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Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki oikeudet pidätetään.



Background

● Power system models can be complex and 
computationally intractable problem instaces

● To simplify the models, their temporal resolution can be 
reduced
○ Time series constraints can be simplified by using 

representative periods instead of full datasets.



Goals
● Apply time-series aggregation techniques to Finnish 

demand, wind and solar data.
● Compare the results of two different approaches to 

aggregate data into four representative weeks
1. Partitional approach
2. Seasonal approach



Data
• Hourly time-series for consumption [1] as well as wind 

[2], and solar [3] availability for 2023

[1] Nord Pool data portal: Consumption, https://data.nordpoolgroup.com/power-system/consumption 
[2] Fingrid Open Data, Wind 
Power,  https://www.fingrid.fi/en/electricity-market-information/wind-power-generation/ 
[3] Fingrid Open data, Solar Power, 
https://www.fingrid.fi/en/electricity-market-information/solar-power/ 



Data
• Data are split into 52 168-hour weeks
• The last day is represented by the first 24 hours of the 

previous week
Week 26Week 1



The Two Approaches

• Two different aggregation approaches for the data were 
compared

• Partitional approach
o Use a clustering algorithm to determine groups in the data.
o Choose a representative week as the medoid of each cluster.

• Seasonal approach
o Take predetermined groups in data
o Choose representative weeks in terms of a test statistic



Partitional Approach

each week w is represented by the 
medoid mc of the cluster c it is 
assigned to

The clustering algorithm assigns 
each week to a cluster

distances between pairs of 
normalised weeks are 
computed

a representative year is formed 
for each variable



Partitioning Around Medoids (PAM)
• Partitional clustering algorithm, implemented with R-package “cluster” [4] 
• Chosen because

1. Medoids are real objects (weeks) and can be directly chosen as the 
representative weeks

2. Greedy selection of starting points leads to semi-deterministic outcomes.

1. Greedy selection of 
initial medoids

2. Assign each remaining 
object to its nearest 
medoid

3. Swap medoids until total 
sum distances cannot be 
further minimised

[4] Martin Maechler, Peter Rousseeuw, Anja Struyf, Mia Hubert, and Kurt Hornik. cluster: 
Cluster Analysis Basics and Extensions, 2023a. R package version 2.1.6



Measuring Dissimilarity of Weeks
• Each time step t of week 

x is compared to the 
same time step of week 
y.

• L2 = Euclidean distance

• L1 = Manhattan distance

Normalised wind availability of selected weeks



Alignments
● In addition to pointwise comparison of 

time steps, Dynamic Time Warping 
(DTW) is also considered
○ Implemented with R-package 

“dtw” [5]
● Wind production is very stochastic

○ The peaks in generation do not 
necessarily align like for demand 
and solar

● Tests were done both and without a 
constraint on how far time can be 
warped 
○ Itakura parallelogram defines a 

window for time warping [5] 

[5] Toni Giorgino (2009). Computing and Visualizing Dynamic Time Warping Alignments in R: The 
dtw Package. Journal of Statistical Software, 31(7), 1-24



Seasonal Approach
• Representative weeks are chosen from predetermined 

equal-sized seasons
• Implemented with a modified version of the GAMS script used 

in [6]

[6] Farzad Hassanzadeh Moghimi, Hanna Ek Fälth, Lina Reichenberg, and Afzal S. Siddiqui. 
Climate policy and strategic operations in a hydro-thermal power system. The Energy Journal, 
44(5):67–94, 2023



Seasonal Approach
● Minimising the seasonal-weekly error in (1) the mean and (2) 

the standard error within each season
○ i.e. finding the week within each season that has mean and s.e. closest 

to the average over the whole season



Measuring Representativity

● Benchmark optimisation model
○ A capacity expansion model for Finland the year 2023

■ Modified from [6] and [7]
■ Implemented in GAMS

○ Minimise annual cost of operations, generation, and possible 
investment

■ Wind, solar and hydro generation has zero cost 
■ Cost of thermal generation determined by fuel

○ Hydro reservoir creates dependency across time steps
● Selected statistical values representing the mean and 

the variance in the time series

[6] Farzad Hassanzadeh Moghimi, Hanna Ek Fälth, Lina Reichenberg, and Afzal S. Siddiqui. Climate 
policy and strategic operations in a hydro-thermal power system. The Energy Journal, 44(5):67–94, 
2023
[7] Tatiana Tassi. Multi-criteria decision analysis for portfolio planning in power generation assessing 
economic and environmental tradeoffs in the finnish power sector.



Measuring Representativity

● Quality of representative weeks is analysed based on the 
error in selected statistics
○ Benchmark model - comparison to FTR

■ obj = Objective function value of benchmark model
■ W% = Share of total demand generated with wind power

○ Demand
■ µQ =  Mean of hourly demand
■ sQ = Standard deviation of demand 

○ Wind 
■ µW = Mean of hourly wind availability
■ sW = Standard deviation of wind availability



Results with the Partitional Approach
Wind + 
Demand obj W% µQ sQ µW sW

L2 -2,54 % -8,12 % -1,31 % -7,37 % -9,39 % -20,47 %

L1 -0,78 % -11,05 % 0,33 % -2,46 % -11,55 % -26,51 %

DTW L1 -5,34 % -1,61 % -0,74 % -0,74 % -3,25 % -13,95 %

DTW L1 
window -2,38 % -6,81 % 1,12 % -10,68 % -6,86 % -18,60 %

DTW L2 -5,72 % -2,16 % -1,09 % -1,50 % -4,33 % -14,88 %

DTW L2 
window -2,07 % -6,81 % 1,12 % -10,68 % -6,86 % -18,60 %

● Objective function value lower than FTR for all variants
○ Likely due to lower share of outlier hours in 

representative weeks than in the original time series



Results with L2 Distance
Wind + 
Demand obj W% µQ sQ µW sW

L2 -2,54 % -8,12 % -1,31 % -7,37 % -9,39 % -20,47 %



Results with L2 distance
Wind + 
Demand obj W% µQ sQ µW sW

L2 -2,54 % -8,12 % -1,31 % -7,37 % -9,39 % -20,47 %

hours with very high demand are 
not present in the representative 
demand profile



Results with the Partitional Approach
Wind + 
Demand obj W% µQ sQ µW sW

L2 -2,54 % -8,12 % -1,31 % -7,37 % -9,39 % -20,47 %

L1 -0,78 % -11,05 % 0,33 % -2,46 % -11,55 % -26,51 %

DTW L1 -5,34 % -1,61 % -0,74 % -0,74 % -3,25 % -13,95 %

DTW L1 
window -2,38 % -6,81 % 1,12 % -10,68 % -6,86 % -18,60 %

DTW L2 -5,72 % -2,16 % -1,09 % -1,50 % -4,33 % -14,88 %

DTW L2 
window -2,07 % -6,81 % 1,12 % -10,68 % -6,86 % -18,60 %

● Mean demand tracked well with all variants
○ Standard deviation however is lower

● Wind mean and generation lower than expected
○ DTW alignments perform better in this regard



Representative Wind Profiles

Wind + 
Demand obj W% µQ sQ µW sW

L2 -2,54 % -8,12 % -1,31 % -7,37 % -9,39 % -20,47 %

DTW L1 -5,34 % -1,61 % -0,74 % -0,74 % -3,25 % -13,95 %



Results with the Partitional Approach
Wind + 
Demand + 
Solar obj W% µQ sQ µW sW

L2 -4,37 % -2,31 % -2,49 % -5,65 % -5,05 % -15,81 %

L1 -1,80 % -8,61 % -0,49 % -5,01 % -9,03 % -14,42 %

DTW L1 -1,96 % -0,59 % -0,66 % -2,38 % -2,17 % -1,40 %

DTW L1 
window -3,03 % -0,67 % -1,28 % -3,87 % -2,89 % -13,02 %

DTW L2 -0,33 % -11,93 % -0,98 % -2,63 % -13,72 % -6,98 %

DTW L2 
window -3,03 % -0,67 % -1,28 % -3,87 % -2,89 % -13,02 %

● After adding solar
○ Error in the objective function value decreases with 

the unconstrained DTW alignments and increases 
with the others



Results with the Seasonal Approach

Variables obj W% µQ sQ µW sW

Equal weights 
(WQ, WQS)

-8,14 % +0,44 % -0,14 % -30,40 % -0,72 % -2,79 %

1,5xQ, 2xQ 
and 1xW 
(WQ)

-3,72%    +0,26%  
  

-1,10%    -12,28% -1,08%    -5,58%

● Performs well in terms of the variable means
○ Expected as it is a directly in the minimised objective criteria

● However, the error in the objective function value is 
higher
○ Likely due to the lower obtained variance in the demand
○ Adding a higher weight to consumption (Q) leads to some 

improvement



Conclusions

● No one method clearly outperformed the others
● Both approaches dampen outliers 

○ Reflected in the lower objective function values than the 
FTR

○ Number of representative weeks was fixed at four, which 
likely aggravated the effect

● Low error in the mean and standard deviation did not 
guarantee low error in the objective function or vice 
versa
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