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Problem description

Generalization of the Travelling Salesman Problem

(TSP)

We have a set of n customers and connecting arcs

Total route length must be minimized



Problem description

Further generalization: Capacitated Vehicle Routing

Problem (CVRP)

Vehicles have a capacity Q and customers a demand q 

each

Fleet consists of m vehicles

m can be fixed or variable



Problem description

We use a two commodity flow model for capacity

constraints

Forward flow describes the amount of goods in a 

vehicle and backward flow the amount of free space



Problem description

Further generalization: Generalized Vehicle Routing

Problem (GVRP)

Customers are divided into K clusters

Exactly one customer per cluster

must be visited



Problem description

Further (and final) generalization: 

Distance-Constrained Generalized Vehicle Routing

Problem (DGVRP)

Route length is constrained to an upper limit T

Single commodity flow formulation: 

variable values describe the arrival time at 

a customer after traversing an arc



Motivation

Adding distance constraints allows creating more

realistic models for real-life applications

Disaster aid – delivering supplies airborne to 

interconnected villages

• Distance constraints modelling fuel capacity

Designing routes for vehicles delivering industrial

products 

• Constraints modelling the length of a work shift



Motivation

Many problems, such as the School Bus Routing

Problem and the Capacitated m-Ring-Star Problem can

be transformed to a DGVRP

The distance constraints in the transformed DGVRP 

can model a variety of things that may be difficult to 

implement to the original problem

Many possible applications have not been considered



Heuristic algorithm

The DGVRP problem size grows exponentially as more

customers are added

Real-life scenarios tend to be huge

In stead of solving the problem to optimality, we

search for good solutions heuristically



Heuristic algorithm



Heuristic algorithm: local search

Our local search consists of three ’classic’ moves:

One-point (relocation)

Two-point (swap)

2-opt



One-point

Heuristic algorithm: local search



Two-point

Heuristic algorithm: local search



2-opt

Heuristic algorithm: local search



After the local search, we have a locally optimal

solution

To move to a new neighbourhood, we first merge the

routes into a single tour covering all clusters

The giant tour is mutated and split into feasible routes

Having the order of the clusters fixed, the split

algorithm yields an optimal set of routes in reasonable

computing time

Heuristic algorithm: concat & split



Heuristic algorithm: concat & split



Heuristic algorithm: set partitioning

Each time after the local search or split procedure, we

store the locally optimal routes.

After the desired number of iterations, we have a pool

of ’good’ routes

We solve a set partitioning problem, combining routes

so that each cluster is visited exactly once in the final

solution

The procedure is quick and improves solution quality

considerably.



Results

The heuristic algorithm was tested on available GVRP 

instances (without distance constraints)

The algorithm was executed five times



Results

For big instances (n > 100), the algorithm performance

is relatively weaker



Results

To test the DGVRP, we derived our own instances from

the GVRP instances

The limit was iteratively set lower to the length of the

longest route in the previous solution

Lower bounds were calculated by a commercial solver

CPLEX with a 2 hour time limit

The heuristic found all optimal solutions, and found at 

least as good results as CPLEX in all cases when the

time limit was exceeded
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