

Identifying Representative Weeks for the Nordic Power Sector with Time-Series Clustering **(topic presentation)**

Ilona Ylikoski 17.6.2024

Advisor: *Afzal Siddiqui* Supervisor: *Afzal Siddiqui*

Background – Nordic power sector

- The Nordics form a synchronous grid
 - Consists of zones
 connected by
 transmission lines
 - Each zone has its own hourly day-ahead price

Figure 1. Average Nord Pool Day-ahead prices for the Nordics on 6.6.2024 (Referenced from the Nord Pool Group's maps service)

Background - Model

- Modeling the Nordics in 2023 with a Nash-Cournot model
 - Nash equilibrium =

No single agent can improve its outcome by changing strategy

Cournot competition =

Companies compete on amount of output, simultaneously and independently

Figure 2. Framework of the optimization problem (Hassanzadeh Moghimi et.al 2023)

Background – Finding the equilibrium

- Optimization problems for the agents
 - System operator: Maximize consumer surplus
 - o Firms: Maximize profit
- Many variables influence their decisions
 - Availability of energy: Solar, wind, hydro and others
 - $\circ~$ Demand: Hourly, daily and seasonal changes
- This is reflected in the constraints and objective function
 - Makes solving the equilibrium computationally challenging
 - Reformulate the problem into a single quadratic program

Clustering

- Aim: Simplify the QP problem instance, by reducing the temporal dimension
- Finding a representative week for each season by
 - 1. Grouping data into weeks
 - 2. Grouping weeks into seasons
 - 3. Applying clustering algorithms to select a representative week, that captures the features of the data

1	2	3	4	5	6	7	8	9	10	11	12	13
14	15	16	17	18	19	20	21	22	23	24	25	26
27	28	29	30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49	50	51	52

Weeks of one color are represented by one representative week Blue = Winter, Green = Spring, Red = Summer, Orange = Fall, *Breaks between seasons illustrative

Goals

- Finding representative weeks for the year
 - Reducing the 365 24 = 8 760 hours in the year to 4 7 24 = 672.
 - \circ One week for each of the 4 seasons
- Comparing results of...
 - $\circ\ \ldots$ studying how data clusters without predefined seasons
 - using different similarity measures (alternatives to euclidean distance)
 - testing different weights for variables to see which ones are significant for the results

Tools

• GAMS

- General Algebraic Modeling System
- $\circ~$ System for optimization
- R/Python packages

Dataset

- Dataset collected this summer
- From energy agencies, ISOs and firms

Schedule

- June-August:
 - Working on data collection
 - o Literature review
 - Making a plan for methodology
 - Learning how to use GAMS
- August-September
 - Applying plans to data
 - o Results section
- September-October
 - o Finishing the writing

Literature

- Virasjoki, V., Siddiqui, A. S., Zakeri, B., & Salo, A. (2018). Market Power with Combined Heat and Power Production in the Nordic Energy System. *IEEE Transactions on Power Systems*, 33(5), 5263–5275.
- Hassanzadeh Moghimi, F. Ek Fälth, H., Reichenberg L., Siddiqui, A.S. (2023), Climate Policy and Strategic Operations in a Hydro-Thermal Power System, The Energy Journal, 44(5), 67-93.
- Reichenberg, L., Siddiqui, A. S., & Wogrin, S. (2018). Policy implications of downscaling the time dimension in power system planning models to represent variability in renewable output. *Energy*, *159*, 870–877.
- Teichgraeber, H., & Brandt, A. R. (2019). Clustering methods to find representative periods for the optimization of energy systems: An initial framework and comparison. *Applied Energy*, *239*, 1283–1293.

