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Motivation & Background

Liner Shipping
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Data source: UNCTAD Review of Maritime Transport 2016

I Vessels Over 4900 ships in operation (WSC)

I Services: Over 500 services (cyclical routes) available

I Containers: Over 180 million twenty-foot equivalent units
(TEU) transported in 2016
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Motivation & Background

Liner Shipping: Looking to the Future

“Mærsk Mc Kinney Møller” Walter Rademacher / Wikipedia

“A major threat to the future of complex liner service networks
lies in increased schedule unreliability.”
– Notteboom and Rodrigue (2008)
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Motivation & Background

Liner Shipping Services

Subset of Maersk Line’s network in 2010

Key properties of a liner shipping service:

I Periodic: A port is visited on the same day, at the same
time, every week (or two weeks, etc.)

I Cyclical: A service has no start or end; it loops

I Enduring: Most services last months or years
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Motivation & Background

Contribution

This work provides:

1. A data-driven investigation of liner shipping travel time
distributions

2. A mathematical model for designing services with punctuality
guarantees

3. A simulation study of the effectiveness of the model

We show that:

1. Punctual services can be designed in reasonable amounts of
computation time

2. Guaranteeing punctuality is extremely expensive and in many
cases likely not worth it
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Motivation & Background

Slow Steaming
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Sailing cost from Boston, USA to Copenhagen, Denmark

Challenge: Incorporate sailing costs and punctuality into the
service design process.
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Data analysis: Container ship lateness

Data Analysis: Travel Time Distributions
Data gathering:

I AIS tracking of all vessels on 25 COSCO services in 2014

I Total of 1872 port to port transits around the world

I Key question: What distribution best models vessel travel
times?

Aggregated, normalized, region-to-region histograms
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Mathematical model

Designing Liner Shipping Services

Given:

I A set of ports with pre-negotiated time windows

I A set of vessels

I A set of container demands between ports

Goal:
I Plan a route between the ports minimizing:

1. The sailing cost of the vessels
2. The total number of vessels

I Optional:

3. Maximize profit from container demands
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Mathematical model

Model phases

Phase 1: Design speed

I All ports must be visited exactly once

I Require all demand to be carried within specified path
duration

I Only sail at the vessel design speed

Phase 2: Optimized speed

I Phase 1 and. . .

I Allow vessels to speed up or slow down

Phase 3: Optimized speed with maximum path durations

I Phase 2 and. . .

I Earn revenue from carrying demand

I Allow rejection of demand
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Mathematical model

Mathematical Model

Sets/Parameters:

I P – Ports

I A – Arcs

I (ok , dk , ak) ∈ K – Demands

I tWS
i , tWE

i – Time window

I cS , cC – Sailing/charter costs

Decision variables:

I wi ∈ N – Week at port i

I xij ∈ {0, 1} – 1 iff arc (i , j) used

I τSi , τ
E
i , τ

A
i ∈ R – Service start,

end, arrival port i

I fkij – Demand k flow on (i , j)

Objective function:

min cCwp+1 +
∑

(i ,j)∈A

cSij xij
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cSij xij

I Number of vessels on the service

I Phase 1 fixed sailing cost
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Mathematical model

Mathematical Model: Constraints

∑
(i ,j)∈A

xij = 1 ∀j ∈ P except 1

∑
(i ,j)∈A

xij = 1 ∀i ∈ P except p + 1

τSi = tWS
i + 168wi ∀i ∈ P

τEi = tWE
i + 168wi ∀i ∈ P

Week 1 Week 2
1 2 3 4
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Mathematical model

Mathematical Model: Constraints

τEi + tSij ≤ τAj + M(1− xij) ∀(i , j) ∈ A

1 2 3 4

...
Time feasibility (Also acts as subtour elimination)
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Mathematical model

Mathematical Model: Constraints∑
j∈P\{ok}

fkokj = ak ∀k ∈ K

∑
j∈P\{dk}

fkjdk = ak ∀k ∈ K

∑
(j ,i)∈A′

fkji =
∑

(i ,j)∈A′

fkij ∀k ∈ K , i ∈ P \ {ok , dk}∑
k∈K

fkij ≤ uxij ∀(i , j) ∈ A′

1 2 3 4

Container demands modelled as a multicommodity flow
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Mathematical model

Modelling Punctuality Guarantees

τEi + tαij ≤ τAj + M(1− xij) ∀(i , j) ∈ A

I tαij – Amount of buffer necessary to ensure a service level of α
for arc (i , j)
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Computational results

Evaluation Procedure

Instances:

I Generated using COSCO service data and the LINERLIB
(Brouer et al. 2013)

I 44 instances with between 6 and 13 vessels (COSCO schedule)

Testing procedure:

1. Solve Phase 1/2/3 deterministic and stochastic models

2. Simulate the optimal solution using the LL3P distribution

3. Analyze the expected performance versus the simulated
performance
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Computational results

Phases 1/2 Simulation Results

Phase 1: Optimization Simulation
Distribution cC cS Total cS |Late| |Late|/|P| Faster Speed

Deterministic 9.7 24.2 61.1 24.9 2.1 27.4 45.4% 16.9
Norm 0.7 11.7 24.5 69.0 17.6 0.7 17.1 11.9% 14.1
Norm 0.9 13.2 24.3 74.3 15.7 0.4 10.1 6.4% 13.4
LL3P 0.7 11.3 24.3 67.1 18.5 0.8 16.6 16.5% 14.6
LL3P 0.9 13.9 24.3 76.9 15.1 0.3 2.8 4.5% 13.2
LL3P 0.95 17.6 24.6 91.3 14.0 0.0 0.1 1.6% 12.7

Phase 2:
Optimization Simulation

Distribution cC cS Total Speed cS |Late| |Late|/|P| Faster Speed

Deterministic 9.9 16.5 54.1 14.01 19.6 1.8 22.0 29.5% 15.1
Norm 0.7 11.8 14.2 58.8 12.92 15.2 0.5 13.4 9.4% 13.3
Norm 0.9 13.2 13.3 63.3 12.56 14.0 0.3 7.1 4.7% 12.8
LL3P 0.7 11.2 15.0 57.6 13.29 16.4 0.6 13.0 12.7% 13.8
LL3P 0.9 13.8 13.2 65.4 12.52 13.5 0.1 1.9 3.0% 12.6
LL3P 0.95 17.3 13.3 78.6 12.48 13.3 0.0 0.1 1.2% 12.5
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Computational results

Phase 3: Demand Carried (Det/LL3P)

Service
Cargo carried (%) Transit inc. (%)

Det 0.7 0.9 0.95 0.7 0.9 0.95

abx 93 86 70 69 11 956 1446
aesa 78 32 22 20 44 102 163
awe1 39 15 14 14 42 107 149
awe2 15 15 15 13 12 -1 35
awe3 19 11 6 6 67 125 192
awe4 31 11 8 8 63 173 278
awe8 11 8 8 2 252 307 422
cen 79 16 7 7 68 90 144
ces 90 47 45 43 161 201 247
ese 70 15 14 10 33 87 98
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Computational results

Sample solutions
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Computational results

Conclusion

I Services can be designed with puncutality guarantees at low
computational cost

I However, the operational costs may be high

I Acceptance from shippers is necessary to implement such
services
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Literature

Literature Overview

Article R
ou
ti
ng

D
is
tr
ib
ut
io
n

Sp
ee
d
op
t.

M
et
ho
d

Wang and Meng (2012) 7 Unif. & Norm. 3(NL) NL stoch. prog.
Wang and Meng (2012) 7 Any Truncated 3(NL) NL stoch. prog.
Qi and Song (2012) 7 Unif./Norm. 3(NL) Sim. stoch. approx.
Song and Dong (2013) 3 7 3(NL) Heuristic Decomp.
Plum et al. (2014) 3 7 7 Branch-Cut-and-Price
Lee et al. (2015) 7 Normal/Any 3(NL) Markov chains
Song et al. (2015) 7 Trunc. Norm. 3(NL) NSGA-II
Reinhardt et al. (2016) 7 7 3(SAX) MILP
Wang and Wang (2016) 7 7 3(NL) P time alg.

This paper 3 log-logistic 3P 3(SAX) MILP

NL = Non-linear; SAX = Secant approximation
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