

Predicting Solutions for the Vehicle Routing Problem using Graph Neural Networks

Fredrik Hagström 27.08.2021

Advisor and Supervisor: Fabricio Oliveira

Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki oikeudet pidätetään.

The Vehicle Routing Problem

Graph from Kovács et al. 2018

The Vehicle Routing Problem

- One of the most studied problems in combinatorial optimization
- Utilizing optimization algorithms in routing produce savings of 5% to 20% in global transportation costs (Moghdani et al. 2021)
- There are many variants of the VRP, e.g. Capacitated VRP and VRP with Time Windows

The Vehicle Routing Problem

- The VRP is an NP-hard problem, hence computation times for exact algorithms become unreasonable for large sets of customers
- Many heuristic algorithms provide good approximations within reasonable computing times (Sharma et al. 2018)
- Could the computational time and cost be further reduced with a Deep Learning model?

Goal of the Thesis

- The goal is to develop a graph neural network (GNN) for predicting optimal routes for the VRP
- The developed GNN will be based on the Recurrent Relational Network (RRN) architecture (Palm et al. 2018)

Related Work

- Interest in utilizing Deep Learning for solving Combinatorial Optimization problems has grown during recent years
- Most research propose hybrid models that combine Deep Learning and traditional models. For instance, learning a heuristic that is used in a local search algorithm
- A few propose end-to-end learning models that output solutions directly from input

Recurrent Relational Networks

Graph from Palm et al. 2018

 Training and test data will be randomly generated instances of the VRP solved using OR-tools, a Google suite that provides powerful solvers for important optimization tasks

Constraints on the Model

- Model will be trained on fixed number of nodes
- Number of nodes will be small (n=20) in order to generate training data in a reasonable time
- Focus on developing a RRN for the vanilla VRP. If possible the model might be extended to the CVRP

Tools & Frameworks

- OR-tools
- Pytorch

Schedule

- Presentation of the topic 27.08.2021
- The RRN implemented and results obtained by end of September 2021
- Writing the thesis September-October 2021
- Presentation of results in October 2021
- Thesis ready by end of October 2021

Literature and References

- Palm et al. 2018. Recurrent Relational Networks
- Zhou et al. 2020. Graph neural networks: A review of methods and applications
- Bengio et al. 2020. Machine Learning for Combinatorial
 Optimization: a Methodological Tour d'Horizon
- Sharma et al. 2018. Vehicle routing problem: recent literature review of its variants
- Moghdani et al. 2021. The green vehicle routing problem: A systematic literature review
- Kovács et al. 2020. Fitness Landscape Analysis and Edge Weighting-Based Optimization of Vehicle Routing Problems

