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. Introduction

The objective: explore the
capabillities of an encoder-
decoder transformer model in
generating complementary
Instrument tracks to existing
Instrument tracks
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. Introduction — why transformers?

* Transformers are used in natural language
processing for many purposes, including
translation

* Translation converts instrument tracks to a set
of accompanying instrument tracks

* Previously decoder-only transformers have
been used for less conditioned music
generation

' Aalto University
School of Science
|



e A deep neural network

* Processes sequential
data efficiently

* Replaces recurrency
with attention
mechanism and
positional encoding

Transformer model
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. Transformer model
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Transformer model

Positional encoding
« A unique vector for each * Added to embedding vectors
element in sequence * Injects positional information

PE(pos,2i) =sin(pos/n'?/¥)  to the embedding
PE(pos,2i + 1) =cos(pos/n'?/9)

Positional encodings from positions 0 to 50 with model dimension 128.
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. Elements of music

CH/@D#/ CH/@D#/

Db @ Eb Db @ EDb

C/DIEIFIGIAIH|IC|ID|E|F|G|A|H

* 7 named pitches, including raised/lowered pitches
create 12 unique pitches

* Harmony: key, scales, chords

* Rhythm: pulse, beat
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Elements of music
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Dataset

 MIDI files characterize music with discrete time-

based events
e Lakh MIDI dataset has 176581 unique midi-files
* The thesis uses the "clean subset" of the Lakh
dataset, which has 17233 midi-files
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. Tokenization
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 REMI-tokenization scheme
* Byte pair encoding (BPE)
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. Steps In the plpellne
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. Quantitative results

Setup

* 300 attempted generated samples, which resulted in
299 piano and 294 bass samples

* Rhythm analysis

* Harmony analysis
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. Quantitative results

Rhythm analysis

* Distributions of notes per bar

* Separate bars into discrete rhythm representation
strings ("101...01")

* Sample Levenshtein distances with string pairs
between generated sample vs. validation sample

* Compare with mock sample vs. validation sample
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Quantitative

Original dataset
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. Quantitative results

Harmony analysis

* Determine what key the samples are in with the
Krumhansl-Schmuckler key-finding algorithm
 Compare the top-k key candidates given by the

algorithm with the key of the reference
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Quantitative results

Original vs. generated

Original vs. generated
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Discussion

* Model performance is unimpressive
 The model learns some larger-scale
iInformation about the reference piece
but does not react to smaller-scale
changes
* Possible reasons:
 Small/bad-quality dataset
* Training parameters
* Tokenization/model parameters
* Inference method
* Model could potentially perform better
If these reasons are addressed
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