

Optimizing tree ensemble models (topic presentation of BSc thesis)

Eetu Reijonen 25.08.2023

Advisor: Nikita Belyak Supervisor: Fabricio Oliveira

Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki oikeudet pidätetään.

Background – decision trees and tree ensembles

- A decision tree is a function mapping an input to an output "leaf"
 DT : (Age, Cement, Water) → Concrete strength
 - Interpretable as a tree structure
- Tree ensembles are "forests" of individual decision trees
 - Popular choice in machine learning (XGBoost)

Background – tree ensemble optimization

- How to find an input that maximizes/minimizes the tree ensemble prediction?
- Formulated as a mixedinteger optimization (MIO) problem

maximize _{x,y}	$\sum_{t=1}^{T} \sum_{\ell \in \mathbf{leaves}(t)} \lambda_t \cdot p_{t,\ell} \cdot y_{t,\ell}$	(2a)
subject to	$\sum_{\ell \in \mathbf{leaves}(t)} y_{t,\ell} = 1, \forall \ t \in \{1, \dots, T\},$	(2b)
ł	$\sum_{\ell \in \mathbf{left}(s)} y_{t,\ell} \leq \sum_{j \in \mathbf{C}(s)} x_{\mathbf{V}(s),j'}$	
	$\forall t \in \{1, \ldots, T\}, s \in \mathbf{splits}(t),$	(2c)
	$\sum_{\ell \in \mathbf{right}(s)} y_{t,\ell} \leq 1 - \sum_{j \in \mathbf{C}(s)} x_{\mathbf{V}(s),j},$	
	$\forall t \in \{1, \ldots, T\}, s \in \mathbf{splits}(t),$	(2d)
	$\sum_{j=1}^{K_i} x_{i,j} = 1, \forall i \in \mathscr{C},$	(2e)
	$x_{i,j} \leq x_{i,j+1}, \forall i \in \mathcal{N}, j \in \{1, \ldots, K_i - 1\}$, (2f)
	$x_{i,j} \in \{0,1\}, \forall i \in \{1,\ldots,n\}, j \in \{1,\ldots,n\}$	$,K_i\}$
		(2g)
	$y_{t,\ell} \ge 0, \forall \ t \in \{1,\ldots,T\}, \ \ell \in \mathbf{leave}$	es(t).
		(2h)

Mišić, V.V., 2020. Optimization of tree ensembles. *Operations Research*, *68*(5), pp.1605-1624.

Objective

- Evaluating the trade-off between prediction quality and optimization performance
 - 1. How tree model size affects prediction quality?
 - Depth of trees and size of the forest
 - 2. How tree model size affects the corresponding MIO problem optimization performance?
 - The optimization problem is NP-hard

Methods

- Programming language: Julia, tree ensemble model: EvoTrees.jl, MIO formulation: JuMP, solver: Gurobi
- Three datasets: concrete strength, drug design OX2 and 3A4
- Computational experiments: training tree ensembles with different parameters, then optimizing the corresponding MIO problems

Limitations

- Only three datasets
 - Ideally more different types of data and numbers of variables
- Testing only with gradient boosted trees
- Only one MIO formulation used
 - Better performance could be seen with an alternative (not yet devised) formulation

Dataset	No. variables	No. observations (train)	No. observations (test)
Concrete	9	772	258
OX2	5790	11151	3704
3A4	9491	37241	12338

Table 1: Summary of the datasets used

Literature

• Mišić, V.V., 2020. Optimization of tree ensembles. *Operations Research*, *68*(5), pp.1605-1624.

Schedule

- Introduction to topic, literature and Julia 5/2023
- Code implementation 6-7/2023
- Computational experiments 7/2023
- Topic presentation 8/2023
- Thesis writing 8/2023
- Thesis presentation 11/2023

