

Reformulating neural networks as mathematical progamming problems

Joonatan Linkola 16.5.2023

Advisor: Nikita Belyak Supervisor: Fabricio Oliveira

Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki oikeudet pidätetään.

 Neural networks (NN) are popular and versatile machine learning (ML) paradigms

 Neural networks (NN) are popular and versatile machine learning (ML) paradigms

- Neural networks (NN) are popular and versatile machine learning (ML) paradigms
- NNs can be difficult for optimization

- Neural networks (NN) are popular and versatile machine learning (ML) paradigms
- NNs can be difficult for optimization
- Surrogate models a ReLU NN can be represented as a 0-1 Mixed integer linear program (0-1 MILP)

- Neural networks (NN) are popular and versatile machine learning (ML) paradigms
- NNs can be difficult for optimization
- Surrogate models a ReLU NN can be represented as a 0-1 Mixed integer linear program (0-1 MILP)
 - $f(x) = \text{ReLU}(x) := \max\{0, x\}$

- Neural networks (NN) are popular and versatile machine learning (ML) paradigms
- NNs can be difficult for optimization
- Surrogate models a ReLU NN can be represented as a 0-1 Mixed integer linear program (0-1 MILP)
 - $f(x) = \text{ReLU}(x) := \max\{0, x\}$
- The 0-1 MILP surrogate model is versatile

- Neural networks (NN) are popular and versatile machine learning (ML) paradigms
- NNs can be difficult for optimization
- Surrogate models a ReLU NN can be represented as a 0-1 Mixed integer linear program (0-1 MILP)
 - $f(x) = \text{ReLU}(x) := \max\{0, x\}$
- The 0-1 MILP surrogate model is versatile
 - Objective function for optimization

- Neural networks (NN) are popular and versatile machine learning (ML) paradigms
- NNs can be difficult for optimization
- Surrogate models a ReLU NN can be represented as a 0-1 Mixed integer linear program (0-1 MILP)
 - $f(x) = \text{ReLU}(x) := \max\{0, x\}$
- The 0-1 MILP surrogate model is versatile
 - Objective function for optimization
 - Additional constraints

Aims

 Develop a model which represents a trained ReLU NN as a 0-1 MILP

Aims

- Develop a model which represents a trained ReLU NN as a 0-1 MILP
- Case study digit image classification problems

Aims

- Develop a model which represents a trained ReLU NN as a 0-1 MILP
- Case study digit image classification problems
 - Feature visualization
 - Adversarial images
 - Performance analysis

Some technical notes

- Julia programming language
 - Namely Flux and JuMP libraries
- Gurobi Optimizer for 0-1 MILP optimization problems
- The code was run on a MacBook Pro with M2-processor

Training the ReLU network for digit image classification problems

- MNIST dataset: 28×28 pixel, 60 000 train, 10 000 test
- Network shape: input layer, 2 hidden layers, output layer
 - Nodes at each layer: $784 \rightarrow 32 \rightarrow 16 \rightarrow 10$
- Loss function: cross entropy
- Optimizer: ADAM(0.01) (gradient descent)
- 50 training cycles 93,31% accuracy

0-1 MILP formulation for ReLU networks (Grimstad and Andersson, 2019)

Input layer:

 $L_{\rm in} \leq x^0 \leq U_{\rm in}$

Hidden ReLU layers: $W^k x^{k-1} + b^k = x^k - s^k, \quad x^k, s^k \ge 0$ $x^k = 0 \lor s^k = 0$

W: weights at each layer b: biases at each layer x: node value at each layer $k = \{0, ..., K\}$: node index

Output layer: $W^{K}x^{K-1} + b^{K} = x^{K}$ $L_{\text{out}} \leq x^{K} \leq U_{\text{out}}$

Feature visualization using the surrogate

True label 0, guessed label 0

True label 7, guessed label 7

True label 5, guessed label 6

Optimizing the output value

- An additional objective function
 - Maximize an output node corresponding to a digit

Optimizing the output value

- An additional objective function
 - Maximize an output node corresponding to a digit

Optimizing the output value with additional constraints

- An additional objective function and constraints
 - Maximize an output node with constraints added

Optimizing the output value with additional constraints

- An additional objective function and constraints
 - Maximize an output node with constraints added

Label is 3

Specialized input images with the purpose of confusing the NN

- Specialized input images with the purpose of confusing the NN
- Images look "normal" to the human eye but cause misclassification

- Specialized input images with the purpose of confusing the NN
- Images look "normal" to the human eye but cause misclassification
 - Added noise, a few key pixel changes, etc.

- Specialized input images with the purpose of confusing the NN
- Images look "normal" to the human eye but cause misclassification
 - Added noise, a few key pixel changes, etc.
- Here, the changes to the images are optimally minimal

 We impose that an image of digit d must be misclassified as d = (d + 5) mod 10

- We impose that an image of digit d must be misclassified as d = (d + 5) mod 10
 - 0 misclassified as 5, 1 as 6, etc.

- We impose that an image of digit d must be misclassified as d = (d + 5) mod 10
 - 0 misclassified as 5, 1 as 6, etc.
- Value in the output node corresponding to the digit d must be at least 20% higher than in other nodes

- We impose that an image of digit d must be misclassified as d = (d + 5) mod 10
 - 0 misclassified as 5, 1 as 6, etc.
- Value in the output node corresponding to the digit d must be at least 20% higher than in other nodes
- We minimize both L1-norm and L2-norm distances between the original image and the adversarial image

- - 0 misclassified as 5, 1 as 6, etc.
- Value in the output node corresponding to the digit d must be at least 20% higher than in other nodes
- We minimize both L1-norm and L2-norm distances between the original image and the adversarial image

• L^p-norm:
$$x = (x_1, x_2, ..., x_n), \quad ||x||_p = \left(\sum_{1}^n x_n^p\right)^{\frac{1}{p}}$$

- 1st additional constraint: $x_d^K \ge 1.2 \; x_j^K, \;\; j \in \{0,...,9\} \setminus \{d\}$
- Additional variables $d_j \ge 0, j \in 1, ..., 784$
- 2nd additional constraint: $|x_j^0 \tilde{x}_j^0| \le d_j, \quad j \in \{1, ..., 784\}$
- Objective functions:

• L1-norm Min.
$$\sum_{j=1}^{784} d_j$$

• L2-norm Min.
$$\sum_{j=1}^{784} d_j^2$$

Adversarial images with L1-norm

Adversarial images with L1-norm (pixel changes)

Adversarial images with L2-norm

Label is 5

Label is 0

Label is 6

Label is 1

Label is 7

Label is 3

Label is 8

Label is 9

Label is 4

9

Adversarial images with L2-norm (pixel changes)

Adversarial images (pixel changes compared)

Performance of 100 optimization cases for each application *

	Variables	Constraints	Avg. time (s)	Min. time (s)	Max. time (s)
Feature visualization	958	25760	0,0047	0,0042	0,0067
Optimal input*	958	25760	1,32	0,51	5,72
L1-norm	1742	27338	6,31	0,32	43,12
L2-norm	1742	27338	107,12	8,13	784,62

* only 10 different optimization cases available

