

Optimal handover locations for twoechelon routing (presentation of results)

Charlotta Ylärinne

20.05.2025

Advisor: *Philine Schiewe* Supervisor: *Philine Schiewe*

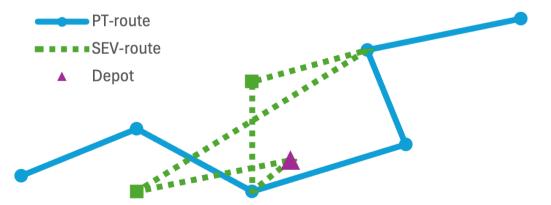
Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki oikeudet pidätetään

Background

- Need for last mile logistics is rising
- Public transport already exists in metropolitan areas
 - Travels near delivery locations (homes)
- PT-vehicles often have extra space

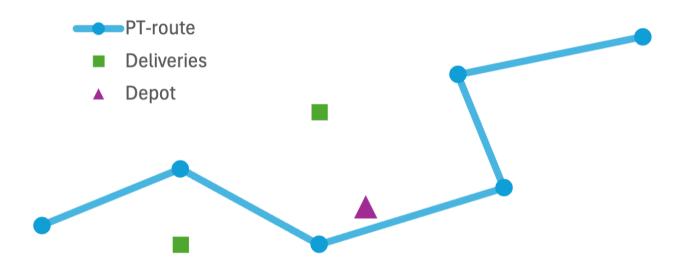
\rightarrow Utilizing PT for package delivery a possible solution

Model



Assumptions and constraints

- Single second echelon vehicle with capacity of 1
- All packages have same demand and all need to be delivered
- SEV and PT need to be synchronized
- Handover takes some additional time
- PT can catch up to schedule between stops



Objective (1/2)

- Find which stops to use as handovers
- Minimize delay for people using public transport

Objective (2/2)

• Objective function:

$$\sum_{s\in S} p(s) \cdot l_s$$

where $l_s = a_{s-1} + w_{s-1} + t_{PT}(s-1,s) - t_{SCH}(s)$ and a_{s-1} models what time PT arrived at previous stop or later of two vehicles in case of handover

- Takes care of synchronization

Data

- Line 115 in data set goevb from LinTim
 - A bus line in Göttingen, Germany with 31 stops back and forth + bus depot (total of 63 stops)
 - 12 delivery locations
 - SEV depot a supermarket with sufficient space

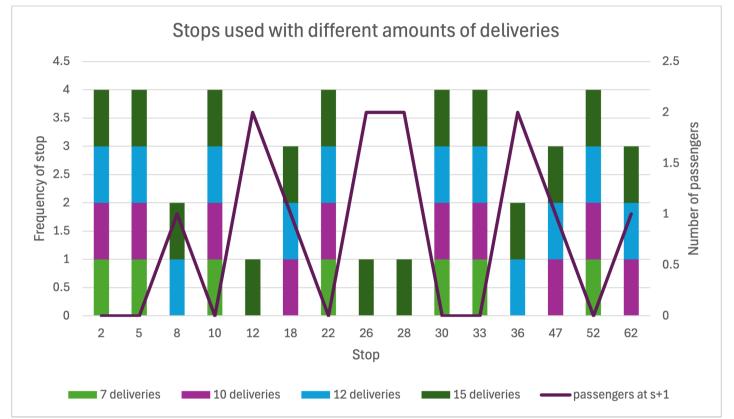
Results

- Using speed of 60 km/h for SEV
- Joint wait time 2 min, normal wait 1 min
- PT can catch up max 30s between stops

Results of stops with a delay

Stop	Handover before	Lateness	Passengers exiting	Cost
3	1	0.5	0	0
6	1	0.5	0	0
9	1	0.5	1	0.5
11	1	0.5	0	0
19	1	0.5	1	0.5
23	1	0.5	0	0
31	1	0.5	0	0
34	1	0.5	0	0
37	1	0.5	2	1
48	1	0.5	1	0.5
53	1	0.5	0	0
63	1	0.5	1	0.5
TOTAL	12	6.0	5	3.0

Changing speed



Speed of SEV	15 km/h	30 km/h	60 km/h
Obj.	9	3.5	3

Changing amount of deliveries

Number of stops	7	10	12	15
Obj.	0	1.5	3	6

Changing joined wait time

Conclusions

- Finds very reasonable results even with many deliveries and entire bus line
- Struggles with slower speeds (could not solve with 10 km/h in reasonable time)
- Ideas for future research:
 - Having a larger capacity and/or more second echelon vehices
 - Taking into account differences of time to catch up between stops
 - Taking into account real time information

References

- Schiewe, P., Stinzendörfer, M. (2024). The combined second-echelon vehicle routing problem – Integrating last-mile deliveries into public transport
- Sluijk, N., Florio, A.M., Kinable, J., Dellaert, N., Van Woensel, T. (2023). Two-echelon vehicle routing problems: A literature review, *European journal of Operational Research*, 304(3), 865-886
- Azcuy, I., Agatz, N., Giesen, R. (2021). Designing integrated urban delivery systems using public transport, *Transportation Research Part E: Logistics and Transportation Review*, 156, 102525
- Data:
 - Stinzendörfer, M., Schiewe, P. (2024). Supplementary material for publication "The combined second echelon routing problem – Models and complexity.
 DOI: 10.5281 / zenodo.13235280. URL: https://doi.org/10.5281/zenodo.13235280

MIP-formulation

$$\begin{array}{ll} \min & \sum\limits_{s \in S} p(s) \cdot l_s & (1a) \\ \mbox{s.t.} & x_{i,j} = 0, & i, j \in D, \end{array} \eqno(1b)$$

$$\sum_{s \in S} x_{DEP0,s} = 1,\tag{1c}$$

$$\sum_{d\in D} x_{d,DEP9} = 1,\tag{1d}$$

$$\sum_{v \in V} x_{DEP9,v} = 0, \tag{1e}$$

$$\sum_{v \in V} x_{DEP0,v} = 1,\tag{1f}$$

$$\sum_{d \in D} x_{s,d} = \sum_{d \in D} x_{d,s} = y_s, \qquad \forall s \in S, \qquad (1g)$$

$$\sum_{v \in V} x_{d,v} = \sum_{v \in V} x_{v,d} = 1, \qquad \forall d \in D, \qquad (1h)$$

$$\sum_{s \in S} y_s = n,\tag{1i}$$

$$x_{i,j} + x_{j,i} <= 1$$

(1j)

 $\forall i,j \in V,$

$$\begin{array}{ll} a_{DEP0} = 0, & (1k) \\ a_s \geq a_d + t_{SEV}(d,s) - M \cdot x_{d,s}^c, & \forall s \in S, \forall d \in D, & (1l) \\ a_s \geq a_{s-1} + t_{PT}(s-1,s) + w_{s-1}, & \forall s \in S, s \geq 2, & (1m) \\ a_s \geq t_{SCH}(s), & \forall s \in S, & (1n) \\ a_s \geq t_{SEV}(DEP0,s) \cdot x_{DEP0,s} - M \cdot y_s^c, & \forall s \in S, & (1o) \\ a_d \geq a_s + c_2 + t_{SEV}(s,d) - M \cdot x_{s,d}^c, & \forall s \in S, \forall d \in D, & (1p) \\ l_1 = 0, & (1q) \\ l_s \geq a_{s-1} + w_{s-1} + t_{PT}(s-1,s) - t_{SCH}(s), & \forall s \in S, s \geq 2, & (1r) \\ x_{v,w}^c = 1 - x_{v,w}, & \forall v, w \in V, & (1s) \\ y_s^c = 1 - y_s, & \forall v, w \in V, & (1t) \\ w_s = y_s^c \cdot c_1 + y_s \cdot c_2 & \forall s \in S, & (1u) \\ x_{v,w}, x_{v,w}^c \in \{0,1\}, & \forall v, w \in V, & (1v) \\ y_s, y_s^c \in \{0,1\}, & \forall v \in V, & (1x) \\ w_s \geq 0, & \forall v \in V, & (1x) \\ w_s \geq 0, & \forall s \in S & (1y) \end{array}$$

