Comparison of COVID19 policies using a SIR-model

Linus Antell
10.08.2021

Ohjaaja: Kai Virtanen
Valvoja: Kai Virtanen
Background

• COVID19 can be analyzed using a SIR-model
 – In the SIR-models the population is compartmentalized into susceptible-, infected- and recovered compartments
• Different strategies have been used to contain the spread of COVID19
 – Policy = Any non-pharmaceutical intervention (NPI) against COVID19
 – Example policies
 • Lockdowns
 • Distancing
 • Online teaching
Objective

- Use a SIR-model to compare COVID19 policies in countries
- Fit SIR-model to (weekly) data of Finland, France, Italy and Sweden (ECDC data)
- Government response data set
 - Contains a list of tracking policy changes in the countries
- Compare the COVID19 situation in the countries
Limitations

• Testing rates are not taken into account
• Government response data set is simple
 – Policies are also implemented at the same time
 – Only general insights of the policies are gained
• Economic outcomes excluded from the analysis
• Vaccination also excluded
SIR-model

\[
\begin{align*}
\Delta s(t + 1) &= -\beta s(t)i(t), \\
\Delta i(t + 1) &= \beta s(t)i(t) - \gamma i(t), \\
\Delta r(t + 1) &= \gamma i(t),
\end{align*}
\]

(4) (5) (6)

where \(s \), \(i \) and \(r \) are susceptible, infected and recovered proportions of the population, \(\beta \) is the rate of transmission and \(\gamma \) is the rate of recovery

- If \(D \) is the infectious period = time until recovery, then \(\gamma = 1/D \)
- Expected new infections resulting from one infected := Basic reproduction number \(R. \)
- \(R = \beta / \gamma \)
Fitting the SIR-model

- The rate of transmission is estimated for consecutive time intervals
 - Time intervals chosen visually and based on policy changes (during the times)
- Rate of recovery constant (1/2 weeks, since $D=2$ weeks)
- Fit using sum of least squares estimation
- Time period: 52 weeks of 2020 (before vaccination)
Estimation

• Minimize the loss function

\[l(\hat{\beta}) = \sum_t (i(t) - \hat{i}(t))^2. \]

where \(\hat{i} \) is the fitted infected proportion of the population

• Optimal solution obtained by the following procedure:

\[
\hat{\beta}^+ = \hat{\beta}_n + d, \\
\hat{\beta}^- = \hat{\beta}_n - d, \\
\hat{\beta}_{n+1} = \text{argmin}_{\hat{\beta}}(\{l(\hat{\beta}^+), l(\hat{\beta}^-)\}),
\]

where \(\beta_n \) is the \(n \)th estimate, \(d \) is the stepsize

• Iterate for a long time or until improvements are tiny
Results: Estimated coefficients

Table 1: Estimated rate of transmission $\hat{\beta}$ of different countries at varying time intervals

<table>
<thead>
<tr>
<th></th>
<th>Finland</th>
<th></th>
<th>France</th>
<th></th>
<th>Italy</th>
<th></th>
<th>Sweden</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Interval</td>
<td>$\hat{\beta}$</td>
<td>Interval</td>
<td>$\hat{\beta}$</td>
<td>Interval</td>
<td>$\hat{\beta}$</td>
<td>Interval</td>
<td>$\hat{\beta}$</td>
<td>Interval</td>
</tr>
<tr>
<td>5-12</td>
<td>1.900</td>
<td>9-13</td>
<td>3.679</td>
<td>5-12</td>
<td>3.553</td>
<td>10-16</td>
<td>1.353</td>
<td></td>
</tr>
<tr>
<td>13-15</td>
<td>0.900</td>
<td>14-25</td>
<td>0.300</td>
<td>13-17</td>
<td>0.380</td>
<td>17-22</td>
<td>0.500</td>
<td></td>
</tr>
<tr>
<td>16-19</td>
<td>0.400</td>
<td>26-38</td>
<td>0.800</td>
<td>18-20</td>
<td>0.200</td>
<td>23-25</td>
<td>0.693</td>
<td></td>
</tr>
<tr>
<td>20-30</td>
<td>0.200</td>
<td>39-41</td>
<td>0.611</td>
<td>21-27</td>
<td>0.200</td>
<td>26-32</td>
<td>0.205</td>
<td></td>
</tr>
<tr>
<td>31-41</td>
<td>0.841</td>
<td>42-45</td>
<td>0.852</td>
<td>28-33</td>
<td>0.700</td>
<td>33-35</td>
<td>0.400</td>
<td></td>
</tr>
<tr>
<td>42-45</td>
<td>0.500</td>
<td>46-49</td>
<td>0.144</td>
<td>34-39</td>
<td>0.735</td>
<td>36-46</td>
<td>0.869</td>
<td></td>
</tr>
<tr>
<td>46-52</td>
<td>0.774</td>
<td>50-52</td>
<td>0.354</td>
<td>40-43</td>
<td>1.348</td>
<td>47-52</td>
<td>0.588</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>44-46</td>
<td>0.789</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>47-52</td>
<td>0.341</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

- Note that time intervals differ between countries
Estimated SIR-model (Finland)
Estimated SIR-model (France)
Estimated SIR-model (Italy)
Estimated SIR-model (Sweden)
Summary

• The SIR-model can be fit to COVID19 data
 – Using methods such as sum of least squares estimation
• NPI policy reduces the rate of transmission
 – The rate of transmission increases when the policies are removed or replaced with more mild policies
Improvement suggestions

• Include vaccination
 – For example, a certain proportion of susceptible individuals become recovered
• COVID19 forecasting using the model
• Hybrid models
 – SEIRD-ARIMA [4]
 – Branching process+SIR [2]
• Economic reactions to policies such as in [5]
References

