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• NNs can be difficult for optimization
• Surrogate models – a ReLU NN can be represented as 

a 0-1 Mixed integer linear program (0-1 MILP)
•

• The 0-1 MILP surrogate model is versatile
• Objective function for optimization
• Additional constraints
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• Develop a model which represents a trained ReLU NN 
as a 0-1 MILP 

• Case study – digit image classification problems
• Feature visualization
• Adversarial images
• Performance analysis



Some technical notes

• Julia programming language 
• Namely Flux and JuMP libraries

• Gurobi Optimizer for 0-1 MILP optimization problems
• The code was run on a MacBook Pro with M2-processor



Training the ReLU network for digit 
image classification problems
• MNIST dataset: 28×28 pixel, 60 000 train, 10 000 test
• Network shape: input layer, 2 hidden layers, output layer

• Nodes at each layer: 784 → 32 → 16 → 10

• Loss function: cross entropy
• Optimizer: ADAM(0.01)        (gradient descent)
• 50 training cycles – 93,31% accuracy



0-1 MILP formulation for ReLU networks 
(Grimstad and Andersson, 2019)



Feature visualization using the surrogate
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Adversarial images

• Specialized input images with the purpose of confusing 
the NN

• Images look “normal” to the human eye but cause 
misclassification 

• Added noise, a few key pixel changes, etc.

• Here, the changes to the images are optimally minimal
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• We impose that an image of digit d̃ must be 
misclassified as d = (d̃ + 5) mod 10

• 0 misclassified as 5, 1 as 6, etc.

• Value in the output node corresponding to the digit d 
must be at least 20% higher than in other nodes

• We minimize both L1-norm and L2-norm distances 
between the original image and the adversarial image

• Lp-norm: 



Building adversarial examples

• 1st additional constraint: 
• Additional variables
• 2nd additional constraint:
• Objective functions:

• L1-norm

• L2-norm



Adversarial images with L1-norm
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(pixel changes)
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Adversarial images with L2-norm
(pixel changes)



Adversarial images
(pixel changes compared)



Performance of 100 optimization cases 
for each application *

* only 10 different optimization cases available

Variables Constraints Avg. time (s) Min. time (s) Max. time (s)

Feature 
visualization

958 25760 0,0047 0,0042 0,0067

Optimal input* 958 25760 1,32 0,51 5,72

L1-norm 1742 27338 6,31 0,32 43,12

L2-norm 1742 27338 107,12 8,13 784,62


