

Modelling and optimization of polygeneration systems

Risto Lahdelma

Energy systems for communities

Aalto University Otakaari 4, 02150 ESPOO, Finland

Email: risto.lahdelma@aalto.fi Phone: +358 40 503 1030

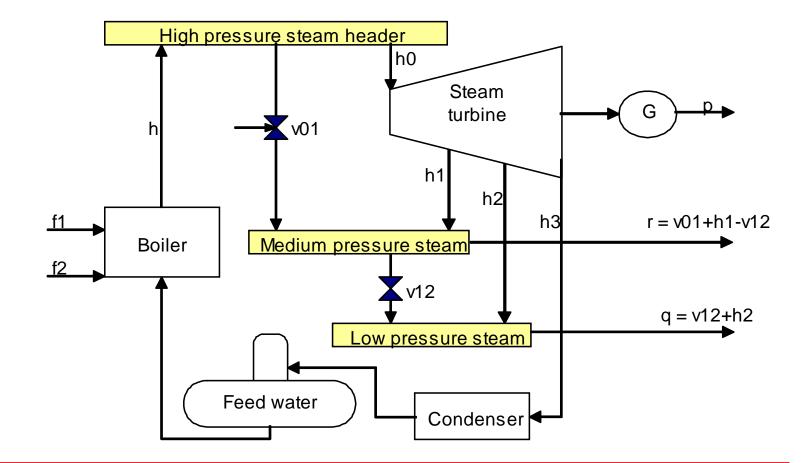
Risto Lahdelma Professor at Aalto University, Finland Energy for communities

Research interests:

mathematical modelling, simulation, optimization, multicriteria decision support, energy systems

Career

- 81-85 Helsinki U Tech, MSc, Systems & Operations Research
- 85-90 Nokia, Software methodology development
- 90-94 Helsinki U Tech, PhD in Applied Mathematics
- 94-97 U Jyväskylä, associate professor in *Maths & SW engineering*
- 97-00 VTT (Tech Res C Finland), professor, *Energy Markets*
- 00-09 U Turku, professor in *Computer Science*
- **Aalto**, professor in *Energy for Communities*, 11-15 *head of dept* • 09-
- Dual affiliation at **Systems Analysis Laboratory** • 17-


Outline of presentation

- Cogeneration
- Long-term planning model
- Efficient reformulation of model
- Efficient solution algorithms
- Reformulating non-convex models
- Experiences
- Selected publications

Cogeneration

- Cogeneration means production of two or more energy products together in an integrated process
 - CHP = combined heat and power generation
 - Trigeneration:
 - district heating + cooling + power
 - high pressure process heat + low pressure heat + power
 - Technologies: backpressure turbines, combined steam&gas turbines, heat pumps ...
 - Much more efficient than producing the products separately
 - Energy efficiency increase 40% -> 90%
 - Cost-efficient way to reduce CO₂ emissions
 - Finland is one of the leading countries in cogeneration

Generic backpressure plant for trigeneration

Cogeneration planning

- Objective is to maximize profit subject to production constraints
- Hourly production of the different products must be planned together
 - Production of heat & cooling must meet the demand (natural monopoly)
 - Power production is planned to maximize the profit from sales to the spot market (liberalized power market)
- A long-term model consists of many hourly models in sequence
 - E.g. an annual model consists of 8760 hourly models
 - Hourly forecasts for demand and power price
- Various advanced analyses, e.g. risk analysis require solving many long-term models based on different scenarios
 - Solution must be fast!

Long-term planning model: Trigeneration

subject to

$$\sum_{u\in U} C_u(x_u)$$

 $Hx^{t} = \begin{bmatrix} P^{t} \\ Q^{t} \\ R^{t} \end{bmatrix} \qquad t \in T \text{ (set of hours)}$ $x_{u} \in X_{u} \begin{bmatrix} R^{t} \end{bmatrix} \qquad \dots = U^{t}$

where

- U is the set of units (plants, contracts, ...)
- x is the vector of all decision variables

Min

- $-x_{ij}$ is the vector of decision variables for plant u
- $-x^{t}$ is the vector of decision variables for hour t
- $C_u(x_u)$ it the production cost function for plant u
- $-X_{ii}$ represent plant-specific constraints
- H is a transmission matrix
- P^{t} , Q^{t} , R^{t} are the hourly demands for the three commodities

Decomposition into hourly models

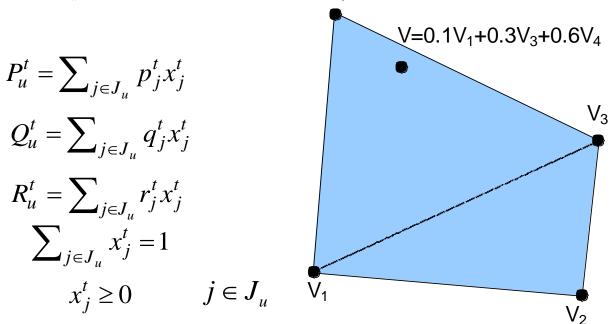
The long-term model can be decomposed into hourly models

$$\operatorname{Ain} \qquad \sum_{u \in U} C_u^t(x_u^t)$$

$$Hx^{t} = \begin{bmatrix} P^{t} \\ Q^{t} \\ R^{t} \end{bmatrix}$$
$$x_{u}^{t} \in X_{u}^{t}$$

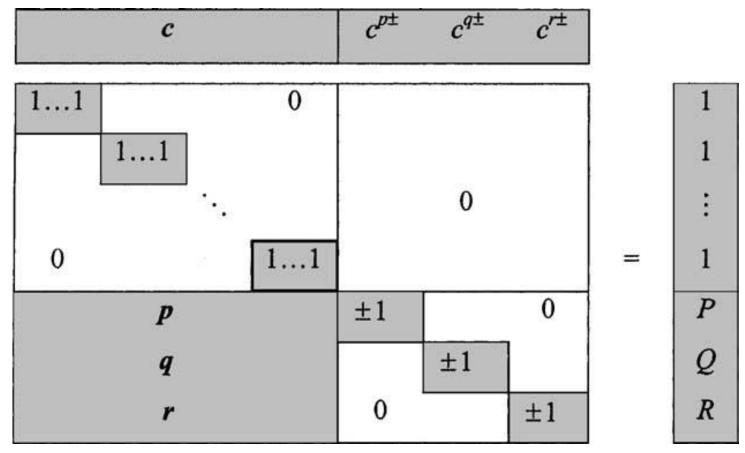
u∈U

- The necessary decomposition and co-ordination techniques depend on what kind of dynamic constraints are present
 - Without dynamic constraints, decomposition is trivial
- Traditionally, the hourly model is a general LP/MILP model


Ν

Efficient model reformulation

• The idea is to encode the operating area of each plant as a convex combination of extreme characteristic points $(c_j^t, p_j^t, q_j^t, r_j^t)$


 $\min \quad C_u^t = \sum_{j \in J_u} c_j^t x_j^t$

subject to

 V_4

Structure of reformulated trigeneration model

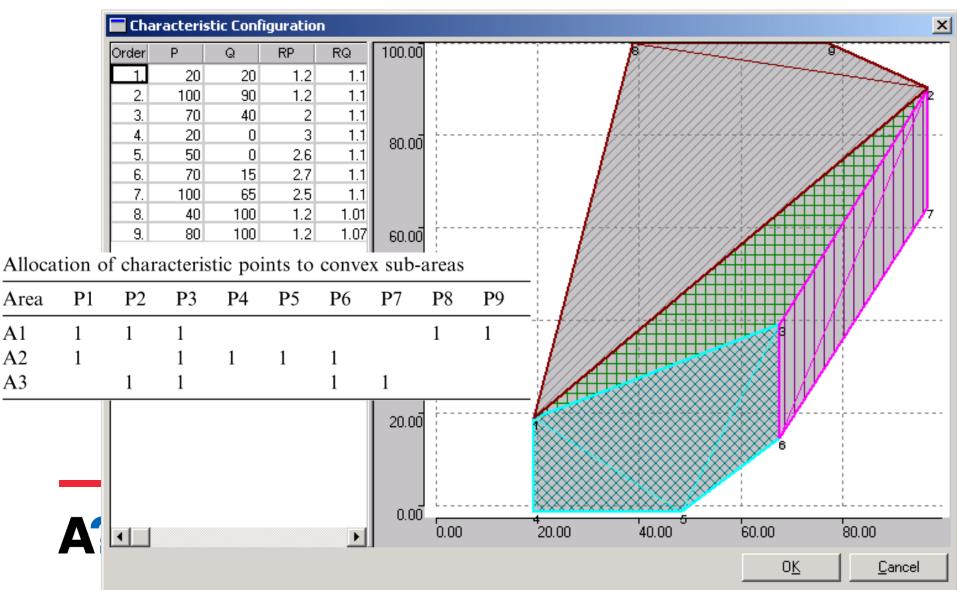
Solving the reformulated model

- The reformulated model is an LP (or MILP) model with a special structure
 - The special structure allows the model to be solved extremely efficiently using tailored algorithms
 - Power Simplex (PS) for CHP (two-generation) models
 - Extended Power Simplex (EPS) for multi-site CHP problems
 - Three Commodity Simplex (TCS) for trigeneration problems
 - On-line and off-line envelope construction algorithms (ECON, ECOFF) for CHP problems under the liberalized market
 - The specialized algorithms can be 20-2000 times faster than generic commercial LP algorithms, such as CPLEX
 - Speed is comparable to specialized network algorithms

Speed of different algorithms

- CHP planning against power market
 - Test models (A1-A6)
 - 3 to 8 convex plants
 - Yearly (8760 h) planning models without dynamic constraints
 - Constraints: 43 800 to 87 600, variables: 420 480 to 1 077 480
 - Solution time on a 2.2 GHz Pentium 4 PC
 - Speedup against CPLEX: 400 to 2300 times

CPU (ms)	From scratch				Reusing previous results			
Model	CPLEX	PS	ECON	ECOFF	CPLEX	PS	ECON	ECOFF
A1	22548	127	30	13	24136	44	25	10
A2	24638	191	47	21	29937	52	36	10
A3	30373	191	60	27	34967	60	49	16
A4	33410	260	75	37	38090	77	60	20
A5	37134	315	88	40	46619	80	66	21
A6	40933	403	105	50	51797	96	78	24
Average	31506	247	68	31	37591	68	52	17



Non-convex CHP model

- Can be formulated as a Mixed Integer Linear Programming (MILP) model
- Necessary when either (or both)
 - The cost function is non-convex
 - P-Q the characteristic is non-convex
- Idea
 - Partition the objective function into convex parts
 - Partition the characteristic into convex parts
 - Use **binary variables** to choose in which area to operate
 - A binary variable can only have value 0 or 1

Sample non-convex cogeneration model

Non-convex cogeneration model

 Characteristic is partitioned into 3 convex parts

Allocation of characteristic points to convex sub-areas **P**1 **P**2 P3 P5 P6 **P**8 P9 Area P4 **P**7 A1 1 1 1 1 A2 1 1 1 1 A3 1 1 1 1

- A_i is set of areas to which x_i belongs
- Define zero-one variables y1, y2, y3, and allow exactly one of them to have value 1.
- y-variables select which corner points are allowed in convex combination
- U* is set of non-convex plants

niversity of Engineering

R. Lahdelma

$$x_j \leqslant \sum_{a \in A_j} y_a, \quad j \in J_u, \quad u \in U^*,$$

$$\sum_{a\in A_u} y_a = 1, \quad u\in U^*,$$

 $y_a \in \{0,1\}, \quad a \in A_u, \quad u \in U^*.$

Experiences

- Experiments with other plant models have showed that the number of extreme points typically varies
 - from 10 to 70 for trigeneration plants
 - from 5 to 20 for CHP plants
- This number of extreme points is very reasonable
- The method works well in the case of 1, 2 or 3 commodities
- In more complex models the combinatorial explosion may become a problem
- Similary, the method can handle efficiently only a fairly small number of 0/1 variables.

10.12.2015 CHP/Polygeneration Modelling and optimization

Selected publications

- Lahdelma R., Hakonen H., 2003. An efficient linear programming algorithm for combined heat and power production. *European Journal of Operational Research* 148(1), 141-151.
- Makkonen S., Lahdelma R., 2006. Non-convex power plant modelling in energy optimization. European Journal of Operational Research 171(3), 1113-1126.
- Makkonen Ś., Lahdelma R., Ásell A.-M., Jokinen A., 2003. Multi-criteria decision support in the liberalized energy market. *Journal of Multi-Criteria Decision Analysis* 12(1), 27-42.
- Rong A., Figueira J., Lahdelma R., 2014. An efficient algorithm for bi-objective combined heat and power production planning under the emission trading scheme. *Energy Conversion and Management* 88, 525-534.
- Rong A., Figueira J., Lahdelma R., 2015. A two phase approach for the bi-objective non-convex combined heat and power production planning problem. *European Journal of Operational Research* 245, 296-308.
- Rong A., Hakonen H., Lahdelma R., 2006. An efficient linear model and optimization algorithm for multi-site combined heat and power production. *European Journal of Operational Research* 168(2), 612-632.
- Rong A., Hakonen H., Lahdelma R., 2008. A variant of the dynamic programming algorithm for unit commitment of combined heat and power systems. *European Journal of Operational Research* 190(3), 741-755.
- Rong A., Hakonen H., Lahdelma R., 2009. A dynamic regrouping based sequential dynamic programming algorithm for unit commitment of combined heat and power systems. *Energy Conversion and Management* 50(4), 1108-1115.
- Rong A., Lahdelma R., Grunow M., 2009. An improved unit decommitment algorithm for combined heat and power systems. *European Journal of Operational Research* 195(2), 552-562.

Selected publications

- Rong A., Lahdelma R., Luh P., 2008. Lagrangian relaxation based algorithm for trigeneration planning with storages. *European Journal of Operational Research* 188(1), 240-257.
- Rong A., Lahdelma R., 2005. An efficient linear programming model and optimization algorithm for trigeneration. *Applied Energy* 82(1), 40-63.
- Rong A., Lahdelma R., 2007. An effective heuristic for combined heat and power production planning with power ramp constraints. *Applied Energy* 84(3), 307-325.
- Rong A., Lahdelma R., 2007. CO2 emissions trading planning in combined heat and power production via multi-period stochastic optimization. *European Journal of Operational Research* 176(3), 1874-1895.
- Rong A., Lahdelma R., 2007. Efficient algorithms for combined heat and power production planning under the deregulated electricity market. *European Journal of Operational Research* 176(2), 1219-1245.
- Rong A., Lahdelma R., 2007. An efficient envelope-based Branch and Bound algorithm for nonconvex combined heat and power production planning. *European Journal of Operational Research* 183(1), 412-431.
- Wang H., Lahdelma R., Abdollahi E., Jiao W., Zhou Z., 2015. Modelling and optimization of the smart hybrid renewable energy for communities (SHREC). Renewable Energy.

10.12.2015 CHP/Polygeneration Modelling and optimization