

Computational performance of the GPUaccelerated LP-solver cuPDLP-C

Pyry Ruotsalainen 25.10.2024

Advisor: Olli Herrala Supervisor: Fabricio Oliveira

Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki oikeudet pidätetään.

Background – computational challenges in LP-solvers

- **Computational time** of large-scale linear and stochastic optimisation problems can be significant and impractical.
- Solution time **increases** as problem size **increases**
 - 90000 constraints, 70000 variables: 9 seconds
 - 7 million constraints, 39 million variables: 509 seconds
- Sample of Mittelmann benchmarks:

	Solvers									
Problem	CLP	Gurob	COPT	MDOPT	OPTV	MOSEK	HiGHS	GLOP	SPLX	XOPT
neos-3025225	663	20	11	20	17	9	94	96	430	65
neos5052403	188	4	4	2	4	4	24	370	298	15
neos5251015	249	4	3	1	1	6	151	99	3288	36
irish-e	297	3	5	17	5	5	21	t	440	15

Background – efficient solvers and parallelization

- Three well-studied algorithms behind the LP-solvers:
 - Simplex-based methods
 - Interior point method
 - First-order methods, for example PDLP
- Performance improvements by **CPU-parallelism**

Background – PDLP-method and cuPDLP-C solver

- Simplex and interior point methods:
 - Solving sparse linear systems computational bottleneck
 - GPUs not optimal for solving sparse linear systems
- PDLP-method:
 - Matrix-vector multiplication computational bottleneck
 - Modern GPU infrastructures designed for that bottleneck
- Only PDLP-method has potential for the GPU-parallelism
 - Open source design for GPUs: cuPDLP developed by HiGHS

Objective

- Evaluate computational performance of the GPU accelerated LP-solver cuPDLP-C with big reference problems of different sizes.
- Evaluate and compare the computational performance with reference solvers.
 - Replicating Mittelmann benchmarks for cuPDLP, and CPU parallelized version of simplex and interior point method based HiGHS solvers.
- Recognize possible strengths and weaknesses of cuPDLP-C solver analysing solver competitiveness and problem types.

Tools

- Triton (Aalto high-performance computing cluster) used for running calculations using CPUs and GPUs
- cuPDLP-C open source solver used for solving LPs on GPUs using the first-order algorithm
- HiGHS open source solver used for the CPU versions
- Mittelmann benchmarks used as a basis for the reference problems (https://plato.asu.edu/ftp/lpopt.html)

Method

- 27 different problems run from the Mittelmann's reference studies
- For each problem, cuPDLP-C computational performance analyzed by using two GPU options from the Triton: NVIDIA h100 and NVIDIA v100
- As a reference, each problem solved by HiGHS solver based on simplex or interior point method

Results

Main findings:

- cuPDLP-C is competitive against best solver in Mittelmann studies
- Solution found for 25 of 27 problem
- For 17 out of 27 problem, cuPDLP-C (NVIDIA h100) was more efficient than best reference solver in Mittelmann's studies

Main findings:

- Some problems performs particularly well
- However, for some problems solver time exceeded (no point in the figure)
 - Problems with efficiency ratio higher than 5 not in the figure

Results

Main findings:

- NVIDIA h100 more efficient underlying hardware than NVIDIA v100
- For some problems, NVIDIA h100 performs significantly better
- On the other hand, for some problem different is not so outstanding

Results

Main findings:

 Sparsity (ratio of the nonzero elements and all elements in coefficient matrix) does not explain relative performance of the solver

References

- Huangfu, Q. and Hall J. A. J, 2018, *Parallelizing the dual revised simplex method*, Mathematical Programming Computation, 10 (1), 119-142. DOI: <u>10.1007/s12532-017-0130-5</u>
- Lu, H. and Yang, J. 2024, cuPDLP.jl: A GPU Implementation of Restarted Primal-Dual Hybrid Gradient for Linear Programming in Julia, <u>https://arxiv.org/abs/2311.12180</u>
- Koch, T., Berthold, T., Pedersen, J. and Vanaret, C., 2022, *Progress in mathematical programming solvers from 2001 to* 2020, EURO Journal on Computational Optimization, 10 (2022) 10003
- CuPDLP-C: <u>https://github.com/COPT-Public/cuPDLP-C</u>

