The impacts of correlated supplier disruptions in supply networks Petteri Koskiahde 29.08.2024 Instructor: Joaquín de la Barra Supervisor: Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki oikeudet pidätetään. ## **Table of contents** - Introduction - Objective - Methodology - Results - Discussion ## Introduction - Supply network is the network through which a company gets and delivers goods and services - Supply chains are strategically important - Disruptions in a supply network are events that can prevent a company from operating - Events such as earthquakes (Käki et al., 2015) and floods (Kim et al., 2015) might cause a disruption - What happens if the disruptions are correlated? Figure 1: An example of a supply network (Käki et al., 2015). #### **Elements of a supply network in our study** #### Node An entity in a supply network (e.g. A company). #### Arc A connection between nodes in the supply network (e.g. A connection between companies) # **Objective** Examine how the correlation between the disruptions of two suppliers impact the disruption probability of a focal company # Methodology Probabilistic Risk Assessment (PRA) - approach Failures and their probabilities are estimated quantitatively (Stamatelatos, 2000) #### Bayesian networks - The supply network is modelled as a Bayesian network - The disruption probability of node *i* in Figure 2 $$F_i = \alpha_i + \alpha_j \beta_{i|j} (1 - \alpha_i)$$ In larger networks, this disruption probability is more difficult to derive Figure 2: A simple supply network (Käki et al., 2015). # Methodology - Monte Carlo Simulation - The binary state X of each node is generated from the binomial distribution - From these states, the state of the focal node is derived $$X_1 = \max(X_2 \cdot X_{1|2}, X_3 \cdot X_{1|3}, \text{Internal state of node 1})$$ - The network state is sampled 100 000 times in each simulation - Correlation - Pearson correlation coefficient between the states of the correlated nodes is calculated Figure 3: A supply network with three nodes and two arcs (Käki et al., 2015). #### **Binary states** State X_i = 0 Node i is operational State $X_i = 1$ Node *i* is disrupted # Methodology - Implementation of correlation - An auxiliary node s and auxiliary arcs from node s to nodes 6 and 7 are added to network - Node s is connected to nodes 6 and 7 via conditional probabilities: $$F_6 = P(6|s)P(s) + P(6|\bar{s})P(\bar{s})$$ $F_7 = P(7|s)P(s) + P(7|\bar{s})P(\bar{s})$ - This sets up the correlation between disruptions of nodes 6 and 7 - Parameter modification - Parameters F₆, F₇, β_{4|7} and β_{4|6} are modified to determine for which parameter values the correlation has impact on the disruption probability of focal node C Figure 4: Network used in our simulations (Käki et al., 2015). ## Simulation results Figure 5: Disruption probability of focal node C as a function of the correlation between disruptions of nodes 6 and 7 with different parameters α and β . #### Parameters α and β The higher the α or the β , the higher the F_C #### **Impact of correlation** When the value of parameter β is high, F_C decreases as the correlation increases ## Simulation results | | α = 0.2 | | | α = 0.5 | | | α = 0.8 | | | |------------------------------|---------|---------|---------|---------|---------|----------|---------|---------|---------| | β | 0.2 | 0.5 | 0.8 | 0.2 | 0.5 | 0.8 | 0.2 | 0.5 | 0.8 | | High correlation | 0.875 | 0.877 | 0.880 | 0.800 | 0.799 | 0.802 | 0.874 | 0.876 | 0.877 | | Low correlation | -0.250 | -0.249 | -0.250 | -0.800 | -0.802 | -0.799 | -0.250 | -0.251 | -0.250 | | F_C with high correlation | 0.311 | 0.338 | 0.353 | 0.346 | 0.419 | 0.455 | 0.380 | 0.489 | 0.547 | | F_C with low correlation | 0.312 | 0.351 | 0.392 | 0.349 | 0.449 | 0.545 | 0.383 | 0.505 | 0.590 | | Difference of F_C | -0.001 | -0.013 | -0.039 | -0.004 | -0.031 | -0.090 | -0.004 | -0.015 | -0.042 | | Relative difference of F_C | -0.36 % | -3.65 % | -9.95 % | -1.01 % | -6.80 % | -16.52 % | -0.94 % | -3.02 % | -7.18 % | Table 1: Simulation values of FC with high and low correlations with different parameter values. #### What do the results imply? 1 When the probability for the disruption propagation from the nodes facing correlated disruptions (β) is high, the higher the correlation between disruptive events is, the lower the probability of disruption of the focal node C. 2 When the probability for the disruption propagation from the nodes facing correlated disruptions (β) or disruption probability of these nodes (α) increases, the disruption probability of the focal node C increases. ## **Discussion** #### Restrictions for our model and results # Propagation of disruptions - Disruption propagation from only one parent node is sufficient to disrupt the child node - Disruptions can propagate only from parent nodes to child nodes # Size of the network Supply networks are typically large (Käki et al., 2015) ## Correlated nodes - These nodes were at the same position in the network - Only two correlated nodes were considered #### What should be studied next? - Different structures for the propagation of disruptions - More than two correlated nodes in the network ## References - Anssi Käki, Ahti Salo, and Srinivas Talluri. Disruptions In Supply Networks: A Probabilistic Risk Assessment Approach. Journal of Business Logistics, 36(3):273–287, 2015. - Yusoon Kim, Yi-Su Chen, and Kevin Linderman. Supply Network Disruption And Resilience: A Network Structural Perspective. Journal of Operations Management, 33:43–59, 2015. - Michael Stamatelatos. Probabilistic Risk Assessment: What Is It And Why Is It Worth Performing It. NASA Office of Safety and Mission Assurance, 4(05):00, 2000. ## **Annex** - When the value of parameter α is high or low (e.g. 0.2 or 0.8), the correlation cannot be very negative - E.g. when α = 0.2, the nodes facing correlated disruptions are disrupted in around 20% of the network states - High negative correlation requires that the states differ in many network states - Even though disrupted states occurred in different network states, there would be around 60% of the network states, where these states are the same | State | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |-----------------------|---|---|---|---|---|---|---|---|---|----| | <i>X</i> ₆ | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | X_7 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | Table 2: Example of the possible states of nodes 6 and 7 when $\alpha = 0.2$.