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IN

traday markets enable participants to

adjust positions closer to delivery

« Additional markets to day-ahead markets to buy and sell

A

electricity

Intraday markets allow participants to adjust their
positions closer to delivery, helping last-minute
balancing of supply and demand.

Failing to meet day-ahead commitments may result in
additional imbalance costs.
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Intraday market in Finland is still small

but volatile market compared to day-
ahead
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Intraday trading operates in three
auctions and a continuous market
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Changes in wind generation forecast
affects the difference between intraday
and day-ahead prices

Wind Difference vs Electricity Price Difference
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Feature analysis reveals strong
correlation between earlier intraday

prices and ID3

ID3 Price vs Latest Trade Price
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Comparing forecasting models: XGBoost,
LSTM and naive methods

« Extreme Gradient Boosting (XGBoost), tree ensemble model
— Used as a simpler machine learning model
« Long Short-Term Memory (LSTM), a type of artificial recurrent
neural network model
— Used as a more complex model to challenge XGBoost
« Naive approaches, use historical values as direct predictors
— Used as reference models in point forecasting
— Naivel: the latest trade price

— Naive2: the volume weighted average price 30 minutes prior to
forecasting
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Small performance differences among
forecasting models

 LSTM performed best in
both MAE and RMSE

« Performance differences
across models were
relatively small =
* Naive models captured
future price trends well
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Probabilistic forecasts captured prices
well, with some differences across

LSTM
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LSTM performs slightly better in CRPS

evaluation

« The CRPS takes into
account both reliability and
sharpness

« It was normalized using the
maximum observed price to
allow comparison across
time and quantile levels.

« While model differences
were small, LSTM showed
slightly better performance.
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Conclusions

« ID3 prices are strongly influenced by the most recent
Intraday trades

« Difficult to significantly outperform naive models

* Probabilistic forecasts provide useful uncertainty
estimates for decision-making
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sources

* Nord Pool. Market Data API. https://data-
api.nordpoolgroup.com/index.ntml#/Intraday/get_api_v2_ Intraday T
rades ByDeliveryStart

* Nord Pool. nord-pool-sidc-gate-opening-times-gate-closing-
times.pdf

« Nord Pool Support. About the SIDC Intraday Auctions (IDAS).

https://support.nordpoolgroup.com/support/solutions/articles/80001
11575-about-the-sidc-intraday-auctions-idas-

« José R. Andrade et al. “Probabilistic Price Forecasting for Day-
Ahead andIntraday Markets: Beyond the Statistical Model”. en. In:
Sustainability 9.11(Nov. 2017). Number: 11 Publisher:
Multidisciplinary Digital Publishinglnstitute, p. 1990. issn: 2071-
1050. doi: 10.3390/su9111990. url: https://www.mdpi.com/2071-
1050/9/11/1990
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