

Cost-efficient portfolios of reinforcement actions to secure the performance of transportation networks (topic presentation)

Elias Pelo 07.05.2024

Advisor: *Joaquín de la Barra* Supervisor: *Ahti Salo*

Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki oikeudet pidätetään.

Background (1/2)

- External hazards and malfunctions may cause disruptions
- The DM can minimize their impacts

Figure 2: Disruption at edge number 10

Background (2/2)

- The DM seeks to improve
 performance
- There are many performance metrics
 - Minimize the expected harm due to disruptions
 - 2. Minimize the investment cost

Aalto-yliopisto Perustieteiden korkeakoulu

Measuring performance

1. Average number of independent passageways (IP)

Measuring performance

2. Global Efficiency (GE)

Measuring performance

• Linear combination of all metrics:

$$V(w) = w_1 IP + w_2 GE , \qquad w \in S$$

• The set of feasible weights *S*

$$S \subseteq S^0 = \{ w \in \mathbb{R}^2 \mid w_1 + w_2 = 1, w_1, w_2 \ge 0 \}$$

Reinforcement actions

- Consider *r* alternate reinforcement actions
 - Type 1: Add new edges to the graph
 - Type 2: Reinforce existing edges

Figure 7: Decision tree for reinforcing edge k in the network

Portfolios of reinforcement actions

$$\boldsymbol{q} = [q_1, \ldots, q_r] \in \{0, 1\}^r$$

$$q_m = \begin{cases} 1, & \text{if action m is implemented} \\ 0, & \text{otherwise} \end{cases}, m = 1, \dots, r$$

• A portfolio q^k dominates portfolio q^j , denoted $q^k > q^j$, in *S* if and only if

$$\begin{cases} V(q^k, w) \ge V(q^j, w) \text{ for all } w \in S \\ V(q^k, w) > V(q^j, w) \text{ for some } w \in S \end{cases}$$

Example of dominance

- Portfolio x^1 dominates x^3
- Portfolios x¹ and x² are non-dominated

Figure 8: Example of dominance from the course MS-E2135 Decision Analysis D 2023, Lecture 6b by Ahti Salo

- Evaluate portfolios of reinforcement actions with a linear combination of different performance metrics
- Implement an algorithm to determine the cost-efficient portfolios of reinforcement actions
- Improve the performance of the network cost-efficiently

Assumptions

- Relatively small undirected network
- Two states for each edge
 - operational vs. disrupted
- There is no ripple effect in the disruptions

Tools

- Python
 - Library "NetworkX"
 - Modelling the transportation network
 - Library "Polytope"
 - Figuring out the extreme points of the set of feasible weights
 - Construction and evaluation of the network
 - Computation of the cost-efficient portfolios

Methodology

- Inputs
 - Transportation network with populations
 - Estimates of the disruption probabilities
 - Reinforcement actions and their costs and effects
 - Preference statements regarding metrics
- Incomplete information
 - Disruption probabilities
 - Weights of performance metrics
- Outputs
 - Cost-efficient portfolios of reinforcement actions

Schedule

- Literature review 04/2024
- Presentation of the topic 7.5.2024
- Analysis and writing the thesis 5/2024 6/2024
- Results ready 6/2024
- Presentation of the results 17.6.2024
- Thesis ready 7/2024

Literature and references

- Kangaspunta, J., Salo, A. (2014). A Resource Allocation Model for Improving the Resilience of Critical Transportation Systems
- Ip, W.H., Wang, D. (2011). Resilience and Friability of Transportation Networks: Evaluation, Analysis and Optimization, *IEEE Systems Journal*, 5(2), 189-198
- Haritha, P.C., Anjaneyulu, M.V.L.R. (2024). Comparison of topological functionality-based resilience metrics using link criticality, *Reliability Engineering and System Safety*, 243, article 109881

