Aalto-yliopisto
Perustieteiden
korkeakoulu

Robust passenger assignment for
line planning in public transport

Eero Ketola

0.12.2023

Advisor: Moritz Stinzendorfer
Supervisor: Philine Schiewe

Tyon saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki oikeudet pidatetaan.

LINTIM

LinTim
operations

PTH Data

—-—:- Spanning Graph

* LinTim is a tool for planning and | e

analysing public transport supply | _ L
» Various functionality | | "
I
I
I

Stops

Demand |

— Passenger assignment andom) | [7| P
' ' other | | _ v .
- Llne plannlng Data e et ;—-.’r Further functionality

— Timetabling e —

Crude outline of LinTim operation
 Doesn't currently have
functionality for random demand

A Aalto-yliopisto lvsteemia nalyysin

Perustieteiden laboratorio
korkeakoulu —

Random demand

LinTi_m
PTNData operatons
« Demand has effects on cope || 1 S”a""‘"f o
. | L
nearly all stages of planning | [Passanger

Edges : Assignment

Demand |

I
|
 Random demand might | | —
I
|

cause current algorithms to] :—* “"en'fﬂmﬂﬂ
find non-optimal line plans]!)

¢ S'mpIeSt SOIUt'On use Crude outline of LinTim operation
average demand

— This is how random demand is
currently dealt with

A Aalto-yliopisto lvsteemia nalyysin

Perustieteiden laboratorio
korkeakoulu —

Statement of objectives

« We are given:
— A graph representing all possible stops and edges
— A method for sampling demand
— Some evaluation metric

« We want:

— The best (or at least a good) line concept according to the
evaluation metric

« This will naturally depend on the nature of demand. The best line
concept for one demand sample will often not be the best for
another.

A Aalto-yliopisto lvsteemianalyysin

Perustieteiden laboratorio
korkeakoulu —

Constraint: Spanning graphs, orb webs

- Spanning graphs determine, which S anted
edges must be used in a graph Nodes !
* A spanning graph can be used to | Demand | sssignment
generate a passenger assignment, which v | |
. Average -
can then be used to generate a line plan Demand | tnepn |

« WEe'll create an algorithm, which finds a
spanning graph

Idea of the algorithm for finding the end line plan

— This spanning graph should on average <f \/
generate the best line plan cahERS
« Now we need a line plan: & /\/\ b
— We could generate this with average demand \< >/
— We could also create a similar algorithm for / T \
generating the line plan \ /

Orb webs, which will be used for testing the graph

Perustieteiden laboratorio
korkeakoulu —

A Aalto-yliopisto lvsteemia nalyysin

Genetic algorithms

Genetic algorithms mimic natural selection

Key components:
— Fitness function
— Mutation and crossover compatible genotype

Advantages:

— Mutation can prevent convergence in a local

minimum
— Very flexible
— Fitness function has few requirements
» Can be discontinuous for example

Drawbacks:

— Genetic drift

— Random mutation

Initial inputs

|

Crossover &
Mutation

|

Evaluation &
Selection

|

Select best

Abstract implementation of

genetic algorithms

Aalto-yliopisto
Perustieteiden
korkeakoulu

lvsteemia nalyysin
laboratorio

Implementation

function genetic_spanning_graph():
input: (ptn: Graph[Node, Edge], evol steps: int, new os: int,
os_chosen: int, od samples: Array[Map[Edge, float]])

function evaluate():
input: (ptn: Graph[node, Edge],
sp_graph: Set[Edge],
od_samples: Array[Map[Edge, float]])

// Generate initial spanning graphs. Random graphs can be used.

// The generator should evaluate the spanning graphs as well. // Square sum of evaluations
offspring: Array[Set[Edge], float] = gen epsloads(ptn, od_samples eval square sum: float = @
for _ in range(evol steps): for od in od samples:
// Generate and evaluate new offspring // Generate passanger assignment. This is
for _ in range(new_os): // done with a shortest path method
pair = (random(offspring), random(offspring)) // using Floyd-warshall algorithm

new_os = mutate(crossover(pair))

offspring += (new_os, evaluate(ptn, new _os, od _samples))
// Choose best offspring and repeat
offspring.sort(x: x[1])

pa = gen_pa(od, ptn, sp _graph)
// Generate line plan. This is a core
// functionality of LinTim

offspring = offspring.head(os_chosen) line_plan = gen_lp(pa, od, ptn)
// Evaluate generated line plan. This is
// Best output from evolution // also a core functionality
best: set[Edge] = offspring[e][e] eval = gen eval(lp, od, ptn)

eval square sum += eval#2
return best

return eval square_sum

Pseudocode for finding a spanning graph Pseudocode for evaluating a spanning graph

Aalto-yliopisto . .
A Perustieteiden l.asjf‘f::f‘::lil:nalnyIn
korkeakoulu —_—

Dates

* Presentation of the topic: 9.12.2023
* Results ready: end of 2023

« Second seminar: January 2024
 First draft for thesis: January 2024
* Thesis ready: February 2024

Aalto-yliopisto
Perustieteiden
korkeakoulu

lvsteemianalyysin
laboratorio

References and literature

« Heinrich, I., Herrala, O., Schiewe, P., Terho T., (2023). Using Light Spanning Graphs for
Passenger Assignment in Public Transport. In 23rd Symposium on Algorithmic Approaches for
Transportation Modelling, Optimization, and Systems (ATMOS 2023). Open Access Series in
Informatics (OASIcs), Volume 115, pp. 2:1-2:16, Schloss Dagstuhl - Leibniz-Zentrum flr
Informatik

* LinTim: https://lintim.net/

 Ventura, S., Luna, J., Moyano, J. (2022), eds. ‘Genetic Algorithms’. London: IntechOpen, Print.

» Schobel, A. (2011) ‘Line planning in public transportation: Models and methods’, OR Spectrum,
34(3), pp. 491-510.

A Aalto-yliopisto lvsteemianalyysin

Perustieteiden laboratorio
korkeakoulu —

https://lintim.net/

	Slide 1: Robust passenger assignment for line planning in public transport
	Slide 2: LINTIM
	Slide 3: Random demand
	Slide 4: Statement of objectives
	Slide 5: Constraint: Spanning graphs, orb webs
	Slide 6: Genetic algorithms
	Slide 7: Implementation
	Slide 8: Dates
	Slide 9: References and literature

