

Solving the Green Vehicle Routing Problem

Juho Andelmin Enrico Bartolini¹

- Andelmin, J., Bartolini, E. (2017). **An Exact Algorithm for the Green Vehicle Routing Problem**. *Transportation Science*. Advance online publication. <u>http://doi.org/10.1287/trsc.2016.0734</u>
- Andelmin, J., Bartolini, E. A Multi-Start Local Search Heuristic for the Green Vehicle Routing
 Problem Based on a Multigraph Reformulation. Submitted to Computers and Operations Research

¹ RWTH Aachen University School of Business and Economics

Solving the Green Vehicle Routing Problem

04/10/2017

Green Vehicle Routing Problem (G-VRP)

- A fleet of vehicles based at a depot is to serve a set of customers
 - Customers have known service times
 - Vehicles have limited fuel capacity
 - Vehicles can visit refueling stations to refuel
- Objective: Design a set of vehicle routes so that
 - Every customer is served
 - Duration of each route \leq T

Simple example: 9 customers, electric vehicles

Optimal solution with driving range = ∞

Optimal solution with driving range = 200 km

Optimal solution with driving range = 160 km

Refuel paths

Refuel path: a simple path between two customers that visits a subset of refueling stations

- Many refuel paths are dominated
- Example:
 - Green path $i \rightarrow c \rightarrow j$ is dominated by

orange one $i \rightarrow b \rightarrow j$

Multigraph

• We model the G-VRP on a multigraph *G* with one arc for each non-dominated refuel path

Depot

- Customer
- Refueling station

Multi-Start Local Search Heuristic (MSLS)

Three phases

- 1) Iteratively construct new solutions
- 2) Store vehicle routes forming these solutions in a pool \mathcal{R}
- Find a set of routes in \mathcal{R} that gives least cost solution
- Example operators used in phase 1

Exact algorithm

- Set partitioning formulation (SP)
 - Each possible vehicle route serves a subset of customers
 - Find least cost set of routes serving each customer exactly once

(SP) min
$$\sum_{l \in \mathcal{R}} c_l x_l$$

s.t.
$$\sum_{l \in \mathcal{R}} a_{il} x_l = 1 \quad \forall i \in N$$
$$x_l \in \{0,1\} \quad \forall l \in \mathcal{R}$$

cl: cost of route *l*

- x_l : 0-1 variable equal to 1 if route l is in solution
- a_{il} : 0-1 coefficient equal to 1 if route l serves customer i
- \mathcal{R} : index set of all possible vehicle routes
- *N*: set of customers

Phase 1:

- Compute lower bound LB by solving Linear Programming relaxation of SP with Subset Row [4], Weak Subset Row [1], and k-path cuts [6]
- Compute upper bound UB with the MSLS heuristic

Phase 2:

- Enumerate all routes \mathcal{R}^* having reduced cost \leq UB LB
- Solve SP using only the routes in $\mathcal{R}^* \rightarrow$ optimal solution
- If all routes \mathcal{R}^* cannot be enumerated optimality not guaranteed Solving the Green Vehicle Routing Problem

Computational results

- Benchmark problems:
 - 56 instances with 20-500 customers and 3-28 stations
- Heuristic: best new solutions to instances with 111-500 customers
 - Compared to 7 state-of-the-art heuristics [2][3][5][7][8][9]
- Exact algorithm:
 - Instances up to 111 customers 28 stations solved to optimality
 - Best exact from literature [5] solves up to 20 customer instances

Instance name example:	Inst.	Opt	% LB	Time(s)
75c_21s: 75 customers 21 stations	75c_21s	*	0.00	5217
	75c_28s	*	0.00	5582
	100c_21s	*	0.00	5206
(UB - LB)	100c_28s	*	0.00	6531
$\% LB = \left(\frac{\text{UB} - \text{LB}}{\text{UB}}\right) * 100\%$	111c_28s	*	0.13	11265
	200c_21s		0.60	28135
	250c_21s		0.57	27939
	300c_21s		0.84	25903

Optimal solution to 111c_28s

Optimal solution to Distance-constrained CVRP instance CMT6

Optimal solution to Distance-constrained CVRP instance CMT7

Heuristic solution to VRP with satellite facilities instance

References

References

