
Reformulating neural networks as
mathematical progamming problems

Joonatan Linkola
16.5.2023

Advisor: Nikita Belyak
Supervisor: Fabricio Oliveira

Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki oikeudet pidätetään.

Background

• Neural networks (NN) are popular and versatile
machine learning (ML) paradigms

Background

• Neural networks (NN) are popular and versatile
machine learning (ML) paradigms

Background

• Neural networks (NN) are popular and versatile
machine learning (ML) paradigms

• NNs can be difficult for optimization

Background

• Neural networks (NN) are popular and versatile
machine learning (ML) paradigms

• NNs can be difficult for optimization
• Surrogate models – a ReLU NN can be represented as

a 0-1 Mixed integer linear program (0-1 MILP)

Background

• Neural networks (NN) are popular and versatile
machine learning (ML) paradigms

• NNs can be difficult for optimization
• Surrogate models – a ReLU NN can be represented as

a 0-1 Mixed integer linear program (0-1 MILP)
•

Background

• Neural networks (NN) are popular and versatile
machine learning (ML) paradigms

• NNs can be difficult for optimization
• Surrogate models – a ReLU NN can be represented as

a 0-1 Mixed integer linear program (0-1 MILP)
•

• The 0-1 MILP surrogate model is versatile

Background

• Neural networks (NN) are popular and versatile
machine learning (ML) paradigms

• NNs can be difficult for optimization
• Surrogate models – a ReLU NN can be represented as

a 0-1 Mixed integer linear program (0-1 MILP)
•

• The 0-1 MILP surrogate model is versatile
• Objective function for optimization

Background

• Neural networks (NN) are popular and versatile
machine learning (ML) paradigms

• NNs can be difficult for optimization
• Surrogate models – a ReLU NN can be represented as

a 0-1 Mixed integer linear program (0-1 MILP)
•

• The 0-1 MILP surrogate model is versatile
• Objective function for optimization
• Additional constraints

Aims

• Develop a model which represents a trained ReLU NN
as a 0-1 MILP

Aims

• Develop a model which represents a trained ReLU NN
as a 0-1 MILP

• Case study – digit image classification problems

Aims

• Develop a model which represents a trained ReLU NN
as a 0-1 MILP

• Case study – digit image classification problems
• Feature visualization
• Adversarial images
• Performance analysis

Some technical notes

• Julia programming language
• Namely Flux and JuMP libraries

• Gurobi Optimizer for 0-1 MILP optimization problems
• The code was run on a MacBook Pro with M2-processor

Training the ReLU network for digit
image classification problems
• MNIST dataset: 28×28 pixel, 60 000 train, 10 000 test
• Network shape: input layer, 2 hidden layers, output layer

• Nodes at each layer: 784 → 32 → 16 → 10

• Loss function: cross entropy
• Optimizer: ADAM(0.01) (gradient descent)
• 50 training cycles – 93,31% accuracy

0-1 MILP formulation for ReLU networks
(Grimstad and Andersson, 2019)

Feature visualization using the surrogate

Optimizing the output value

• An additional objective function
• Maximize an output node corresponding to a digit

Optimizing the output value

• An additional objective function
• Maximize an output node corresponding to a digit

Optimizing the output value with
additional constraints
• An additional objective function and constraints

• Maximize an output node with constraints added

Optimizing the output value with
additional constraints
• An additional objective function and constraints

• Maximize an output node with constraints added

Adversarial images

• Specialized input images with the purpose of confusing
the NN

Adversarial images

• Specialized input images with the purpose of confusing
the NN

• Images look “normal” to the human eye but cause
misclassification

Adversarial images

• Specialized input images with the purpose of confusing
the NN

• Images look “normal” to the human eye but cause
misclassification

• Added noise, a few key pixel changes, etc.

Adversarial images

• Specialized input images with the purpose of confusing
the NN

• Images look “normal” to the human eye but cause
misclassification

• Added noise, a few key pixel changes, etc.

• Here, the changes to the images are optimally minimal

Building the adversarial examples

• We impose that an image of digit d̃ must be
misclassified as d = (d̃ + 5) mod 10

Building the adversarial examples

• We impose that an image of digit d̃ must be
misclassified as d = (d̃ + 5) mod 10

• 0 misclassified as 5, 1 as 6, etc.

Building the adversarial examples

• We impose that an image of digit d̃ must be
misclassified as d = (d̃ + 5) mod 10

• 0 misclassified as 5, 1 as 6, etc.

• Value in the output node corresponding to the digit d
must be at least 20% higher than in other nodes

Building the adversarial examples

• We impose that an image of digit d̃ must be
misclassified as d = (d̃ + 5) mod 10

• 0 misclassified as 5, 1 as 6, etc.

• Value in the output node corresponding to the digit d
must be at least 20% higher than in other nodes

• We minimize both L1-norm and L2-norm distances
between the original image and the adversarial image

Building the adversarial examples

• We impose that an image of digit d̃ must be
misclassified as d = (d̃ + 5) mod 10

• 0 misclassified as 5, 1 as 6, etc.

• Value in the output node corresponding to the digit d
must be at least 20% higher than in other nodes

• We minimize both L1-norm and L2-norm distances
between the original image and the adversarial image

• Lp-norm:

Building adversarial examples

• 1st additional constraint:
• Additional variables
• 2nd additional constraint:
• Objective functions:

• L1-norm

• L2-norm

Adversarial images with L1-norm

Adversarial images with L1-norm
(pixel changes)

Adversarial images with L2-norm

Adversarial images with L2-norm
(pixel changes)

Adversarial images
(pixel changes compared)

Performance of 100 optimization cases
for each application *

* only 10 different optimization cases available

Variables Constraints Avg. time (s) Min. time (s) Max. time (s)

Feature
visualization

958 25760 0,0047 0,0042 0,0067

Optimal input* 958 25760 1,32 0,51 5,72

L1-norm 1742 27338 6,31 0,32 43,12

L2-norm 1742 27338 107,12 8,13 784,62

