

Dynamic Programming Approaches for the Bus Rapid Transit Investment Problem (topic presentation) *Bilqays Ayoub* 12.04.2024

Supervisor: *Philine Schiewe* Instructor: *Philine Schiewe*

Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki oikeudet pidätetään.

Bus Rapid Transit

- BRT is a public transportation system providing rapid and reliable bus services
- It's more cost-effective compared to alternative transportation systems
- Attracts passengers due to its reliability and efficiency

Motivation

- Given bus line
- Limited budget for upgrading some segments/edges
- Goal is to attract as many passengers as possible for a given budget

 How many passengers can be attracted by an upgrade within the budget of 15?

 How many passengers can be attracted by an upgrade within the budget of 15?

OD pair	S Ue ceW1	E Ue REFOWI	ad	PI(F)
d,	10	6	5	3
d ₂	12		10	5

Knapsack Problem

- Given a set of items, each with weight and value
- Select items to maximize value with a bounded weight
- The 0/1 Knapsack is the decision version of the Knapsack problem
- The BRT can be formulated as Knapsack problem

0/1 Knapsack

- Maximize the total potential passengers attracted by the line impovements without exceeding its budget constraints
- Segment included (1) or not included (0)
- Dynamic programming can solve standard Knapsack in pseudo-polynomial time, which is efficient

Objective

- Adapting dynamic programming to optimize the most cost-effective upgrades within budget constraints for BRT segments
- Utilize available data on stops, connecting segments (edges) and passenger demand to inform upgrade decisions

Scope of the Thesis

- Working on a single line
- Dynamic Programming Knapsack Algorithm
- Single-objective BRT investment problem
- Modelled by implementing the algorithm on PTNs data with 10 and 25 stops, respectively

Methods

- Knapsack algorithm
 - Identifies which BRT line segments to upgrade
- Python is used for implementations

IP Formulation

$$\begin{array}{ll} \max & \sum_{e \in E} \tilde{u}_e x_e \\ \text{s.t.} & \sum_{e \in E_m} c_e x_e \leq v \\ & x_e \in \{0,1\}, \; \forall e \in E \end{array}$$

- E is the set of segments between the stations,
- e is an element in the set E,
- u_e is infrastructure improvements associated with element e,
- $\tilde{u}_e = u_e \cdot \frac{a_d}{\sum_{e' \in W_d} w_{e'}}$ $\forall e \in E$, is the number of newly attracted passengers for each OD pair $d \in D$ are based on the passenger potential a_d and the infrastructure improvement realized along the path W_d ,
- x_e is a binary variable that denotes whether segment e is upgraded,
- c_e is the cost of upgrading element e,
- v is the investment budget which is fixed in one dimensional case.

Schedule

- Introduction and literature 2-3/2024
- Topic presentation 4/2024
- Implementations 3-4/2024
- Thesis writing 3-4/2024
- Thesis presentation 5/2024

Literature

- R. Hoogervorst, E. van der Hurk, P. Schiewe, A. Schöbel, and R. Urban. The Bus Rapid Transit Investment Problem. arXiv:2308.16104v3 [math.OC] 8 Feb 2024.doi:10.11583/DTU.c.6805470.v1
- Korte, B., Vygen, J. (2018). The Knapsack Problem. In: Combinatorial Optimization. Algorithms and Combinatorics, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56039-6_17

