

How problem formulation influences total costs in multi-stage energy capacity planning

Aleksander Heino 25.08.2023 Supervisor: Fabricio Oliveira Instructor: Olli Herrala

Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki oikeudet pidätetään.

Agenda

- 1. Background
 - 1. Capacity expansion
 - 2. SDDP
- 2. Implementation
 - 1. Uncertainty
 - 2. Models
 - 3. Data
- 3. Results

Capacity expansion is relevant in multiple areas

- Electricity grid expansion
- Goods production
- Wastewater treatment capacity
- ... under uncertain parameters

Capacity expansion aims to minimize costs while meeting demand goals

$$\underset{\boldsymbol{x}_{t}(\widetilde{\boldsymbol{\xi}}_{t-1})\boldsymbol{y}_{t}(\widetilde{\boldsymbol{\xi}}_{t})}{\text{Minimize}} \quad E_{\widetilde{\boldsymbol{\xi}}} \left\{ \sum_{t=1}^{\mathrm{T}} \left[\widetilde{\boldsymbol{C}}_{t}^{\mathrm{I}^{\mathrm{T}}} \boldsymbol{x}_{t} \left(\widetilde{\boldsymbol{\xi}}_{t-1} \right) + \boldsymbol{C}_{t}^{\mathrm{O}^{\mathrm{T}}} \boldsymbol{y}_{t} \left(\widetilde{\boldsymbol{\xi}}_{t} \right) \right] \right\}$$

However, the models can be hard to solve

- 1. Exponential growth in scenarios if classic "tree structure" is used
 - How can we reduce the exponential growth?
- 2. Effect of imperfect uncertainty modeling on solution quality is unknown
 - How big is this effect?
- 3. Effect of modeling granurality on solution quality unknown
 - How do we know if solutions change because of uncertainty revealing vs. Modeling being more granular?
 - What is the relative magnitude of these effects?

Uncertainty modeled with scenario lattice to reduce complexity growth

Price reduction Binomial tree

N(t) = 2t-1

N= T^2

Node characteristics:

Total nodes per stage = $2t^2-t = O(t^2)$ Total nodes = $T^3(T-1)/2 = O(T^4)$ Scenarios = 6^T

Randomness Characterization

$$D_{s,n,o} = D_{n_0} c_s d_o$$

$$c_s(n,t) = (1+u)^{n \cdot T} g_e^t$$

Motivation & Results:

- Number of nodes reduced from 6^AT to O(T⁴)
- Cuts can now be modeled for each node separately
- No stage-independent randomness is included in the model
- Only way to model exponential trends in SDDP
- Way of overcoming problem with product of decision variable and random variable

3 different models considered, each isolating one more source of result bias

Model 1

Operating points per investment decision: **1**

Result is influenced by:

- Ability to do more informed decisions
- More granular uncertainty modeling
- Inability to create plans for building

Model 2

Operating points per investment decision: **Arbitrary**

Result is influenced by:

- Ability to do more informed decisions
- · Inability to create plans for building
- More granular uncertainty modeling

Model 3

Operating points per investment decision: **Arbitrary**

At each investment stage, capacity to be built for each of following operating stages is defined

Result is influenced by:

- · Ability to do more informed decisions
- · Inability to create plans for building
- More granular uncertainty modeling

Data

- Open-source data
- IEEE standard electricity grid
- Electricity data from literature

Hypotheses

- H1: Model 1 will see largest decline in costs with increase in decision stages
- H2: Model 2 is expected to result in lower investment and operational costs compared to Model 1.
- H3: Model 3, with its capacity-building plans and ability to build capacity according to those plans, will likely have the lowest investment costs but higher operational costs compared to Model 2. T
- H4: As the number of stages increases, the differences in costs between the three models are expected to decrease.

Total cost per model supports H1 and H4

	Investment stages					
	1	2	4			
Model 1	72643	39542	21971			
Model 2	47767	27784	21971			
Model 3	23831	22028	21971			

- Model 1 sees sharpest decline in costs as number of stages increases
- All models converge to same cost with 4 investment stages
- Of total improvement 49% was caused by better modeling of operating points, 47% by being able to create investment plans and only 4% by better decisions through uncertainty
- Being able to take into account uncertainty when making decisions (1 vs 4 investment stages) accounted for 8% of total costs.

Operational & Investment costs support H2 & H3

Operational costs			Inve	Investment costs				
Investment stages			Investment stages					
	1	2	4		1	2	4	
Model 1	8726	11307	9269	Model 1	62890	28235	12385	
Model 2	8849	8863	9269	Model 2	35204	18069	12385	
Model 3	9191	9398	9269	Model 3	13966	12304	12385	

Model 1 sees highest investment costs

- Model 3 sees higher operational but lower investment costs

- 1. An improved scenario structure was created to reduce computational complexity of capacity expansion problems
- 2. Three formulations were proposed, each isolating a single source of result bias.
- 3. Each model formulation was found to behave as expected with increase in number of operational and investment stages
- Effect of revelation of uncertainty on total cost was 8% of total cost and 4% of total improvement created (4 stages vs 1 stage)

