

Integer programming formulations for exam hall allocation

(Topic presentation)

Reetta Leinonen

13.6.2025

Advisor: *Topias Terho* Supervisor: *Philine Schiewe*

Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki oikeudet pidätetään.

Background

- During exam weeks, a large number of students must be assigned to seats in exam halls
- Poor allocation increases cost (hall reservations, exam supervisors)
- Currently, the allocation is done manually \rightarrow opportunity for optimization

Objectives

- Develop an integer programming (IP) model for exam hall allocation
- Implement the IP formulation using Python and a suitable optimization solver
- Assign each student in a course to some exam hall while minimizing hall reservation and supervision costs
- Test the implementation on anonymized datasets from past exam weeks

Constraints

- Core constraint:
 - Seat capacity of each exam hall
- Additional constraints:
 - Students in the same exam must not be split across too many halls
 - Maintain spacing between students taking the same exam
 - Reserve buffer capacity for unexpected students

Scope

- Focus on the exam hall allocation problem (not scheduling exam times)
- Starting with just the core constraints

Tools

- Python and PyOptInterface package for writing the model
- Gurobi as the underlying solver
- Pandas for reading and preprocessing Excel files

Data sources

- Anonymized student registeration data from mathematics exams (periods 1 & 2, 2024) in Excel format
- Hall capacities, layout data (seats in each row) and pricing in Excel format

Data overview

Table 1: Overview of mathematics exam registration data for periods 1 and 2 in 2024

				Perio	od 1					
Date	14.10.2024	14.10.2024	15.10.2024	16.10.2024	17.10.2024					Total
Time	9:00-12:00	13:00-16:00	16:30-19:30	16:30-19:30	9:00-12:00					
Total registrations	322	609	633	1139	621					3324
Unique course codes	5	2	2	5	3					17
				Perio	od 2					
Date	02.12.2024	03.12.2024	03.12.2024	05.12.2024	09.12.2024	10.12.2024	11.12.2024	12.12.2024	12.12.2024	Total
Time	9:00-12:00	9:00-12:00	16:30-19:30	9:00-12:00	9:00-12:00	9:00-12:00	9:00-12:00	9:00-12:00	16:30-19:30	
Total registrations	984	100	1180	938	292	208	288	406	149	4545
Unique course codes	7	3	5	7	7	2	2	5	2	40

Bin packing problem

The problem is related to the bin packing problem where items (here student groups) must be packed into bins (exam halls)

Let:

- $y_i \in \{0, 1\}$ be 1 if bin *i* is used, 0 otherwise
- $x_{ij} \in \{0, 1\}$ be 1 if item j is assigned to bin i, 0 otherwise

Given:

- n items, each with weight w_j
- n bins, each with capacity c

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^{n} y_i \\ \text{subject to} & \sum_{j=1}^{n} w_j x_{ij} \leq c y_i \qquad \forall i = 1, \dots, n \quad (\text{bin capacity constraint}) \\ & \sum_{i=1}^{n} x_{ij} = 1 \qquad \quad \forall j = 1, \dots, n \quad (\text{each item assigned to exactly one bin}) \end{array}$$

(Martello and Toth, 1990)

Schedule

- 13/06/2025 Topic presentation
- 06-07/2025 Literature review, formulating the problem, building the model
- 07-08/2025 Writing the thesis
- 08/2025 Thesis presentation

References

 Martello, S. and Toth, P. (1990). *Bin-packing problem*. In: *Knapsack problems: Algorithms and computer implementations*.

