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Random demand
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— This is how random demand is
currently dealt with
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Statement of objectives

« We are given:
— A graph representing all possible stops and edges
— A method for sampling demand
— Some evaluation metric

« We want:

— The best (or at least a good) line concept according to the
evaluation metric

« This will naturally depend on the nature of demand. The best line
concept for one demand sample will often not be the best for
another.
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Constraint: Spanning graphs, orb webs

- Spanning graphs determine, which S anted
edges must be used in a graph Nodes !
* A spanning graph can be used to | Demand | sssignment
generate a passenger assignment, which v | |
. Average -
can then be used to generate a line plan Demand | tnepn |

« WEe'll create an algorithm, which finds a
spanning graph

Idea of the algorithm for finding the end line plan

— This spanning graph should on average <f \/
generate the best line plan cahERS
« Now we need a line plan: & /\/\ b
— We could generate this with average demand \< >/
— We could also create a similar algorithm for / T \
generating the line plan \ /

Orb webs, which will be used for testing the graph
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Genetic algorithms

Genetic algorithms mimic natural selection

Key components:
— Fitness function
— Mutation and crossover compatible genotype

Advantages:

— Mutation can prevent convergence in a local

minimum
— Very flexible
— Fitness function has few requirements
» Can be discontinuous for example

Drawbacks:

— Genetic drift

— Random mutation

Initial inputs
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Select best

Abstract implementation of

genetic algorithms
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Implementation

function genetic_spanning_graph():
input: (ptn: Graph[Node, Edge], evol steps: int, new os: int,
os_chosen: int, od samples: Array[Map[Edge, float]])

function evaluate():
input: (ptn: Graph[node, Edge],
sp_graph: Set[Edge],
od_samples: Array[Map[Edge, float]])

// Generate initial spanning graphs. Random graphs can be used.

// The generator should evaluate the spanning graphs as well. // Square sum of evaluations
offspring: Array[Set[Edge], float] = gen epsloads(ptn, od_samples eval square sum: float = @
for _ in range(evol steps): for od in od samples:
// Generate and evaluate new offspring // Generate passanger assignment. This is
for _ in range(new_os): // done with a shortest path method
pair = (random(offspring), random(offspring)) // using Floyd-warshall algorithm

new_os = mutate(crossover(pair))

offspring += (new_os, evaluate(ptn, new _os, od _samples))
// Choose best offspring and repeat
offspring.sort(x: x[1])

pa = gen_pa(od, ptn, sp _graph)
// Generate line plan. This is a core
// functionality of LinTim

offspring = offspring.head(os_chosen) line_plan = gen_lp(pa, od, ptn)
// Evaluate generated line plan. This is
// Best output from evolution // also a core functionality
best: set[Edge] = offspring[e][e] eval = gen eval(lp, od, ptn)

eval square sum += eval#2
return best

return eval square_sum

Pseudocode for finding a spanning graph Pseudocode for evaluating a spanning graph
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Dates

* Presentation of the topic: 9.12.2023
* Results ready: end of 2023

« Second seminar: January 2024
 First draft for thesis: January 2024
* Thesis ready: February 2024
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