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Electricity Decarbonization

Electricity is a leading carbon source in many regions
Technical solutions to decarbonize electricity (at least partially) exist today
Other carbon-intensive sectors (e.g., transportation and heat) can be electrified
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Many Changes

Resource mix will change significantly, making planning and operation more complex
Most regions of the world can achieve ≈ 80%–90% decarbonization (relative to business as
usual) with economically justifiable incremental cost (if we believe social-cost-of-carbon
estimates)
The final ≈ 10%–20% of decarbonization is prohibitively expensive, due to the cost of
maintaining resource/energy adequacy with carbon-free resources
Market designs need to evolve—politics and poor policy choices exacerbate these challenges
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Simple Resource Planning
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Resources were dispatchable
Key consideration was tradeoff between
fixed and variable cost
This could be analyzed by examining the
load-duration curve
An added planning-reserve margin
protects against unexpected generator
failures and load

Ramteen Sioshansi (CMU and OSU) Technology and Market-Design to Decarbonize Electricity Systems 24 April, 2025 4 / 25



Resource Planning with Carbon Constraints
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Multi-Horizon Optimization

Figure: [Kaut et al., 2014]

Multi-horizon stochastic optimization balances model tractability and
solution quality
Large-scale/strategic uncertainties represented in the scenario tree
Small-scale/operational uncertainties represented by operating
conditions
Operating conditions between investment epochs are not linked
explicitly
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Linking Operating Conditions

Linking operating conditions between investment epochs may
be important
Scenario-tree and problem size grow—decomposition can
help

Figure: [Kaut et al., 2014] Figure: [Yagi and Sioshansi, 2024]
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Illustrative Technology Mix
[Boffino et al., 2019, Barrera-Santana and Sioshansi, 2023]

Mild carbon reductions can be done with lots
of renewable resources that are
supplemented with natural-gas-fired
generation during unfavorable (weather and
demand) conditions
Cannot rely upon natural gas with more
stringent carbon constraints, which requires
very significant capacity overbuild
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Illustrative Decarbonization Cost

Small but manageable cost increases for
mild carbon reductions
Capacity overbuild with more stringent
carbon constraints is very costly
≈ 80%–90% decarbonization is justifiable
based on today’s technology options and
social-cost-of-carbon estimates
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Why Does Decarbonization Get So Expensive?
Seasonal Supply/Demand Mismatch

Figure: [Yagi et al., 2019, Yagi et al., 2021]

Key challenge is resource/energy adequacy
Need a carbon-free dispatchable resource that can
fill gaps in renewable-resource availability (e.g.,
long-duration/seasonal energy storage)
Energy-storage technologies that are available
today are suited to short-duration applications (e.g.,
reducing renewable curtailment)
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Demand Response and Flexible Demand

Electrification may increase scope for demand response
[Chandrashekar et al., 2017, Mansouri and Sioshansi, 2023]
Primarily for short-duration applications (e.g., reducing renewable-energy curtailment or
managing small-scale variability)
Electrification will make resource/energy adequacy a more acute problem
Winter Storm Uri was a demand-response event during which > 100 people died
[Hunter-Rinderle et al., 2023]
Electrification can exacerbate the seasonal demand/supply mismatch
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Technology Development
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Do Market Designs Need to Change?

A common misconception is that renewable energy ‘breaks’ electricity markets and price
formation due to having (near-)zero marginal cost

Simple Counterexample

Single period
Demand: p(D) = 10− D
Conventional-generation cost: c(q) = 0.4q + 0.1q2

Renewable investment cost: $1.80/MW

Competitive Entry

1.2 MW of renewable capacity built
and operated
7 MWh of conventional output
Market price: $1.80/MWh
Conventional-generator profit:
$4.90
Renewable-generator profit: $0
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Policy Distortion

Well intentioned regulator imposes a requirement that 30% of energy must be renewable
≈ 2.5 MW of renewable energy built and operated
≈ 5.9 MWh of conventional output
Market price: ≈$1.64/MWh
Renewable generator loses ≈$0.40
Conventional-generator profit decreases to ≈$3.83
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We Can ‘Price’ the Policy Distortion
Consider a simple investment model:
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Investment Incentives

Under standard assumptions, setting energy prices equal to −λt ;∀t ∈ T yields the same KKT
conditions/investment incentives from the market as from a central planner
This result remains if all resources have zero marginal cost:

∇IG
g (pG,max

g )−
∑
t∈T

fg,tµ+
g,t = 0;∀g ∈ ΩG

∇K G
g (pG
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g,t = 0;∀g ∈ ΩG, t ∈ T

∇K D(pD
t ) + λt − γ−t + γ+

t = 0;∀t ∈ T

Key difference is that prices will be set equal to zero or cost of load curtailment, not to
marginal (fuel) cost

Ramteen Sioshansi (CMU and OSU) Technology and Market-Design to Decarbonize Electricity Systems 24 April, 2025 16 / 25



Investment Incentives

Under standard assumptions, setting energy prices equal to −λt ;∀t ∈ T yields the same KKT
conditions/investment incentives from the market as from a central planner
This result remains if all resources have zero marginal cost:

∇IG
g (pG,max

g )−
∑
t∈T

fg,tµ+
g,t = 0;∀g ∈ ΩG

λt − µ−g,t + µ+
g,t = 0;∀g ∈ ΩG, t ∈ T

∇K D(pD
t ) + λt − γ−t + γ+

t = 0;∀t ∈ T

Key difference is that prices will be set equal to zero or cost of load curtailment, not to
marginal (fuel) cost

Ramteen Sioshansi (CMU and OSU) Technology and Market-Design to Decarbonize Electricity Systems 24 April, 2025 16 / 25



Example: Renewable-Portfolio Standard
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Price the Policy Distortion

KKT conditions become:
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In other words, pay η (known also as a REC payment) to generators that meet the
renewable-portfolio standard

å In the simple example, the effective value of η is ≈ 0.16, which makes the renewable generator
whole

My observation: The bigger concern is having a resource mix that can meet reliability,
resource-/energy-adequacy, security-of-supply considerations, but this can be priced and
monetized in the same manner
All of this follows directly from Lagrange-multiplier theory/KKT conditions
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Technical Considerations

What properties do prices from a stochastic-planning model have [Pritchard et al., 2010]?
Non-convexities (e.g., unit commitment and energy storage) can complicate remuneration
[O’Neill et al., 2005]
Resource-adequacy assessment with changing climate and needing to capture extreme
events
Market monitoring and mitigation with energy storage
Unconventional resources [Sioshansi, 2017]
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Political and Policy-Making Considerations

Are these prices politically palatable?
How to handle balkanized policy regimes or poor policy-mechanism choices within a market?

å This is proving especially difficult with transmission projects

Reliability and power-quality standards are set by engineers, should this be done by
economists?
How should we think about and describe reliability and resource/energy adequacy?

å Solar produces zero during the night, that doesn’t mean zero reliability value (the way that
engineers think about reliability today)
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Wrapping Up

Despite efforts, we don’t know how to design an economic and reliable carbon-free electricity
system (or if a 100%-renewable energy mix is physically feasible)
There are important research and policy-analysis gaps to which system scientists, operations
researchers, etc. can contribute to move towards such systems:

improving planning methods
optimizing technology pathways
providing technology-characteristic benchmarks and targets
improved resource-/energy-adequacy assessment
policy analysis
policy- and technology-informed market design
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Thank you!

Ramteen Sioshansi (CMU and OSU) Technology and Market-Design to Decarbonize Electricity Systems 24 April, 2025 25 / 25


