
Applying modified policy iteration to multi-

component system maintenance scheduling

Petri Koivisto

11.5.2022

Ohjaaja: DI Jussi Leppinen

Valvoja: Prof. Antti Punkka

Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki oikeudet pidätetään.

Taustaa

• Tekniset järjestelmät kuluvat käytössä ja niitä täytyy

huoltaa säännöllisesti

– Järjestelmän komponenttien uusiminen

• Huollon suunnittelulla voidaan vaikuttaa merkittävästi

pitkän aikavälin kustannuksiin

– Samalla pyritään säilyttämään tietty vaadittu luotettavuustaso

• Huoltojen aikataulutukseen voidaan käyttää huollon

aikataulutuksen optimointimallia (Leppinen, 2020)

Huollon aikataulutuksen optimointimalli

• Lähtötiedot:

– n komponenttia

– Jokaisella komponentilla oma vikaantumisajankohtaa kuvaava

todennäköisyysjakauma (esim. Weibull-jakauma)

• Vikaantumistaajuus oletetaan kasvavaksi

– Sarjajärjestelmä: minkä tahansa komponentin vikaantuminen johtaa

koko järjestelmän vikaantumiseen

– Huoltoja tehdään vain diskreeteillä ajanhetkillä tk huoltovälin ollessa ∆t

– Järjestelmän luotettavuuden täytyy olla huoltoväliin tk+1 asti vähintään

ρ ∈ (0, 1)

– Järjestelmän tilaa hetkellä tk kuvaa tilavektori sk ∈ R2n

– Koska vikaantumistaajuus oletetaan kasvavaksi, niin mahdollisten

uniikkien tilavektorien määrä on äärellinen

• Tila-avaruuden koko |S|

Huollon aikataulutuksen optimointimalli

• Huoltopäätökset:

– Jokaisella huoltohetkellä tk tehdään päätös siitä, että mitä

komponentteja huolletaan

• Huoltoportfolio pk ⊆ {1, …, n} sisältää huollettavat komponentit

– Kaikki huoltoportfoliot tyhjää portfoliota lukuun ottamatta aiheuttavat

kustannuksen c(pk)

– Ohjaus (engl. policy) U antaa jokaiselle tilalle portfolion

➢ Funktio U(sk) = pk

– Tavoitteena löytää ohjaus, joka minimoi pitkän aikavälin kumulatiivisen

odotusarvoisen kustannuksen

• Tulevaisuuden kustannukset diskontataan kertoimella λ ∈ (0, 1)

– Siirtymätodennäköisyys tilasta toiseen riippuu vain systeemin

nykytilasta

➢ Kyseessä siis Markov-päätöksentekoprosessi (Puterman, 1994)

Markov-päätöksentekoprosessi

Markov-päätöksentekoprosessi

• Markov-päätöksentekoprosessin optimaalinen ohjaus

voidaan rataista ohjauksen iterointialgoritmilla (engl.

policy iteration algorithm, PI)

– Toteutettu Leppisen diplomityössä 2020

• Haasteena on, että algoritmissa täytyy kääntää |S|×|S|-

kokoinen matriisi

• Kandidaatintyössä implementoitiin muokattu ohjauksen

iterointialgoritmi (engl. modified policy iteration

algorithm, MPI)

– Vältetään yhtälöryhmän täsmällisen ratkaisun etsiminen

lähestymällä ratkaisua approksimatiivisesti

Tulokset (1/4)

• Työssä verrattiin PI ja MPI algoritmeja

laskemalla optimaalisia

huoltoaikatauluja testijärjestelmälle

• Algoritmien implementaatiot toteutettiin

MATLABilla ja laskennat työasemalla,

jossa Intel Core i5-11600, 2.80 GHz,

32 GB RAM

• Laskennat suoritettiin varioimalla eri

parametrien arvoja, ja algoritmien

laskenta-aikoja ja tuloksia verrattiin

Tulokset (2/4)

• Ensiksi muutettiin luotettavuuskynnyksen ρ arvoa

– Mitä pienempi luotettavuusraja, sitä suurempi on mahdollisten

tilojen määrä

– Ei muuta mallin muita parametreja, antaa kuvan algoritmien

käyttäytymisestä tila-avaruuden kasvaessa

Luotettavuusraja

ρ

Tila-avaruuden

koko |S|

Iteraatioiden

määrä MPI Ajoaika MPI (s)

Iteraatioiden määrä

PI Ajoaika PI (s)

0.999 40 24 0.05 1 0.06

0.99 550 18 0.45 4 0.09

0.98 1225 16 0.89 7 0.12

0.96 2560 14 1.63 9 0.94

0.93 4780 13 2.83 9 3.70

0.90 6840 11 3.38 8 6.06

0.85 10570 13 6.31 9 19.79

0.80 15520 9 6.26 10 38.06

0.75 19750 11 9.94 9 65.86

0.70 25060 10 11.30 8 121.38

Algoritmien suoritusajat tila-avaruuden koon funktiona. Testissä λ = 0.99.

Tulokset (3/4)

• Algoritmeja verrattiin myös eri diskonttauskertoimilla λ

– Testeissä ρ = 0.9 ja |S| = 6840

Diskonttauskerroin

λ

Iteraatioiden

määrä MPI Ajoaika MPI (s)

Iteraatioiden

määrä PI Ajoaika PI (s)

0.9 6 1.78 7 4.41

0.93 7 2.11 9 4.41

0.95 7 2.08 8 4.03

0.97 7 2.07 9 5.36

0.98 7 2.09 8 5.31

0.99 11 3.42 8 5.91

0.993 16 5.13 10 6.71

0.995 23 7.49 9 6.28

0.998 35 11.47 9 6.50

0.999 92 30.56 7 5.12

Algoritmien suoritusajat diskonttikertoimen funktiona. Kyseisessä

testissä ρ = 0.9 ja |S| = 6840

MPI-algoritmin muistinkäyttö

• MPI-algoritmin implementaatiossa voidaan käyttää hyödyksi

Markov-päätöksentekoprosessin siirtymämatriisin harvuutta

• Koska |S| >> n ja jokaisesta tilasta voidaan siirtyä vain n + 1 tilaan,

niin siirtymämatriisi P ∈ R|S|×|S| on hyvin harva

– Implementaatiossa voidaan säilöä vain nollasta poikkeavat

todennäköisyydet ja niiden indeksit

– MPI-algoritmissa täytyy laskea matriisi-vektorituloja, joiden myös

laskenta nopeutuu, kun nollalla kertominen jää pois

– PI-algoritmissa täytyy ratkaista lineaarinen yhtälöryhmä, joka on

muotoa (I – λP)v(U) = c(U)

Tulokset (4/4)

• Kun testataan algoritmien suorituskykyä tila-avaruuden kokoa

kasvattamalla, huomataan nopeasti, että muisti loppuu kesken

siirtymämatriisi P:n säilömiseen

• MPI-algoritmin suorituskykyä suurilla tila-avaruuksilla testattiin

muuttamalla mallin huoltovälin ∆t pituutta

• Esimerkiksi kun ρ = 0.9, huoltovälin puolittaminen kasvattaa tila-

avaruuden 34-kertaiseksi ja koko P:n säilöminen vaatisi 400 GB

muistia käytettäessä tuplatarkkuusliukulukuja

Huoltoväli ∆t Diskonttauskerroin λ

Tila-avaruuden koko

|S| Iteraatioiden määrä Ajoaika (s)

1 0.99 6840 11 3.63

0.95 0.990 9090 16 7.07

0.90 0.991 11635 17 9.72

0.85 0.991 15875 10 7.44

0.80 0.992 21600 17 17.79

0.75 0.992 29885 13 18.52

0.70 0.993 42185 13 26.26

0.65 0.993 61890 15 45.07

0.60 0.994 92875 12 53.27

0.55 0.994 143040 12 81.86

0.50 0.995 232755 13 145.43

MPI-algoritmin suoritusaikoja tila-avaruuden koon funktiona

huoltoväliä ∆t muutettaessa.

Yhteenveto

• MPI-algoritmi vaikuttaa tulosten perusteella varteenotettavalta

vaihtoehdolta optimaalisen huoltoaikataulun ratkaisemiseen

– Monissa tapauksissa ratkaisee ongelman huomattavasti nopeammin ja

vähemmän muistia käyttäen kuin tavallinen PI-algoritmi

– Tuottaa kaikissa testeissä täsmälleen saman ohjauksen kuin PI-

algoritmi

• Erityisesti komponenttien lisääminen järjestelmään kasvattaa tila-

avaruuden kokoa ”todennäköisesti eksponentiaalisesti”

– Jos diskonttauskerroin λ pysyy samana, niin MPI-algoritmin pitäisi
sopia tilanteeseen paremmin

Lähteet

• J. Leppinen. A Dynamic Optimization Model for Main-

tenance Scheduling of a Multi-Component System.

Diplomityö, Aalto-yliopisto, 2020

• M. L. Puterman. Markov Decicion Processes: Discrete

Stochastic Dynamic Programming. John Wiley & Sons,

Inc., 1994.

