

A Robust Optimisation Approach for Stable Linear Regression (thesis presentation) Veera Wilkki 16.6.2023

Instructor: *Paula Weller* Supervisor: *Fabricio Oliveira*

Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki oikeudet pidätetään.

Background: training linear regression models

 Linear regression: method used to model the linear relationship between a dependent variable and one or more independent variables by fitting a linear equation to the observed data

Background: training linear regression models

- Usually trained by assigning data to training and validation sets randomly
 - 1. Choose a random subset as the testing set
 - 2. Split the rest of the data into a training set and a validation set
 - 3. Test the final accuracy of the model using the held out testing set

Training linear regression models using robust optimisation

 Instead of splitting data randomly, this step can be integrated into the optimisation problem directly as presented in Bertsimas and Paskov (2020):

$$\begin{split} \min_{\beta} \max_{z \in \mathcal{Z}} \sum_{i=1}^{n} z_{i} |y_{i} - x_{i}^{T}\beta| + \lambda \sum_{i=1}^{p} \Gamma(\beta_{i}) \\ \text{with} \quad \mathcal{Z} = \left\{ z : \sum_{i=1}^{n} z_{i} = k, \quad z_{i} \in \{0, 1\} \right\} \end{split}$$

where z_i is an indicator variable, indicating which point (x_i, y_i) belongs to the training set and which to the validation set, λ is a regularisation parameter, $\Gamma(\cdot)$ is the regularisation function and k represents the desired proportion between the size of the training and validation sets

Experimental setup

- Aim is to examine predictive ability and runtime when training linear regression models using the robust approach vs. the regular randomised approach with two regularisation methods: Lasso and Ridge
- Predictive ability is examined through the mean squared error (MSE)
- Testing is conducted using three functions created in Julia:
 - The first function performs training using robust approach
 - The second function performs training using randomised approach
 - The third function uses one of the previous two to train regression models 500 times using a different testing set each time. The function then uses these testing sets to calculate MSE values.

Datasets

- Tests are performed using two datasets from the UCI Machine Learning Repository:
 - 1. Red Wine Quality (1599 data points)
 - 2. White Wine Quality (4898 data points)
- Both have 12 variables: fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total sulfur dioxide, density, pH, sulphates, alcohol and quality
- Aim is to use linear regression to predict the value of the last variable, i.e. the quality score of a wine (integer between 0 and 10), based on the remaining variables

Results: predictive ability for red wine

Results: predictive ability for white wine

Results: runtimes for red wine

Red Wine: runtimes

Results: runtimes for white wine

White Wine: runtimes

Conclusions

- The results demonstrate that:
 - predictive ability is improved using the robust approach
 - using the robust approach leads to significantly shorter runtimes compared to the randomised approach with 5-fold cross validation
 - Very useful as training is not often performed without cross validation
- In addition to these benefits proven through testing, using the robust approach also allows for the identification of the "hardest subpopulation" as previously explained
- This robust approach could possibly become the new default method for training linear regression models

References

Bertsimas, D., & Paskov, I. (2020). Stable regression: On the power of optimization over randomization in training regression problems. *The Journal of Machine Learning Research*, *21*(1), 9374-9398.

