

A stochastic programming model for inventory management of blood products with age-specific demand

Heini Kanerva 5.12.2018

Advisor: *Ellie Dillon* Supervisor: *Fabricio Oliveira*

Background

- The blood supply chain consists of the activities of collecting, processing, storing and distributing blood products
 - Red blood cells, platelets, plasma
- This work focuses on platelet inventory management in a hospital blood bank
- Platelets have special characteristics
 - Uncertain demand
 - Highly perishable
 - Age-specific demand for different treatments

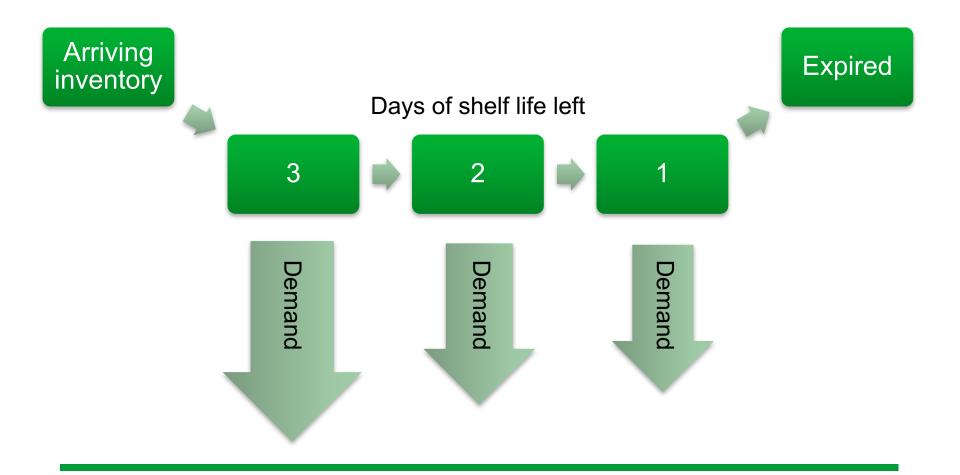
Objectives

- Formulate two-stage stochastic programming model to determine optimal order-up-to levels for platelets
 - Compare three different ordering policies
 - Based on Dillon et al., Dehghani et al.
- Implementation in Julia

Setting (1/2)

- Review periodicity is one day
- Orders arrive after a lead time of one day
- Arriving units are 'fresh' and have the maximum shelf life
- The demands for different aged items are distinct
- Substitution between age groups is allowed, but incurs a mismatch cost

Setting (2/2)



Ordering policies

- Adapted from Haijema et al.
- NIS New inventory to S
 - Every period, order $S_{\rm M}$ items.
- 1D Total order-up-to policy
 - Order the difference between S_{TOT} and inventory level of items not expiring this period
- 2D Double-level order-up-to policy
 - Order the difference between S_{TOT} and inventory level of items not expiring this period, but at least S_M

The Model

- Considers several scenarios simultaneously
 - Objective: minimize overall expected costs from ordering, holding, shortage, expiry and substitution
- Decision variables
 - Order-up-to levels
 - Ordering, expiry, and shortage quantities
 - Inventory levels
 - Use of units of certain age to fulfill demand for certain age
 - $a(\xi)_{t,k,m}$
 - Binary variables for linearization of ordering policies

The Model

- Constraints model the system and tie variables together
 - Inventory balance
 - Use of units
 - Inventory aging:
 - $ie(\xi)_{t,m+1} = is(\xi)_{t+1,m}$
 - Expiry
 - Order quantity
 - Unmet demand
 - etc.

Results

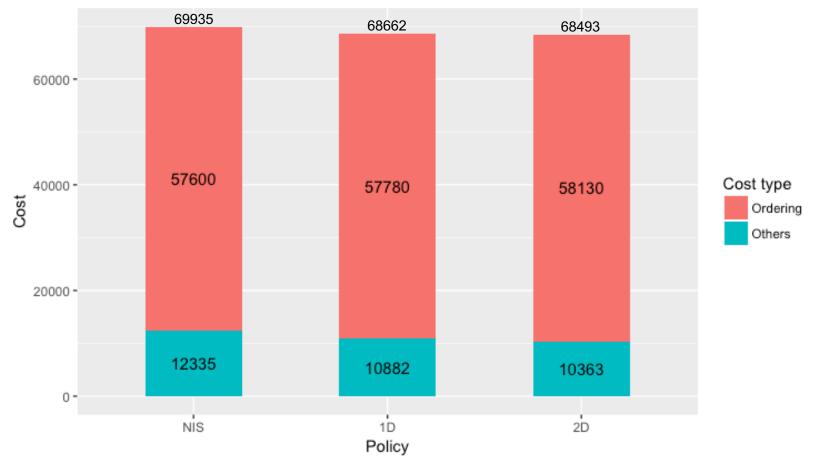
- Computed with 40 scenarios and 16 time periods
- Demands from Poisson distribution with means 7, 2, 1
- Costs
 - Ordering 400
 - Shortage 300-1000
 - Expiry 200
 - Substitution 100-180
 - Holding 1

Results (1/3)

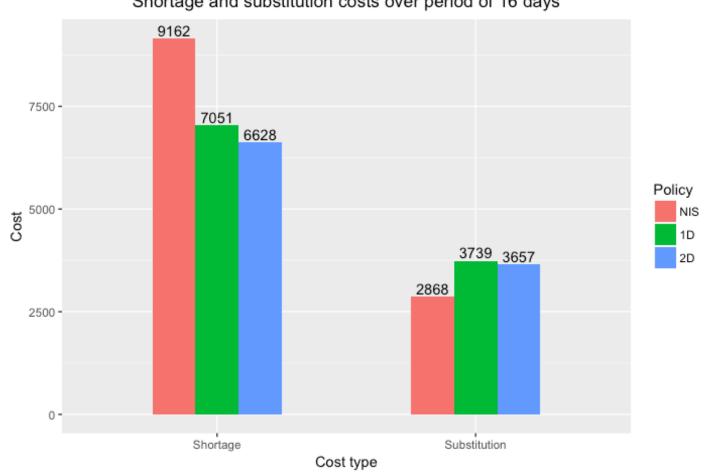
Policy	Order-up-to levels (units)	Service level (%)	Exact match (%)	Expiry level (%)
NIS	S _M = 9	89.6	83.8	0.9
1D	S _{TOT} = 21	90.1	78.7	0.09
2D	S _M = 6 S _{TOT} = 21	91.2	79.1	0.04

Results (2/3)

Total costs over period of 16 days



Results (3/3)



Shortage and substitution costs over period of 16 days

Discussion

- Able to solve problem of limited size
- Can be solved with commercial software
- General and adaptable
 - Demand process
 - Different products
 - Additional constraints for service level / exact match requirements
- Limitations
 - Computational complexity
 - Does not take production or demand periodicity into account
 - Blood types not considered

Sources

- Ismail Civelek, Itir Karaesmen, and Alan Scheller-Wolf. Blood platelet inventory management with protection levels. European Journal of Operational Research, 243(3):826–838, 2015.
- Maryam Dehghani, Babak Abbasi, and Fabricio Oliveira. Proactive transshipment in the blood supply chain: a stochastic programming approach. (Preprint)
- Mary Dillon, Fabricio Oliveira, and Babak Abbasi. A two-stage stochastic programming model for inventory management in the blood supply chain. International Journal of Production Economics, 187:27–41, 2017
- René Haijema, Jan van der Wal, and Nico M van Dijk. Blood platelet production: Optimization by dynamic programming and simulation. Computers & Operations Research, 34(3):760–779, 2007.

Whole model

min
$$z = \sum_{\xi \in \Xi} P(\xi) \left[\sum_{t \in \mathcal{T}} \left(O q(\xi)_t + H v(\xi)_t + E e(\xi)_t + \sum_{m \in \mathcal{M}} \left(G_m f(\xi)_{t,m} + X \sum_{k \in \mathcal{M}} Q_{m,k} a(\xi)_{t,m,k} \right) \right) \right]$$
(1)

s.t.
$$is(\xi)_{1,m} = B_m, \quad \forall \xi, m$$
 (2)

$$is(\xi)_{t,m} = \sum_{k \in \mathcal{M}} a(\xi)_{t,m,k} + ie(\xi)_{t,m}, \quad \forall \ \xi, \ t, \ m$$

$$(3)$$

$$\sum_{k \in \mathcal{M}} a(\xi)_{t,k,m} + f(\xi)_{t,m} = D(\xi)_{t,m}, \quad \forall \, \xi, \, t, \, m \tag{4}$$

$$v(\xi)_t = \sum_{m \in \mathcal{M} \setminus \{1\}} ie(\xi)_{t,m}, \quad \forall \ \xi, \ t$$
(5)

$$e(\xi)_t = ie(\xi)_{t,1}, \quad \forall \ \xi, \ t \tag{6}$$

$$ie(\xi)_{t,m+1} = is(\xi)_{t+1,m}, \quad \forall \xi, t \in \mathcal{T} \setminus \{T\}, m \in \mathcal{M} \setminus \{M\}$$
 (7)

$$is(\xi)_{t+L,M} = q(\xi)_t \quad \forall \ \xi, \ t \le T - L \tag{8}$$

$$S_{tot}, S_M \in Z_{\ge 0} \tag{9}$$

Ordering policies

NIS

$$q(\xi)_t = S_M, \quad \forall \xi, t \tag{10}$$

 $1\mathrm{D}$

$$q(\xi)_t = \max\{0, S_{tot} - \sum_{m>L} is(\xi)_{t,m}\} \quad \forall \ \xi, \ t$$
(11)

Linearization:

$$q(\xi)_t \ge S_{tot} - \sum_{m>L} is(\xi)_{t,m} \tag{12}$$

$$q(\xi)_t \le S_{tot} - \sum_{m>L} is(\xi)_{t,m} + \overline{S}(1 - b(\xi)_t)$$
(13)

$$q(\xi)_t \le \overline{S}b(\xi)_t \tag{14}$$

2D

$$q(\xi)_t = \max\{S_M, S_{tot} - \sum_{m>L} is(\xi)_{t,m}\} \quad \forall \ \xi, \ t$$
(15)

Linearization:

$$q(\xi)_t \ge S_{tot} - \sum_{m>L} is(\xi)_{t,m} \tag{16}$$

$$q(\xi)_t \ge S_M \tag{17}$$

$$q(\xi)_t \le S_{tot} - \sum_{m>L} is(\xi)_{t,m} + \overline{S}(1 - b(\xi)_t)$$
(18)

$$q(\xi)_t \le S_M + \overline{S}b(\xi)_t \tag{19}$$

