Predicting Solutions for the Vehicle Routing Problem using Graph Neural Networks

Fredrik Hagström
27.08.2021

Advisor and Supervisor: Fabricio Oliveira
The Vehicle Routing Problem

Graph from Kovács et al. 2018
The Vehicle Routing Problem

• One of the most studied problems in combinatorial optimization
• Utilizing optimization algorithms in routing produce savings of 5% to 20% in global transportation costs (Moghdani et al. 2021)
• There are many variants of the VRP, e.g. Capacitated VRP and VRP with Time Windows
The Vehicle Routing Problem

• The VRP is an NP-hard problem, hence computation times for exact algorithms become unreasonable for large sets of customers
• Many heuristic algorithms provide good approximations within reasonable computing times (Sharma et al. 2018)
• Could the computational time and cost be further reduced with a Deep Learning model?
Goal of the Thesis

• The goal is to develop a graph neural network (GNN) for predicting optimal routes for the VRP
• The developed GNN will be based on the Recurrent Relational Network (RRN) architecture (Palm et al. 2018)
Related Work

• Interest in utilizing Deep Learning for solving Combinatorial Optimization problems has grown during recent years
• Most research propose hybrid models that combine Deep Learning and traditional models. For instance, learning a heuristic that is used in a local search algorithm
• A few propose end-to-end learning models that output solutions directly from input
Recurrent Relational Networks

Graph from Palm et al. 2018
Data

• Training and test data will be randomly generated instances of the VRP solved using OR-tools, a Google suite that provides powerful solvers for important optimization tasks
Constraints on the Model

- Model will be trained on fixed number of nodes
- Number of nodes will be small (n=20) in order to generate training data in a reasonable time
- Focus on developing a RRN for the vanilla VRP. If possible the model might be extended to the CVRP
Tools & Frameworks

• OR-tools
• Pytorch
Schedule

- Presentation of the topic 27.08.2021
- The RRN implemented and results obtained by end of September 2021
- Writing the thesis September-October 2021
- Presentation of results in October 2021
- Thesis ready by end of October 2021
Literature and References

• Palm et al. 2018. Recurrent Relational Networks
• Zhou et al. 2020. Graph neural networks: A review of methods and applications
• Sharma et al. 2018. Vehicle routing problem: recent literature review of its variants
• Moghdani et al. 2021. The green vehicle routing problem: A systematic literature review
• Kovács et al. 2020. Fitness Landscape Analysis and Edge Weighting-Based Optimization of Vehicle Routing Problems