
Computational performance of the GPU-

accelerated LP-solver cuPDLP-C

Pyry Ruotsalainen

25.10.2024

Advisor: Olli Herrala

Supervisor: Fabricio Oliveira
Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki oikeudet pidätetään.

Background – computational challenges

in LP-solvers

• Computational time of large-scale linear and stochastic

optimisation problems can be significant and impractical.

• Solution time increases as problem size increases

– 90000 constraints, 70000 variables: 9 seconds

– 7 million constraints, 39 million variables: 509 seconds

• Sample of Mittelmann benchmarks:

Background – efficient solvers and

parallelization

• Three well-studied algorithms behind the LP-solvers:

– Simplex-based methods

– Interior point method

– First-order methods, for example PDLP

• Performance improvements by CPU-parallelism

Background – PDLP-method and

cuPDLP-C solver

• Simplex and interior point methods:

– Solving sparse linear systems computational bottleneck

– GPUs not optimal for solving sparse linear systems

• PDLP-method:

– Matrix-vector multiplication computational bottleneck

– Modern GPU infrastructures designed for that bottleneck

• Only PDLP-method has potential for the GPU-parallelism

– Open source design for GPUs: cuPDLP developed by HiGHS

Objective

• Evaluate computational performance of the GPU

accelerated LP-solver cuPDLP-C with big reference

problems of different sizes.

• Evaluate and compare the computational performance

with reference solvers.

- Replicating Mittelmann benchmarks for cuPDLP, and CPU

parallelized version of simplex and interior point method based

HiGHS solvers.

• Recognize possible strengths and weaknesses of

cuPDLP-C solver analysing solver competitiveness and

problem types.

Tools

• Triton (Aalto high-performance computing cluster) used

for running calculations using CPUs and GPUs

• cuPDLP-C open source solver used for solving LPs on
GPUs using the first-order algorithm

• HiGHS open source solver used for the CPU versions

• Mittelmann benchmarks used as a basis for the

reference problems (https://plato.asu.edu/ftp/lpopt.html)

Method

• 27 different problems run from the Mittelmann's

reference studies

• For each problem, cuPDLP-C computational

performance analyzed by using two GPU options from

the Triton: NVIDIA h100 and NVIDIA v100

• As a reference, each problem solved by HiGHS solver

based on simplex or interior point method

Results

Main findings:

- cuPDLP-C is competitive against

best solver in Mittelmann studies

- Solution found for 25 of 27

problem

- For 17 out of 27 problem, cuPDLP-
C (NVIDIA h100) was more

efficient than best reference

solver in Mittelmann's studies

Results

Main findings:

- Some problems performs

particularly well

- However, for some problems

solver time exceeded (no point in

the figure)

- Problems with efficiency ratio

higher than 5 not in the figure

Results

Main findings:

- NVIDIA h100 more efficient

underlying hardware than NVIDIA
v100

- For some problems, NVIDIA h100

performs significantly better

- On the other hand, for some

problem different is not so

outstanding

Results

Main findings:

- Sparsity (ratio of the nonzero

elements and all elements in
coefficient matrix) does not

explain relative performance of

the solver

References

• Huangfu, Q. and Hall J. A. J, 2018, Parallelizing the

dual revised simplex method, Mathematical Programming

Computation, 10 (1), 119-142. DOI: 10.1007/s12532-017-0130-5

• Lu, H. and Yang, J. 2024, cuPDLP.jl: A GPU Implementation of

Restarted Primal-Dual Hybrid Gradient for Linear Programming in

Julia, https://arxiv.org/abs/2311.12180

• Koch, T., Berthold, T., Pedersen, J. and Vanaret, C.,

2022, Progress in mathematical programming solvers from 2001 to

2020, EURO Journal on Computational Optimization, 10 (2022)

10003

• CuPDLP-C: https://github.com/COPT-Public/cuPDLP-C

https://link.springer.com/article/10.1007/s12532-017-0130-5
https://arxiv.org/abs/2311.12180
https://github.com/COPT-Public/cuPDLP-C

	Slide 1: Computational performance of the GPU-accelerated LP-solver cuPDLP-C
	Slide 2: Background – computational challenges in LP-solvers
	Slide 3: Background – efficient solvers and parallelization
	Slide 4: Background – PDLP-method and cuPDLP-C solver
	Slide 5: Objective
	Slide 6: Tools
	Slide 7: Method
	Slide 8: Results
	Slide 9: Results
	Slide 10: Results
	Slide 11: Results
	Slide 12: References

