Who am I and what am I doing here?

Reena Urban

SAL Monday Seminar 13.05.2024

Reena Urban

University

Bachelor in Mathematics (BSc), Specialization: Optimization Master in Mathematics (MSc), Specialization: Optimization Thesis: Analysis and Computation of Cheapest Paths in Public Transport

RPTU

PhD student supervised by Anita Schöbel, optimization research group Topic: Optimization in public transport planning – fare planning and BRT network design

Optimization research group in Kaiserslautern

Reena Urban

Optimization research group in Kaiserslautern

EURO 2022 at Aalto university

My research

My research

Fare structure

A fare structure is a function $p \colon \mathcal{W} \to \mathbb{R}_{\geq 0}$ that assigns a price to every path in the network.

Different perspectives

- Passenger: comprehensible fare structures, affordable and fair prices
- Operator: financial requirements, no undercutting, increase share of public transport

Input data

Public transport network (PTN)

undirected graph (V, E) with stations/stops V and connections E

Origin-destination (OD) data

- Set D of station pairs
- ▶ Path W_d for every OD pair $d \in D$

Fare structures

Fare structure	Model	Description
Flat	$p_d = f$	Fixed price for all paths
Travel/Beeline distance	$p_d = f + p \cdot I(W_d)$	Base amount plus kilometer price times the length of the path
Zone	$p_d = P(\#zones(W_d))$	Price dependent on the number of traversed zones

Designing fare structures

Objectives

Literature:

- Minimize deviation from reference prices (Hamacher and Schöbel (1995, 2004))
- Maximize revenue (Otto and Boysen (2017))
- Maximize demand with respect to a budget constraint (Nash (1978), Glaister and Collings (1978), Borndörfer, Karpstein and Pfetsch (2012))

New bi-objective approach:

 \blacktriangleright Maximize revenue and demand simultaneously \Rightarrow "Attraction model"

Attraction model – Input

Input

As before: PTN and OD data

Additionally: Two groups of passengers for each OD pair $d \in D$

	Captive passengers	Choice passengers
Description	Rely on public transport	Have other options like a car
Number of passengers	C_d^U	C_d^L
Willingness to pay	U _d	L _d

with $0 \leq L_d \leq U_d$.

Attraction model – Objective

Objective function

For $d \in D$, we set

$$f_2(d \mid p_d) := \begin{cases} C_d^U + C_d^L & \text{if } 0 \le p_d \le L_d, \\ C_d^U & \text{if } L_d < p_d \le U_d, \\ 0 & \text{if } U_d < p_d, \end{cases}$$
(demand of d)

Attraction model – Objective

Objective function

For $d \in D$, we set

$$f_{2}(d | p_{d}) := \begin{cases} C_{d}^{U} + C_{d}^{L} & \text{if } 0 \leq p_{d} \leq L_{d}, \\ C_{d}^{U} & \text{if } L_{d} < p_{d} \leq U_{d}, \\ 0 & \text{if } U_{d} < p_{d}, \end{cases}$$
(demand of d)
$$f_{2}(p) := \sum_{d \in D} f_{2}(d | p_{d}),$$
(demand)

Attraction model – Objective

Objective function

For $d \in D$, we set

$$f_{2}(d \mid p_{d}) := \begin{cases} C_{d}^{U} + C_{d}^{L} & \text{if } 0 \leq p_{d} \leq L_{d}, \\ C_{d}^{U} & \text{if } L_{d} < p_{d} \leq U_{d}, \\ 0 & \text{if } U_{d} < p_{d}, \end{cases}$$
(demand of d)
$$f_{2}(p) := \sum_{d \in D} f_{2}(d \mid p_{d}),$$
(demand)
$$f_{1}(p) := \sum_{d \in D} f_{2}(d \mid p_{d}) \cdot p_{d}.$$
(revenue)

Attraction model

Relation-based tariff

Determine individual prices p_d for each OD pair $d \in D$.

Attraction model

Relation-based tariff

Determine individual prices p_d for each OD pair $d \in D$.

Relation-based tariff attraction model

(RTAM)
$$\max_{p} \begin{pmatrix} f_{1}(p) \\ f_{2}(p) \end{pmatrix}$$
 (revenue)
s.t. $p_{d} \in \mathbb{R}_{\geq 0}$ for all $d \in D$.

Bi-objective optimization

Efficient solution as concept of optimality

A solution p is efficient (Pareto optimal) and $(f_1(p), f_2(p))$ is a non-dominated point for RTAM if there is no other solution p' such that

$$f_1(p') > f_1(p) \text{ and } f_2(p') \ge f_2(p)$$

or
 $f_1(p') \ge f_1(p) \text{ and } f_2(p') > f_2(p).$

 \rightsquigarrow If one objective improves, another worsens.

Examples

	Captive passengers	Choice passengers
Description	Rely on public transport	Have other options like a car
Number of passengers	$C_d^U=1$	$C_d^L = 1$
Willingness to pay	$U_d = 3$	$L_d = 2$

Examples

	Captive passengers	Choice passengers
Description	Rely on public transport	Have other options like a car
Number of passengers	$C_d^U=1$	$C_d^L = 1$
Willingness to pay	$U_d = 3$	$L_d = 1$

Complexity

RTAM is NP-hard.

Can be proved by a reduction from PARTITION.

Complexity

RTAM is NP-hard.

Can be proved by a reduction from PARTITION.

Finite dominating set

If p is an efficient solution for RTAM, then $p_d \in \{L_d, U_d\}$ for all $d \in D$.

Complexity

RTAM is NP-hard.

Can be proved by a reduction from PARTITION.

Finite dominating set

If p is an efficient solution for RTAM, then $p_d \in \{L_d, U_d\}$ for all $d \in D$.

RTAM is intractable.

 \Rightarrow There are instances with exponentially many non-dominated points.

Reena Urban

Easy cases

Only one passenger group

If $C_d^U > 0$ and $C_d^L = 0$, then $p_d^* = U_d$ in any efficient solution p^* to RTAM. If $C_d^U = 0$ and $C_d^L > 0$, then $p_d^* = L_d$ in any efficient solution p^* to RTAM.

Easy cases

Only one passenger group If $C_d^U > 0$ and $C_d^L = 0$, then $p_d^* = U_d$ in any efficient solution p^* to RTAM. If $C_d^U = 0$ and $C_d^L > 0$, then $p_d^* = L_d$ in any efficient solution p^* to RTAM.

L_d is better in both objectives

If $C_d^U > 0$ and $C_d^L > 0$ and $f_1(d \mid L_d) \ge f_1(d \mid U_d)$, then $p_d^* = L_d$ in any efficient solution p^* to RTAM.

Easy cases

Only one passenger group If $C_d^U > 0$ and $C_d^L = 0$, then $p_d^* = U_d$ in any efficient solution p^* to RTAM. If $C_d^U = 0$ and $C_d^L > 0$, then $p_d^* = L_d$ in any efficient solution p^* to RTAM.

 L_d is better in both objectives

If $C_d^U > 0$ and $C_d^L > 0$ and $f_1(d \mid L_d) \ge f_1(d \mid U_d)$, then $p_d^* = L_d$ in any efficient solution p^* to RTAM.

Remaining situation

Need to determine p_d for $d \in D$ with $C_d^U > 0$ and $C_d^L > 0$ and $f_1(d \mid L_d) \leq f_1(d \mid U_d)$.

- ▶ Binary Variable $x_d \in \{0,1\}$ with $x_d = 1$ iff $p_d = U_d$
- Objective: maximize revenue
- New constraint: lower bound on the demand

$$\begin{split} \max_{X_d} & f_1(L) + \sum_{d \in D} x_d \cdot (f_1(d \mid U_d) - f_1(d \mid L_d)) \\ \text{s.t.} & f_2(L) - \sum_{d \in D} x_d \cdot C_d^L \geq \epsilon \\ & x_d \in \{0,1\} \quad \text{for all } d \in D. \end{split}$$

- ▶ Binary Variable $x_d \in \{0,1\}$ with $x_d = 1$ iff $p_d = U_d$
- Objective: maximize revenue
- New constraint: lower bound on the demand
- Rephrase terms

$$\max_{X_d} \quad f_1(L) + \sum_{d \in D} x_d \cdot (f_1(d \mid U_d) - f_1(d \mid L_d))$$

s.t.
$$\sum_{d \in D} x_d \cdot C_d^L \le f_2(L) - \epsilon$$
$$x_d \in \{0, 1\} \quad \text{for all } d \in D.$$

- ▶ Binary Variable $x_d \in \{0,1\}$ with $x_d = 1$ iff $p_d = U_d$
- Objective: maximize revenue
- New constraint: lower bound on the demand
- Rephrase terms

$$\begin{array}{ll} \max_{X_d} & \sum_{d \in D} x_d \cdot r_d \\ \text{s.t.} & \sum_{d \in D} x_d \cdot C_d^L \leq \lambda \\ & x_d \in \{0,1\} \quad \text{for all } d \in D. \end{array}$$

- ▶ Binary Variable $x_d \in \{0,1\}$ with $x_d = 1$ iff $p_d = U_d$
- Objective: maximize revenue
- New constraint: lower bound on the demand
- Rephrase terms
- Solve IP for $\lambda \in \{0, \dots, \sum_{d \in D} C_d^L\}$

$$\begin{array}{ll} \max_{X_d} & \sum_{d \in D} x_d \cdot r_d \\ \text{s.t.} & \sum_{d \in D} x_d \cdot C_d^L \leq \lambda \\ & x_d \in \{0,1\} \quad \text{for all } d \in D. \end{array}$$

Solution method

$$\begin{array}{ll} \max_{X_d} & \sum_{d \in D} x_d \cdot r_d \\ \text{s.t.} & \sum_{d \in D} x_d \cdot C_d^L \leq \lambda \\ & x_d \in \{0,1\} \quad \text{for all } d \in D \end{array}$$

• Resulting λ -constraint problem is a knapsack problem.

Solution method

$$\begin{array}{ll} \max_{X_d} & \sum_{d \in D} x_d \cdot r_d \\ \text{s.t.} & \sum_{d \in D} x_d \cdot C_d^L \leq \lambda \\ & x_d \in \{0,1\} \quad \text{for all } d \in D \end{array}$$

- Resulting λ -constraint problem is a knapsack problem.
- \blacktriangleright \Rightarrow Solve it with a dynamic program (DP).

▶ ⇒ DP for $\lambda = \sum_{d \in D} C_d^L$ computes all non-dominated points in $\mathcal{O}(|D| \sum_{d \in D} C_d^L)$.

How to proceed?

Work in progress

- Consider more levels of willingness to pay
- Application to other fare structure types:
 - Integrate willingness to pay into fare structure design problems for flat, distance and zone problems ⇒ Pareto front?
 - Use relation-based results as reference prices for fare structure design

How to proceed?

Work in progress

- Consider more levels of willingness to pay
- Application to other fare structure types:
 - Integrate willingness to pay into fare structure design problems for flat, distance and zone problems ⇒ Pareto front?
 - Use relation-based results as reference prices for fare structure design

Contact: rurban@rptu.de

