

Comparison of COVID19 policies using a SIR-model

Linus Antell 10.08.2021

Ohjaaja: *Kai Virtanen* Valvoja: *Kai Virtanen*

Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki oikeudet pidätetään.

Background

- COVID19 can be analyzed using a SIR-model
 - In the SIR-models the population is compartmentalized into susceptible-, infected- and recovered compartments
- Different strategies have been used to contain the spread of COVID19
 - Policy = Any non-pharmaceutical intervention(NPI) against COVID19
 - Example policies
 - Lockdowns
 - Distancing
 - Online teaching

Objective

- Use a SIR-model to compare COVID19 policies in countries
- Fit SIR-model to (weekly) data of Finland, France, Italy and Sweden (ECDC data)
- Government response data set
 - Contains a list of tracking policy changes in the countries
- Compare the COVID19 situation in the countries

Limitations

- Testing rates are not taken into account
- Government response data set is simple
 - Policies are also implemented at the same time
 - Only general insights of the policies are gained
- Economic outcomes excluded from the analysis
- Vaccination also excluded

SIR-model

$$\Delta s(t+1) = -\beta s(t)i(t), \qquad (4)$$

$$\Delta i(t+1) = \beta s(t)i(t) - \gamma i(t), \qquad (5)$$

$$\Delta r(t+1) = \gamma i(t), \qquad (6)$$

where *s*, *i* and *r* are susceptible, infected and recovered proportions of the population, β is the rate of transmission and γ is the rate of recovery

- If D is the infectious period = time until recovery, then $\gamma = 1/D$
- Expected new infections resulting from one infected := Basic reproduction number R.

• $R = \beta / \gamma$

Fitting the SIR-model

- The rate of transmission is estimated for consecutive time intervals
 - Time intervals chosen visually and based on policy changes (during the times)
- Rate of recovery constant (1/2 weeks, since D=2 weeks)
- Fit using sum of least squares estimation
- Time period: 52 weeks of 2020 (before vaccination)

Estimation

• Minimize the loss function $l(\hat{\beta}) = \sum_t (i(t) - \hat{i}(t))^2$.

where \hat{i} is the fitted infected proportion of the population

• Optimal solution obtained by the following procedure:

$$\begin{split} \hat{\boldsymbol{\beta}}^{+} &= \hat{\beta}_{n} + d, \\ \hat{\boldsymbol{\beta}}^{-} &= \hat{\beta}_{n} - d, \\ \hat{\boldsymbol{\beta}}_{n+1} &= \arg\min_{\hat{\boldsymbol{\beta}}}(\{l(\hat{\boldsymbol{\beta}}^{+}), l(\hat{\boldsymbol{\beta}}^{-})\}), \end{split}$$

where βn is the *n*th estimate, *d* is the stepsize

• Iterate for a long time or until improvements are tiny

Results: Estimated coefficients

Table 1: Estimated rate of transmission $\hat{\beta}$ of different countries at varying time intervals

Finland		France		Italy		Sweden	
Interval	\hat{eta}	Interval	\hat{eta}	Interval	\hat{eta}	Interval	$\hat{\beta}$
5-12	1.900	9-13	3.679	5-12	3.553	10-16	1.353
13-15	0.900	14-25	0.300	13-17	0.380	17-22	0.500
16-19	0.400	26-38	0.800	18-20	0.200	23-25	0.693
20-30	0.200	39-41	0.611	21-27	0.200	26-32	0.205
31-41	0.841	42-45	0.852	28-33	0.700	33-35	0.400
42-45	0.500	46-49	0.144	34-39	0.735	36-46	0.869
46-52	0.774	50-52	0.354	40-43	1.348	47-52	0.588
-	-	-	-	44-46	0.789	-	-
-	-	-	-	47-52	0.341	-	-

Note that time intervals differ between countries

Estimated SIR-model (Finland)

Infected proportion of the population in Finland

Estimated SIR-model (France)

Infected proportion of the population in France Weekly infected proportion of the population × 0.008 Proportion of the population SIR-model Estimate 0.004 0.000 26 32 35 38 50 3 20 23 29 5 44 1 Q 14 17 41 47 Week (2020)

Estimated SIR-model (Italy)

Infected proportion of the population in Italy

Estimated SIR-model (Sweden)

Infected proportion of the population in Sweden

Summary

- The SIR-model can be fit to COVID19 data
 - Using methods such as sum of least squares estimation
- NPI policy reduces the rate of transmission
 - The rate of transmission increases when the policies are removed or replaced with more mild policies

Improvement suggestions

- Include vaccination
 - For example, a certain proportion of susceptible individuals become recovered
- COVID19 forecasting using the model
- Hybrid models
 - SEIRD-ARIMA [4]
 - Branching process+SIR [2]
- Economic reactions to policies such as in [5]

References

- [1] You, C. et al. (2020), 'Estimation of the time-varying reproduction number of covid-19 outbreak in china', International Journal of Hygiene and Environmental Health, 228 113555, July 2020, ISSN 1438-4639. DOI:10.1016/j.ijheh.2020.113555.
- [2] Bertozzi, A. et al. (2020), 'The challenges of modeling and forecasting the spread of covid-19', Proceedings of the National Academy of Sciences, 117 (29) 16732-16738. DOI: 10.1073/pnas.2006520117. 3. MRSIR
- [4] Ala'raj M. et al. (2020), 'Modeling and forecasting of COVID-19 using a hybrid dynamic model based on SEIRD with ARIMA corrections', Infectious Disease Modelling, 6 98-111. DOI: 10.1016/j.idm.2020.11.007
- [5] Toda, A. (2020), 'Susceptible-infected-recovered (sir) dynamics of covid-19 and economic impact'. URL: https://arxiv.org/abs/2003.11221

