

Selection of Air Combat Tactics using a Multi-Attribute Decision Analysis Model with Incomplete Preference Information

Perttu Jalovaara

22.10.2021

Advisor: *Prof. Kai Virtanen* Supervisor: *Prof. Kai Virtanen*

Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki oikeudet pidätetään.

Decision Making in Air-to-Air Combat

- A flight comprises four fighter aircraft
- Fighter controllers and Fighter allocators
- Tactics, Techniques and Procedures (TTP)
 - Geometry alternatives (Range)
 - Launch range alternatives (Fox)

"Viper 1, Wizard, single group straight ahead, two contacts, hostile."

Photos by Finnish Defense Forces (puolustusvoimat.fi)

Course of Action (COA)

• COA consists of four separate TTPs – one for each flight

Commander's Intent

Which COA should we choose?

Objective: Multi-Attribute Decision Analysis Model Providing "Best" COAs

Additive value function to measure and rank COAs

Overall value of COA x:
$$v(x) = \sum_{i=1}^{n} w_i v_i(x_i)$$
,

 w_i weight of attribute i; x_i measurement level of x w.r.t. attribute i; v_i single attribute value function of attribute i – attribute scoring

- Attributes: Probability of Kill (PK), Probability of Survival (PS), Efficiency of Missiles (EM)
- Commander's intent represented as **incomplete** preference information - Feasible weights $W_{PK} \ge W_{PS} \ge W_{EM}$

Specifications and Restrictions

- Find a set of non-dominated COAs
- Ignore all geographical / additional restrictions

Multi-Attribute Decision Analysis (MADA) Model in Action

Implementation in MATLAB and Excel

- Attribute-specific rankings of COAs from Excel to MATLAB
- Computation in MATLAB, output results to Excel

56		В	С	D	E	F	G	Н
57	<pre>% scores from attribute-specific ordinal rankings</pre>						B 4	
50 -	for i=1:n						Rule 1:	
60	% T in{i,4+2*j} is the position of COA i wrt att j	#	а	b	с	d	Ammu paljon	#Shots
61 -	<pre>v(i,j) = scores(T_in{i,4+2*j}); %fill v with appropriate scores</pre>	1201	LMC	LMC	LMC	LMC		12
62 -	- end	1007	MC	LNAC	INC	LNAC		1.1
63 -	^L end	1887	IVIC	LIVIC	LIVIC	LIVIC		11
64 65	& Define the set of feasible weights of the form	1299	LMC	MC	LMC	LMC		11
66	$S = \{w \in \mathbb{R}^n A^*w \le b, Aeq^*w = beq, LB \le w \le UB\}$	1215	LMC	LMC	MC	LMC		11
67 -	<pre>weight_option=1; % binary attribute weight set definition parameter</pre>	1202	LMC	LMC	IMC	MC		11
68	$0 \Rightarrow$ 0 => weights share linear inequality restrictions (to be defined below).	1205	LIVIC	LIVIC	LIVIC	IVIC		11
69	<pre>% 1 => weights only have their own interval restrictions</pre>	1544	LC	LMC	LMC	LMC		11
70	& weighte share linear inequality restrictions	1250	LMC	LC	LMC	LMC		11
72 -	if weight option == 0	1000	LMC	IMC	10	IMC		11
73 -	$A = [0 \ 1 \ -1; 1 \ -1 \ 0];$	1200	LIVIC	LIVIC	LC	LIVIC		11
74	<pre>%A=[-1 1 0;1 -3 0;-1 0 1;1 0 -2];</pre>	1202	LMC	LMC	LMC	LC		11
75 -	b=[0;0];	515	LM	LMC	LMC	LMC		11
76 -	<pre>[A,b,Aeq,beq,LB,UB] = constFromWeightInequalities(m,A,b);</pre>	4400	LNC	1.5.4				4.4
77		1103	LIVIC	LIVI	LIVIC	LIVIC		11
78	% weights only have their own interval restrictions	1187	LMC	LMC	LM	LMC		11
	Winterl = [0]: 0]: 0]:	1100	LMC	IMC	LMC	LN4		11
81 -	m_inovi = [0 1, 0 1, 0 1]; [A b Aeg beg LB HB] = constFromWeightIntervals(m W intvl);	1133	LIVIC	LIVIC	LIVIC	LIVI		11
82 -	end	1985	MC	MC	LMC	LMC		10

Experiment 1: Preference Order and Attribute Scoring 1/2

- How many non-dominated (ND) COAs are identified?
- How does attribute scoring affect number of ND COAs?

Experiment 1: Preference Order and Attribute Scoring 2/2

Results of Experiment 1 1/2

- Preference orders with linear scoring produce a feasible
 number of ND COAs
- Shape of the single attribute value function matters

Preference information	# of ND COAs			
$w_{PK} \ge w_{PS} \ge w_{EM}$	11			
$w_{PK} \ge w_{EM} \ge w_{PS}$	12			
$w_{PS} \ge w_{PK} \ge w_{EM}$	18			
$w_{PS} \ge w_{EM} \ge w_{PK}$	13			
$w_{EM} \ge w_{PK} \ge w_{PS}$	15			
$w_{EM} \ge w_{PS} \ge w_{PK}$	7			

Results of Experiment 1 2/2

- Preference orders with linear scoring produce a feasible number of ND COAs
- Shape of the single attribute value function matters

Experiment 2: Convergence of Weight Intervals

- How many non-dominated COAs are identified?
- Do non-dominated COAs fit given preference information?

Results of Experiment 2

- Number of non-dominated COAs decreases as given preference information gets stricter and stricter
- Non-dominated COAs fit the preference information

Conclusions

- Incomplete preference information suffices to reduce the number of COAs in consideration (2401 → ~15)
- Close attention must be paid to choosing the shape of single attribute value functions
- The MADA model provides COA recommendations that match given preference information
- Model fulfills its intended purpose and opens up avenues for future research

Going Forward

- Develop an accessible, easy-to-use user interface
- Incorporate geographical restrictions to the MADA model

References 1/3

- H. Mansikka, K. Virtanen and M. Kankaisto (forthcoming) Chinese Whispers in Air Combat: Multi-Criteria Decision Analysis Framework for Converting Commander's Intent into Air Combat Course of Action. *Manuscript.*
- A. Salo and R.P. Hämäläinen (2010) Preference Programming Multicriteria Weighting Models under Incomplete Information. Handbook of Multicriteria Decision Analysis, Springer, New York.
- J. Mustajoki and R.P. Hämäläinen (2005) Decision Support by Interval SMART/SWING - Incorporating Imprecision in the SMART and SWING Methods. *Decision Sciences, Vol. 36, No. 2, 317-339.*
- **M. Weber (1987)** Decision Making with Incomplete Information. European Journal of Operational Research, 28, 44-57.

References 2/3

- R. L. Keeney, H. Raiffa, and R. F. Meyer (1993). Decisions with multiple objectives: preferences and value trade-offs. Cambridge University Press, New York.
- H. Mansikka, K. Virtanen, D. Harris, and M. Jalava (2021). Measurement of team performance in air combat – have we been underperforming? *Theoretical Issues in Ergonomics Science*, 22(3):338–359.
- J. Liesiö, P. Mild, and A. Salo (2007). Preference programming for robust portfolio modeling and project selection. *European Journal of Operational Research*, 181(3):1488–1505.
- A. Arbel (1989). Approximate articulation of preference and priority derivation. *European Journal of Operational Research*, 43(3):317–326.

References 3/3

- AJP-3.3 (2016). Allied Joint Doctrine for Air and Space Operations. *Allied Joint Publication-3.3*, NATO Standardization Office.
- J. M. Holmes (1995). The counterair companion: short guide to air superiority for joint force commanders. Air University Press, Maxwell Air Force Base, Alabama.
- JP 3-30 (2019). Joint Air Operations. Joint Publication 3-30, United States Armed Forces, Joint Chiefs of Staff.
- CNATRA P-825 (2017). All Weather Intercept (AWI), Flight Training Instruction, Advanced NFO T-45C/VMTS. CNATRA P-825 (Rev. 02-17) PAT, United States Navy, Chief of Naval Air Training.

