

Impacts of correlated supplier disruptions in supply networks (topic presentation)

Petteri Koskiahde

1.11.2023

Instructor: *Joaquín de la Barra* Supervisor: *Ahti Salo*

Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki oikeudet pidätetään.

Table of contents

- Background
- Objectives
- Methods and tools
- Assumptions
- Schedule
- References

Background - Supply networks

- Strategically important
- Concept has evolved from supply chains to supply networks (Kim & Choi & Yan & Dooley, 2011)
- "Supply networks have become more complex..." (Käki & Salo & Talluri, 2015)

Figure 1: Example of a random network from Käki & Salo, &Talluri (2015)

Disruptions in supply networks

- There are many approaches to model risks in a supply network
- We use probabilistic risk assessment (PRA)
 - Adapted from Käki & Salo & Talluri (2015)
- Disruptions in the supply network may be correlated
 - This is not covered in Käki & Salo & Talluri (2015)

Objectives of the thesis

- Model the supply network as a Bayesian network
- Assess risk via simulations
 - With and without correlation
- Calculate relevant metrics from the simulations
 - Relate results to the approach in Käki & Salo & Talluri (2015)

Bayesian network

- Supply network as a Bayesian network
- Examples:

Figure 2: Simple networks and suppliers' disruption probabilities in Käki & Salo & Talluri (2015)

Methods and tools - Metrics

• Supplier Fortification Impact

 $\begin{aligned} SF_I(n) &= \{F_c - F_c(\sim n): \ F_c(\sim n) = The \ total \ risk \ with \ \alpha_n \\ &= \beta_{n|i} = 0 \forall i \ parent \ of \ n \} \end{aligned}$

• Supplier Disruption Impact

 $SD_{I}(n) = \{F_{c}(n) - F_{c}: F_{c}(n) = The \ total \ risk \ with \ \alpha_{n} = 1\}$

Methods and tools

- Excel
 - · Construct the Bayesian model
- Matlab
 - Solve the model by simulation approach
 - Perform Monte Carlo simulations

State	fk	-	fi	fi	1		ai	ai	bik	bik	bci	bci
Disturbed		0.1	0.103	0.0975			0.08	-, 0.05	0.25	. 0.5	0.5	
Not disturbed		0.9	0.897	0.9025			0,00	0.95	0.75	0,5	0,5	0.5
		-										
	n	_	k	i	i	P(n)						
		1	not X	not X	not X	(1-Fk)(1-Fi)(1-Fi)					
		2	x	not X	not X	(Fk)(1-Fi)(1-Fj)	ſ					
		3	not X	x	not X	(1-Fk)(Fi)(1-Fj)						
		4	not X	not X	x	(1-Fk)(1-Fi)(Fj)						
		5	x	x	not X	(Fk)(Fi)(1-Fj)						
		6	not X	х	x	(1-Fk)(Fi)(Fj)						
		7	x	not X	x	(Fk)(1-Fi)(Fj)						
		8	X	х	x	(Fk)(Fi)(Fj)						
	n		k	i	j	P(n)	P(C if n)	P(n)*P(C if n)				
		1	0,9	0,897	0,9025	0,72858825	0,05	0,036429413				
		2	0,1	0,897	0,9025	0,08095425	0,05	0,004047713				
		3	0,9	0,103	0,9025	0,08366175	0,525	0,043922419				
		- 4	0,9	0,897	0,0975	0,07871175	0,525	0,041323669				
		5	0,1	0,103	0,9025	0,00929575	0,525	0,004880269				
		6	0,9	0,103	0,0975	0,00903825	0,7625	0,006891666				
		7	0,1	0,897	0,0975	0,00874575	0,525	0,004591519				
		8	0,1	0,103	0,0975	0,00100425	0,7625	0,000765741				
	_	_			Sum of P(n) over	1	Fc	0,142852406				
	Calculated manually by changing the constants											
			Current	In the paper	Difference							
	SF(i)	-	0,04654	0,044	0,002539906							
	SF(I)		0,04392	0,042	0,001927406							
	CC(L)		0.02205	0.02	0.002052406							

Figure 3: Screenshot from Excel model for Bayesian network

Assumptions

- Each node has two possible states: disturbed or operational
 - Simplifies the model
- Distuptions can propagate only downstream
- Small networks
 - Supports the generation of insights

Schedule

- Literature review 09/2023
- Presentation 1.11.2023
- Performing simulations and writing the thesis 10/2023-12/2023
- Thesis ready 12/2023

References

- Anssi Käki, Ahti Salo, Srinivas Talluri, "Disruptions in Supply Networks: A Probabilistic Risk Assessment Approach", Journal of Business Logistics, 2015, 36(3):273-287
- Yusoon Kima, Thomas Y.Choi, Tingting Yan, Kevin Dooley, "Structural investigation of supply networks: A social network analysis approach", Journal of Operations Management 29, 2011,194–211

