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Introduction

The objective: explore the 
capabilities of an encoder-

decoder transformer model in 
generating complementary 
instrument tracks to existing 

instrument tracks



  

Introduction – why transformers?

● Transformers are used in natural language 
processing for many purposes, including 
translation 

● Translation converts instrument tracks to a set 
of accompanying instrument tracks

● Previously decoder-only transformers have 
been used for less conditioned music 
generation



  

Transformer model

● A deep neural network
● Processes sequential 

data efficiently
● Replaces recurrency 

with attention 
mechanism and 
positional encoding



  

Transformer model

Attention mechanism
● Defined by 

● Calculates strengths of 
relationships of elements in 
sequences

● Three different contexts in an 
encoder-decoder transformer:

● Self-attention in encoder
● Self-attention in decoder
● Cross-attention in decoder

An attention score heatmap 



  

Transformer model
Positional encoding
● A unique vector for each 

element in sequence
● Added to embedding vectors
● Injects positional information 

to the embedding 

Positional encodings from positions 0 to 50 with model dimension 128.



  

Elements of music

● 7 named pitches, including raised/lowered pitches 
create 12 unique pitches

● Harmony: key, scales, chords
● Rhythm: pulse, beat



  

Elements of music

Music notation – sheet music



  

Dataset

● MIDI files characterize music with discrete time-
based events

● Lakh MIDI dataset has 176581 unique midi-files
● The thesis uses the "clean subset" of the Lakh 

dataset, which has 17233 midi-files



  

Tokenization

● REMI-tokenization scheme
● Byte pair encoding (BPE)



  

Steps in the pipeline



  

Quantitative results

● 300 attempted generated samples, which resulted in 
299 piano and 294 bass samples

● Rhythm analysis
● Harmony analysis

Setup



  

Quantitative results

● Distributions of notes per bar
● Separate bars into discrete rhythm representation 

strings ("101...01") 
● Sample Levenshtein distances with string pairs 

between generated sample vs. validation sample
● Compare with mock sample vs. validation sample

Rhythm analysis



  

Quantitative results

Bass note distributions Piano note distributions

Avg. Levenshtein 
distances

Bass
val.

Piano
val.

Gen 4.104 4.103

Mock 4.973 4.800



  

Quantitative results

● Determine what key the samples are in with the 
Krumhansl-Schmuckler key-finding algorithm

● Compare the top-k key candidates given by the 
algorithm with the key of the reference

Harmony analysis



  

Quantitative results

Bass key comparisons Piano key comparisons



  

Qualitative results



  

Discussion
● Model performance is unimpressive 
● The model learns some larger-scale 

information about the reference piece 
but does not react to smaller-scale 
changes

● Possible reasons:
● Small/bad-quality dataset
● Training parameters
● Tokenization/model parameters
● Inference method

● Model could potentially perform better 
if these reasons are addressed
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