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Goals & scope

• Superconductivity = total loss of electrical resistance in a 

material

• Goal: building a neural network model able to recognise 

unconventional (topological) superconductivity from real 

space conductance measurements

• Requires a significant amount of features (inputs) and 

data points 
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Recap: Superconductivity

• Superconducting can happen when electrons pass through the lattice 

of a metal

– The vibrations of ions in a lattice cause an attractive interaction between electrons

– Vibrations are waves, and quanta of these vibrations are quasi-particles

• Conventional superconductivity: phonons

• Unconventional superconductivity: phonons or other quasi-particles 

• A superconducting state is described through Cooper pairs
• The attractive interaction between electrons causes a paired state of electrons 

to have energy lower than the Fermi energy

→ bound state of a pair of electrons
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Recap: Mathematical representation of 

superconductivity

• c´ns
†

 and  cns are the creation 

and annihilation operators, 

respectively

• tij represents hopping 

between sites i and j (kinetic 

energy gained or lost)

• U is the interaction term, with 

U<0 for superconductivity
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Background: topological superconductivity

• Unconventional superconductors with unique and stable 

quantum properties

• Protected by the material's shape and structure 

(topology) at a microscopic level

– able to carry information without losing it due to noise

– potential candidates for robust quantum computing applications

• A conventional s-wave superconductor can be turned 

into a topological superconductor by introducing an 

exchange field and Rashba spin-orbit coupling (SOC)

• 𝐽𝑧 is the exchange coupling

• 𝜎 are spin Pauli matrices

• 𝜆𝑅 is Rashba spin-orbit 

coupling (SOC)
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Recap: Measuring Superconductivity

– Called the density of states (DOS) of the system
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• The Hamiltonian is defined as 

 

    where

• A set of Hamiltonians is created with different Δ, 𝐽𝑧 , 𝜆𝑅
values using Python-library pyqula

– 𝚫, 𝑱𝒛, 𝝀𝑹 are the outputs of the model

Simulating a topological superconductor

• 𝜇 is the chemical potential 

energy
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• DOS is computed for each site of each Hamiltonian

– Results in DOS values in the amount of n.o. sites in system 

multiplied by the n.o. energies the DOS is measured for

– DOS values are the inputs of the model

Simulating a topological superconductor
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Neural network models

• DOS values as input • PCs as input
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RESULTS
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10 site system
No data compression: input space of size 2500, 

10 000 Hamiltonians, 20/80 split
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10 site system
No data compression: input space of size 2500, 

20 000 Hamiltonians, 20/80 split
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10 site system
Data compression using PCA: input space reduced to 900, 

20 000 Hamiltonians, 20/80 split
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30 site system
No data compression: input space of size 7500,

40 000 Hamiltonians 20/80 split
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30 site system
Data compression using PCA: input space reduced to 1500,

40 000 Hamiltonians, 20/80 split
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Results

• It is possible to train a NN model to recognise 

superconductivity and electron pairing from real-

space conductance (DOS) measurements

• PCA can be used to reduce dimensionality and obtain 

accurate results faster, but not necessarily to improve 

results

• A bigger dataset with more training examples could 

improve the results further, but simulating the data and 

training the model gets more computationally 

demanding as the input space grows
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