legends Esports Media (2021).
- [3] M. Schubert, A. Drachen, and T. Mahlmann. "Esports analytics through encounter detection". Proceedings of the 10th MIT Sloan Sports Analytics Conference (2016).
- [4] G. R. Lindsey. "The progress of the score during a baseball game". Journal of the American Statistical Association 56.295 (1961), pp. 703–728.
- [5] D.-H. Kim, C. Lee, and K.-S. Chung. "A confidence-calibrated MOBA game winner predictor". 2020 IEEE Conference on Games. IEEE, 2020, pp. 622–625.

