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The goals of the study

• Examine sequential investment decisions under two 
explicit sources of uncertainty
– The model is based on the one-factor real options model of 

Majd & Pindyck [1987]
– Also, McDonald & Siegel [1986] studied a two-factor model 

where the investment program can be finished instantaneously
– Examples: R&D projects, new technology adoption

• Particularly study how the inclusion of the second 
stochastic variable affects the optimal investment policy

• Solve the model numerically



The model
• The sources of uncertainty are modeled by two stochastic variables, 

i.e., the discounted cash inflows and outflows of the finished project
– We will denote these by V and C, respectively
– These are assumed to follow uncorrelated geometric Brownian 

motions with parameters ( V V) and ( C C)
• The required rate of return for holding the option is 

– We implicitly assume that the investor is risk neutral as we use 
dynamic programming

• The maximum investment rate is denoted by k and the initial 
investment left by K

• The investor can choose the investment rate continuously, and the 
payoff max(V-C,0) is obtained only when K=0

How should the investor proceed with the investment program?     



A few words on how the results were 
obtained
• We used the dynamic programming approach to real options valuation

– The solution is a “bang-bang” one: it is optimal to either wait or invest at 
the maximum rate

• This combined with the assumptions led to a two-PDE free boundary 
problem with three independent variables, i.e., V, C and K
– McDonald & Siegel [1986] provided an analytical solution that is linear 

homogenous in V and C
• However, this is not the case for the problem here because of the 

time-to-build issue
• The problem was then solved using an explicit finite difference method

The option value function  F(V,C,K) and the investment threshold 
V*(C,K)

• Then, the effects of the parameters on the results were studied using 
the method of comparative statics



The base case
( V C=0.04, V C=0.14, =0.08, k=1)
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Sensitivity with respect to C
(The other parameters are the same as in the base case)



The explanation
• When K<<1, a decrease (increase) in C increases (decreases) the 

incentives of waiting [McDonald & Siegel, 1986]
The threshold shifts up (down)

• At larger values of K, the optimal investment policy can be explained by 
the principle of dynamic programming
– The investor knows the optimal investment policy for smaller values 

of K
– Both the payoff and the initial investment outflows are discounted

It is optimal to invest so that the investment program can be 
completed without pauses in most cases

• Shouldn’t this imply that the effect of C on the investment threshold is 
amplified when k is smaller and, thus, the minimum construction time is 
longer?



Sensitivity with respect to c, when k=0.5
(The other parameters are the same as in the base case)



Sensitivity with respect to other 
parameters
• The logic behind the effect of V on the results is the same as 

above 
– However, V*(C,K) grows without bounds as V

• As  represent the cost of waiting, an increase (decrease) in its 
value shifts the investment threshold down (up)

• An increase (decrease) in either of the volatilities increases 
(decreases) the value of waiting and therefore shifts the investment 
threshold up (down)

• If the increments of the stochastic variables were positively 
(negatively) correlated, the volatility of the process that the payoff 
follows would decrease (increase) shifting the investment threshold 
down (up)



Summary

• The investor’s problem was solved numerically yielding 
both the option value and the investment threshold

• Comparative statics was used to analyze the impacts of 
the different parameters on the optimal investment 
policy
– The effects of the drift terms were explained in the framework of 

dynamic programming 

• The model is general and can be applied in situations 
that meet the underlying assumptions by modifying the 
boundary conditions
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