

Generating Complementary
Instrument

Tracks with a Transformer
Model

Mikko Murhu

Introduction

The objective: explore the
capabilities of an encoder-

decoder transformer model in
generating complementary
instrument tracks to existing

instrument tracks

Introduction – why transformers?

● Transformers are used in natural language
processing for many purposes, including
translation

● Translation converts instrument tracks to a set
of accompanying instrument tracks

● Previously decoder-only transformers have
been used for less conditioned music
generation

Transformer model

● A deep neural network
● Processes sequential

data efficiently
● Replaces recurrency

with attention
mechanism and
positional encoding

Transformer model

Attention mechanism
● Defined by

● Calculates strengths of
relationships of elements in
sequences

● Three different contexts in an
encoder-decoder transformer:

● Self-attention in encoder
● Self-attention in decoder
● Cross-attention in decoder

An attention score heatmap

Transformer model
Positional encoding
● A unique vector for each

element in sequence
● Added to embedding vectors
● Injects positional information

to the embedding

Positional encodings from positions 0 to 50 with model dimension 128.

Elements of music

● 7 named pitches, including raised/lowered pitches
create 12 unique pitches

● Harmony: key, scales, chords
● Rhythm: pulse, beat

Elements of music

Music notation – sheet music

Dataset

● MIDI files characterize music with discrete time-
based events

● Lakh MIDI dataset has 176581 unique midi-files
● The thesis uses the "clean subset" of the Lakh

dataset, which has 17233 midi-files

Tokenization

● REMI-tokenization scheme
● Byte pair encoding (BPE)

Steps in the pipeline

Quantitative results

● 300 attempted generated samples, which resulted in
299 piano and 294 bass samples

● Rhythm analysis
● Harmony analysis

Setup

Quantitative results

● Distributions of notes per bar
● Separate bars into discrete rhythm representation

strings ("101...01")
● Sample Levenshtein distances with string pairs

between generated sample vs. validation sample
● Compare with mock sample vs. validation sample

Rhythm analysis

Quantitative results

Bass note distributions Piano note distributions

Avg. Levenshtein
distances

Bass
val.

Piano
val.

Gen 4.104 4.103

Mock 4.973 4.800

Quantitative results

● Determine what key the samples are in with the
Krumhansl-Schmuckler key-finding algorithm

● Compare the top-k key candidates given by the
algorithm with the key of the reference

Harmony analysis

Quantitative results

Bass key comparisons Piano key comparisons

Qualitative results

Discussion
● Model performance is unimpressive
● The model learns some larger-scale

information about the reference piece
but does not react to smaller-scale
changes

● Possible reasons:
● Small/bad-quality dataset
● Training parameters
● Tokenization/model parameters
● Inference method

● Model could potentially perform better
if these reasons are addressed

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

