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AGENDA

o I – Single-objective bilevel optimization -
main concepts

o II – Multi-objective bilevel optimization 

o III – Bilevel optimization - an application in 
the energy sector

2



3

Part I
Single-Objective Bilevel 

Optimization 



BILEVEL OPTIMIZATION - STACKELBERG GAMES

o Hierarchical structure: a second optimization problem is 
embedded in the constraints of the bilevel programming 
problem  

o Roots from game theory: Stackelberg game 
• Stackelberg (1934, engl. transl 1952) used by the first time a 

hierarchical model to describe real market situations.
• Two players: the leader and the follower
• Sequential decision process: the leader moves first and the 

follower moves next: The leader makes a decision and 
commits a strategy before the other player (follower)

• Full information is available and the game is 
non-cooperative
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BILEVEL PROGRAMMING PROBLEM
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• A bilevel program is a “mathematical program that contains an optimization 
problem in the constraints” (Bracken, 1973) 

• Two decision makers: the leader and the follower, who pursue different 
objectives in a non-cooperative manner.

• The leader makes his decision first. The follower reacts by choosing his 
optimal candidate on the feasible choices restricted by the leader. 

x - variables controlled by the leader (upper level)
y - variables controlled by the follower (lower level)

max
!

𝐹(𝑥, 𝑦)

s.t. 𝐺(𝑥, 𝑦) ≤ 0
max
"

𝑓(𝑥, 𝑦)

s.t. 𝑔(𝑥, 𝑦) ≤ 0

(BLP)



EXAMPLE OF APPLICATION

• For example, in a toll-setting problem:
­ the owners of a highway system (leader) have to set tolls and 
they want to maximize revenues

­ but users of highways (follower) want to minimize their travel 
costs

The leader’s decision must take into account that few users will 
use the highways if tolls are set too high, which may result in 
small revenues for the leader.
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DEFINITIONS
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where 𝑥 ∈ 𝑅!" and 𝑦 ∈ 𝑅!#

• Constraint Region of the BLP

𝑆 = (𝑥, 𝑦):𝐺(𝑥, 𝑦) ≤ 0 , 𝑔(𝑥, 𝑦) ≤ 0

(It is assumed that S is non-empty and compact)

• Follower’s rational reaction set to a 
given 𝑥

Ψ(𝑥) = arg max
!

𝑓 𝑥, 𝑦 ∶ 𝑔(𝑥, 𝑦) ≤ 0

It is assumed that Ψ 𝑥 ≠ ∅ for all 𝑥 taken by 
the leader 

BLP:

max
!

𝐹(𝑥, 𝑦)

s.t. 𝐺(𝑥, 𝑦) ≤ 0
max
"

𝑓(𝑥, 𝑦)

s.t. 𝑔(𝑥, 𝑦) ≤ 0



DEFINITIONS
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where 𝑥 ∈ 𝑅!" and  𝑦 ∈ 𝑅!#

• Inducible region
𝐼𝑅 = (𝑥, 𝑦): (𝑥, 𝑦) ∈ 𝑆, 𝑦 ∈ Ψ(𝑥)

(𝑥, 𝑦) ∈ 𝐼𝑅

BLP:

The BLP can be written as:

max
$

𝐹(𝑥, 𝑦)

subject to (𝑥, 𝑦) ∈ 𝐼𝑅

max
!

𝐹(𝑥, 𝑦)

s.t. 𝐺(𝑥, 𝑦) ≤ 0
max
"

𝑓(𝑥, 𝑦)

s.t. 𝑔(𝑥, 𝑦) ≤ 0



EXAMPLE 1
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max
$

𝐹(𝑥, 𝑦) = −𝑥 − 3𝑦

s.t. 1 ≤ 𝑥 ≤ 6
max
%

𝑓(𝑦) = 𝑦

s.t. 𝑥 + 𝑦 ≤ 8
𝑥 + 4𝑦 ≥ 8
𝑥 + 2𝑦 ≤ 13

x

y

1 6

8

6.5

8

2

(In: Dempe, 2002)
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EXAMPLE 1

(In: Dempe, 2002)

If it was to optimize 
F over S...

...point B would be the 
optimal solution

But, the follower optimizes f(y) for 
each x chosen by the leader

max
$

𝐹(𝑥, 𝑦) = −𝑥 − 3𝑦

s.t. 1 ≤ 𝑥 ≤ 6
max
%

𝑓(𝑦) = 𝑦

s.t. 𝑥 + 𝑦 ≤ 8
𝑥 + 4𝑦 ≥ 8
𝑥 + 2𝑦 ≤ 13
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(In: Dempe, 2002)

IR – feasible region of the 
bilevel problem 

max
$

𝐹(𝑥, 𝑦) = −𝑥 − 3𝑦

s.t. 1 ≤ 𝑥 ≤ 6
max
%

𝑓(𝑦) = 𝑦

s.t. 𝑥 + 𝑦 ≤ 8
𝑥 + 4𝑦 ≥ 8
𝑥 + 2𝑦 ≤ 13

IR
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(In: Dempe, 2002)

IR

D is the optimal solution 
of the bilevel problem
𝑥, 𝑦 = 6, 2 𝐹 = −12

max
$

𝐹(𝑥, 𝑦) = −𝑥 − 3𝑦

s.t. 1 ≤ 𝑥 ≤ 6
max
%

𝑓(𝑦) = 𝑦

s.t. 𝑥 + 𝑦 ≤ 8
𝑥 + 4𝑦 ≥ 8
𝑥 + 2𝑦 ≤ 13

IR
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EXAMPLE 2
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max
$

𝐹(𝑥, 𝑦) = −𝑥 − 3𝑦

s.t. 0 ≤ 𝑥 ≤ 8
𝑦 ≤ 6

max
%

𝑓(𝑦) = 𝑦

s.t. 𝑥 + 𝑦 ≤ 8
𝑥 + 4𝑦 ≥ 8

− 6𝑥 + 𝑦 ≤ 0

(Adap. from Dempe, 2002)

1.5

point chosen by the follower for x=1.5

However, it does not satisfy y £ 6
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max
$

𝐹(𝑥, 𝑦) = −𝑥 − 3𝑦

s.t. 0 ≤ 𝑥 ≤ 8
𝑦 ≤ 6

max
%

𝑓(𝑦) = 𝑦

s.t. 𝑥 + 𝑦 ≤ 8
𝑥 + 4𝑦 ≥ 8

− 6𝑥 + 𝑦 ≤ 0

(Adap. from Dempe, 2002) Problem with disconnected 
feasible set

IR

Optimal 
solution



PROPERTIES OF THE LINEAR BLP

o The linear BLP is NP-hard

o The inducible region 𝐼𝑅 is composed by the union of 
faces of 𝑆
­ connected faces if upper-level constraints do not depend on the 

lower-level optimal solutions

o The solution occurs at a vertex of 𝐼𝑅
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max
"

𝐹(𝑥, 𝑦) = 𝑐#𝑥 + 𝑑#𝑦

s.t. 𝐴#𝑥 + 𝐵#𝑦 ≤ 𝑏#
𝑥 ≥ 0
max
!

𝑓(𝑥, 𝑦) = 𝑐$𝑥 + 𝑑$𝑦

s. t. 𝐴$𝑥 + 𝐵$𝑦 ≤ 𝑏$
𝑦 ≥ 0
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PROPERTIES OF THE (LINEAR) BLP

Bilevel problems are nonconvex and 
nondifferentiable optimization problems
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max
!

𝐹(𝑥, 𝑦) = −𝑥 − 3𝑦

s.t. 1 ≤ 𝑥 ≤ 6
max
"

𝑓(𝑦) = 𝑦

s.t. 𝑥 + 𝑦 ≤ 8
𝑥 + 4𝑦 ≥ 8
𝑥 + 2𝑦 ≤ 13

Ψ(𝑥) = B6.5 − 0.5𝑥 1 ≤ 𝑥 ≤ 3
8 − 𝑥 3 ≤ 𝑥 ≤ 6

𝐹 𝑥,Ψ 𝑥 = B−19.5 + 0.5𝑥 1 ≤ 𝑥 ≤ 3
−24 + 2𝑥 3 ≤ 𝑥 ≤ 6

IR

Rational reaction set to each 𝑥
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BILEVEL VS. BI-OBJECTIVE 

o In general, the optimal solution of the bilevel problem is not a 
Pareto optimal solution of the bi-objective problem.
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Pareto optimal 
solutions of the 
bi-objective 
problem

optimal solution 
of the bilevel 
problem
(x,y)=(6, 2)
F = -12; f=2

F
f

solutions 
that 

dominate D
(x,y)=(1, 3)
F = -10; f=3

Bi-objective problem Bi-level problem



METHODS FOR THE LINEAR BLP 

Main algorithmic approaches:

1. Vertex enumeration

2. Reformulate the L-BLP as a single-level problem using 
the Karush-Kuhn-Tucker (KKT) conditions

3. Descent algorithms and penalty approaches

18



2. KKT-BASED APPROACHES
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max
$

𝐹(𝑥, 𝑦) = 𝑐"𝑥 + 𝑑"𝑦

s. t. 𝐴"𝑥 + 𝐵"𝑦 ≤ 𝑏"
𝑥 ≥ 0
max
%

𝑓(𝑦) = 𝑑#𝑦

s. t. 𝐴#𝑥 + 𝐵#𝑦 ≤ 𝑏#
𝑦 ≥ 0

L-BLP: Mathematical program with 
complementarity constraints:

Where lÎÂm2 are the dual 
variables of the lower level
problem

max
$,%

𝐹(𝑥, 𝑦) = 𝑐"𝑥 + 𝑑"𝑦

s. t. 𝐴"𝑥 + 𝐵"𝑦 ≤ 𝑏"
𝐴#𝑥 + 𝐵#𝑦 ≤ 𝑏#

𝜆𝐵# ≥ 𝑑#
𝜆 𝑏# − 𝐴#𝑥 − 𝐵#𝑦 = 0
𝑦 𝜆𝐵# − 𝑑# = 0
𝑥 ≥ 0, 𝑦 ≥ 0, 𝜆 ≥ 0



2. KKT-BASED APPROACHES

o Use a branch and bound 
strategy  to deal with the 
complementarity constraints

o Transform the program into a 
mixed-integer linear 
programming (MILP) problem 
and solve it using a general 
MILP solver (e.g., cplex)

20

Mathematical program with 
complementarity constraints:

max
$,%

𝐹(𝑥, 𝑦) = 𝑐"𝑥 + 𝑑"𝑦

s. t. 𝐴"𝑥 + 𝐵"𝑦 ≤ 𝑏"
𝐴#𝑥 + 𝐵#𝑦 ≤ 𝑏#

𝜆𝐵# ≥ 𝑑#
𝜆 𝑏# − 𝐴#𝑥 − 𝐵#𝑦 = 0
𝑦 𝜆𝐵# − 𝑑# = 0
𝑥 ≥ 0, 𝑦 ≥ 0, 𝜆 ≥ 0



OPTIMISTIC VS. PESSIMISTIC SOLUTIONS

If it cannot be ensured the uniqueness of optimal solutions 
for the lower-level problem, the formulation of the BLP is 
ambiguous:

23

That is: the follower’s rational 
reaction set

is not single valued for every x

Ψ(𝑥) = arg max
"

𝑓(𝑦): 𝑔(𝑥, 𝑦) ≤ 0

"max
!
" 𝐹(𝑥, 𝑦)

s.t. 𝐺(𝑥, 𝑦) ≤ 0
max
"

𝑓(𝑥, 𝑦)

s.t. 𝑔(𝑥, 𝑦) ≤ 0



OPTIMISTIC VS. PESSIMISTIC SOLUTIONS

If it cannot be ensured the uniqueness of optimal solutions 
for the lower-level problem, the formulation of the BLP is 
ambiguous:

24

Two main approaches have 
been suggested:

Ø Optimistic approach

Ø Pessimistic approach

which consider the optimistic and 
the pessimistic reformulations, 
respectively

"max
!
" 𝐹(𝑥, 𝑦)

s.t. 𝐺(𝑥, 𝑦) ≤ 0
max
"

𝑓(𝑥, 𝑦)

s.t. 𝑔(𝑥, 𝑦) ≤ 0



OPTIMISTIC VS. PESSIMISTIC SOLUTIONS

o Optimistic formulation: the follower chooses, among his 
alternative optima, the solution that is the best for the 
leader:

BLPo:

o Pessimistic formulation: the follower chooses, among his 
alternative optima, the solution that is the worst for the 
leader:

BLPp:

25

max
!,#(!,%)'(

𝜑)(𝑥) : =max% 𝐹(𝑥, 𝑦) : 𝑦 ∈ Ψ(𝑥)

max
L,M(L,N)OP

𝜑Q(𝑥) : =minN 𝐹(𝑥, 𝑦) : 𝑦 ∈ Ψ(𝑥)



o The optimistic formulation is much simpler to handle and 
has been mostly investigated, mainly for its simplified 
version:

max
L,N

𝐹(𝑥, 𝑦)

s.t. 𝐺(𝑥, 𝑦) ≤ 0
max
N

𝑓(𝑥, 𝑦)

s.t. 𝑔(𝑥, 𝑦) ≤ 0

OPTIMISTIC VS. PESSIMISTIC SOLUTIONS

26

KKT conditions à only valid in the optimistic case

upper-level optimization
is taken with respect to 
x and y



OPTIMISTIC VS. PESSIMISTIC SOLUTIONS 
- EXAMPLE 1
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max 𝐹 = 𝑥 + 2𝑦" − 𝑦#
𝑠. 𝑡.
2 ≤ 𝑥 ≤ 5
max 𝑓 = 𝑦" + 𝑦#
𝑠. 𝑡. 𝑦" ≤ 6
𝑦" + 𝑦# ≤ 10 − 𝑥

𝑦# ≤ 𝑥
𝑦", 𝑦# ≥ 0

𝐼𝑅

x is the upper level variable and y1, y2 are the 
lower level variables

S

Sº constraint region



OPTIMISTIC VS. PESSIMISTIC SOLUTIONS 
- EXAMPLE 1
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S

Let us analyze the behavior of 𝐹 and 
𝑓 for some discrete values of 𝑥:



OPTIMISTIC VS. PESSIMISTIC SOLUTIONS 
- EXAMPLE 1
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max 𝐹 = 𝑥 + 2𝑦! − 𝑦"

max 𝑓 = 𝑦! + 𝑦"



OPTIMISTIC VS. PESSIMISTIC SOLUTIONS 
- EXAMPLE 1

30

max 𝐹 = 𝑥 + 2𝑦! − 𝑦"

max 𝑓 = 𝑦! + 𝑦"

𝑓 =
7



OPTIMISTIC VS. PESSIMISTIC SOLUTIONS 
- EXAMPLE 1
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max 𝐹 = 𝑥 + 2𝑦! − 𝑦"

max 𝑓 = 𝑦! + 𝑦"



OPTIMISTIC VS. PESSIMISTIC SOLUTIONS 
- EXAMPLE 1

32

max 𝐹 = 𝑥 + 2𝑦! − 𝑦"

max 𝑓 = 𝑦! + 𝑦"



OPTIMISTIC VS. PESSIMISTIC SOLUTIONS 
- EXAMPLE 1
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max 𝐹 = 𝑥 + 2𝑦" − 𝑦#
𝑠. 𝑡.
2 ≤ 𝑥 ≤ 5
max 𝑓 = 𝑦" + 𝑦#
𝑠. 𝑡. 𝑦" ≤ 6
𝑦" + 𝑦# ≤ 10 − 𝑥

𝑦# ≤ 𝑥
𝑦", 𝑦# ≥ 0

𝐼𝑅

x is the upper-level variable and y1, y2 are the 
lower-level variables

Optimistic 
optimal 
solution

IR

(5,5,0) 
F=15

(5,0,5)
F=0

(2,6,2)
F=12

Pessimistic 
optimal 
solution

F=16

(4,6,0)

F=8

F=4

F=14



BLP WITH INTEGER VARIABLES
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Discrete-Continuous
(DC-BLP)

Continuous-Discrete
(CD-BLP)

Discrete-Discrete
(DD-BLP)
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The IR of DC-BLP is included in 
the IR of the (continuous) BLP

The IR of DD-BLP is included in 
the IR of CD-BLP



INTEGER AND MIXED-INTEGER BLP:
OBSTACLES IN ALGORITHMIC DEVELOPMENT
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In: Bard and Moore (1990)

What is the inducible region 
for the continuous problem? 



INTEGER AND MIXED-INTEGER BLP:
OBSTACLES IN ALGORITHMIC DEVELOPMENT
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In: Bard and Moore (1990)

inducible region of the 
continuous problem 

𝐹(8,1) = 18

optimal solution to 
the continuous BLP 



INTEGER AND MIXED-INTEGER BLP:
OBSTACLES IN ALGORITHMIC DEVELOPMENT
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In: Bard and Moore (1990)

inducible region of the 
integer BLP

𝐹(8,1) = 18

optimal solution to 
the integer BLP 
𝐹(2,2) = 22



INTEGER AND MIXED-INTEGER BLP:
OBSTACLES IN ALGORITHMIC DEVELOPMENT
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inducible region of the 
integer BLP

𝐹(8,1) = 18

optimal solution to 
the integer BLP 
𝐹(2,2) = 22

- the optimal solution to the 
relaxed BLP (continuous 
BLP) is integer and it is 
not the optimal solution to 
the integer BLP

- the optimal 𝐹 to the 
relaxed BLP (continuous 
BLP) does not provide a 
valid bound to the 
optimal 𝐹 for the integer 
BLP.

It may happen:
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Part II
Multi-objective Bilevel 

Optimization 



MULTI-OBJECTIVE BILEVEL PROGRAMMING
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max
!

𝐹3(𝑥, 𝑦), . . . . , 𝐹4(𝑥, 𝑦)

𝑠. 𝑡. 𝐺(𝑥, 𝑦) ≤ 0
𝑦 ∈ argmax

"
𝑓3(𝑥, 𝑦), . . . , 𝑓5(𝑥, 𝑦) : 𝑔(𝑥, 𝑦) ≤ 0

𝑥 ∈ ℝ%# − variables controlled by the leader
𝑦 ∈ ℝ%$ − variables controlled by the follower



MULTI-OBJECTIVE BILEVEL PROBLEMS: 
CASES
o Multiple objective functions at the upper-level, single-objective 

function at the lower-level

o Single-objective function at the upper-level, multiple objective 
functions at the lower-level (also known as semi-vectorial BL problem):
max
!

𝐹(𝑥, 𝑦)

𝑠. 𝑡. 𝐺 𝑥, 𝑦 ≤ 0
𝑦 ∈ argmax

"
𝑓3(𝑥, 𝑦), . . . , 𝑓5(𝑥, 𝑦) : 𝑔(𝑥, 𝑦) ≤ 0

o Multiple objective functions at both levels

41

(SV
BL
P)



SEMI-VECTORIAL BILEVEL PROBLEM (SVBLP)

o Only efficient solutions to the lower-level problem for each x -vector are 
feasible to the SVBLP. 

o For each x-vector, there is no best f-value to the follower, but rather a 
set of lower-level efficient solutions

42

max
$

𝐹(𝑥, 𝑦)

s.t. 𝐺(𝑥) ≤ 0
max
%

𝑓"(𝑥, 𝑦), 𝑓#(𝑥, 𝑦), . . . , 𝑓2(𝑥, 𝑦)

s.t. 𝑔(𝑥, 𝑦) ≤ 0

(SVBLP)

(For simplicity reasons, we consider that upper-level constraints 𝐺(𝑥) ≤ 0 do not 
include lower-level variables)



SEMI-VECTORIAL BILEVEL PROBLEM (SVBLP)
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The set of efficient solutions to the lower-level problem of the 
SVBLP for a given x'  is:

𝑌(𝑥′) = 𝑦: 𝑔(𝑥′, 𝑦) ≤ 0Let

ΨEf(𝑥′) = 𝑦′ ∈ 𝑌(𝑥′): there is no 𝑦 ∈ 𝑌(𝑥′) such that 𝑓(𝑥′, 𝑦) ≻ 𝑓(𝑥′, 𝑦′)

(where ≻ denotes the dominance relation)

The inducible region (feasible region) of the SVBLP is:

𝐼𝑅 = (𝑥, 𝑦) ∈ ℝ!#×ℝ!$ : 𝐺(𝑥) ≤ 0, 𝑦 ∈ ΨEf(𝑥)



LINEAR SVBLP - EXAMPLE 1
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max F(x, y) = - x + 5y
s.t.
max f1(y) = - y
max f2(y) = x + y

s.t.
x - 2y £ 4

2x – y £ 24
3x + 4y £ 96
x + 7y £ 126
-4x + 5y £ 65
x + 4y ³ 8
x, y ³ 0

S

S

f1

x

y
F

S

f2
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LINEAR SVBLP - EXAMPLE 1
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x= 5.3

The follower’s objectives 
become:

max f1 = - y
max f2 = 5.3 + y

best of f1
for x=5.3

best of f2
for x=5.3

max F(x, y) = - x + 5y
s.t.

max f1(y) = - y
max f2(y) = x + y

s.t. (x, y) Î S

Suppose the leader takes a 
decision:
e.g. x= 5.3
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y
F

S

f2

LINEAR SVBLP - EXAMPLE 1
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x= 5.3

All the solutions in ΨIJ(5.3)
are efficient to the follower 
for the leader’s decision 
𝑥 = 5.3

Ψ34(5.3)

best solution for 
the leader

worst solution for 
the leader

What will be the choice of 
the follower?
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LINEAR SVBLP - EXAMPLE 1
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x¢

For each leader’s decision 
𝑥’ there is a set of efficient 
solutions ΨIJ(𝑥′) to the 
follower. Ψ34(𝑥′)



LINEAR SVBLP - EXAMPLE 1
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YEf

x

y
F

For each leader’s decision 
x¢ there is a set of efficient 
solutions ΨIJ(𝑥′) to the 
follower.

The leader may believe 
that the follower will choose 
a solution that most benefits 
the leader – optimistic 
approach

optimistic
solution

Or the leader prepares for 
the worst case –
pessimistic approach

Intermediate approaches 
may exist.

pessimistic
solution

𝐼𝑅



DIFFICULTIES FOR THE LEADER IN  
SVBLP/MOBLP

• The follower’s decision may be very difficult to 
anticipate.

• Almost all literature devoted to SVBLP and MOBLP has 
adopted the optimistic approach 
• The optimistic approach assumes that the follower is indifferent 

to all efficient solutions obtained for a given decision of the 
leader. 
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However, this assumption is seldom realistic in many 
practical decision problems



OPTIMISTIC APPROACH: REALISTIC?

Ex: a toll-setting problem
o The owners of a highway system have to set tolls and 

they want to maximize total revenue; users of highways want to 
minimize travel costs and minimize travel times.

o For each leader’s decision, the follower has a set of efficient 
solutions:

• At one extreme, the solution that minimizes cost 
à drivers do not use highways à the leader’s revenue would be 0.

• At the other extreme, the solution that minimizes time 
à many drivers use highways à high revenues for the leader.
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The optimistic approach assumes that the follower is indifferent to those two 
opposite situations, which would lead the leader to set very high prices for tolls. 



YEf

x

y
F

xo(x,y)=(5.3 ; 0.825)
F = -1.175

WHAT HAPPENS IF THE OPTIMISTIC APPROACH FAILS?
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If the leader takes the best 
decision according to the 
optimistic approach (xo), 
but the follower’s choice (y’) 
is the worst for the leader.

The solution obtained (xo, y’) 
may be significantly worse 
than the pessimistic solution.

à this solution will be 
called deceiving solution

optimistic
solution

pessimistic
solution

The worst result for 
the leader with xo

(x,y)=(5.3 ; 17.24)
F = 80.9

(x,y)=(17.45 ; 10.91)
F = 37.09



MOST COMMON APPROACHES

o Optimistic approach
­ assumes that the follower accepts any 

efficient solution to the lower-level problem 
and, so, his response is always the most 
convenient for the leader 

o Pessimistic approach
­ the leader is risk-averse and prepares for 

the worst case. 
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OPTIMISTIC FORMULATION IN SVBLP

o Assumes that the follower’s response is always 
the best for the leader

à the optimistic solution, (xo,yo) is a solution that
optimizes the optimistic formulation
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max
!,"

𝐹(𝑥, 𝑦)

s.t. 𝐺(𝑥) ≤ 0, 𝑦 ∈ ΨEf(𝑥)

(optimistic formulation)

(𝑥c, 𝑦c) ← max
L,N

𝐹(𝑥, 𝑦): 𝐺(𝑥) ≤ 0, 𝑦 ∈ ΨEf(𝑥)



PESSIMISTIC FORMULATION IN SVBLP

o Assumes that the follower’s response is always the 
worst for the leader

à the pessimistic solution, (xp,yp) is a solution that 
optimizes the pessimistic formulation

54

(𝑥K , 𝑦K) ← max
!

min
"

𝐹(𝑥, 𝑦): 𝑦 ∈ ΨEf(𝑥) : 𝐺(𝑥) ≤ 0

max
!

min
"

𝐹(𝑥, 𝑦)

s.t. 𝐺(𝑥) ≤ 0, 𝑦 ∈ ΨEf(𝑥)

(pessimistic formulation)



OPTIMISTIC VS. PESSIMISTIC APPROACHES

o It is important to acknowledge the risk the leader takes if he 
adopts an optimistic approach

o The pessimistic approach is the most conservative, because it 
pays attention to the worst choices of the follower for the 
leader’s interests (but it may also offer opportunities).

o Other types of solutions can provide useful information to the 
leader about the risk/opportunity he takes when making a 
specific decision, in particular:
­ the result of a “failed” optimistic approach:

deceiving solution
­ the result of a “successful” pessimistic approach:

rewarding solution
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“FAILED” OPTIMISTIC APPROACH:
DECEIVING SOLUTION

o Deceiving solution, (xd, yd): if the leader makes an 
optimistic decision and the follower’s reaction is the worst
for the leader.

o It gives an indication of the maximum risk the leader will 
take if he adopts an optimistic approach.

xd = xo (optimistic x-vector)
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𝑦5 ← min
%

𝐹(𝑥6, 𝑦): 𝑦 ∈ ΨEf(𝑥
6)



“SUCCESSFUL” PESSIMISTIC APPROACH: 
REWARDING SOLUTION

o Rewarding solution, (xr,yr): if the leader makes a pessimistic 
decision and the follower’s reaction is the best for the leader.

o It gives an indication of the opportunity the leader will have if 
he adopts a pessimistic approach.
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xr = xp (pessimistic x-vector)

𝑦7 ← max
%

𝐹(𝑥8 , 𝑦): 𝑦 ∈ ΨEf(𝑥
8)



OPTIMISTIC AND DECEIVING
PESSIMISTIC AND REWARDING SOLUTIONS

58

o These four solutions represent “extreme” 
outcomes that can provide the leader important 
insights about the ranges of possible values for 
his objective function.



LINEAR SVBLP - EXAMPLE 2
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x is the upper level variable
y1, y2 are the lower level variables

Sº constraint region

S

max 𝐹 = 𝑥 + 2𝑦" − 𝑦#
𝑠. 𝑡.
2 ≤ 𝑥 ≤ 5
max 𝑓" = 𝑦" + 2𝑦#
max 𝑓# = 𝑦" − 𝑦#
𝑠. 𝑡. 𝑦" ≤ 6
𝑦" + 𝑦# ≤ 10 − 𝑥

𝑦# ≤ 𝑥
𝑦", 𝑦# ≥ 0

𝐼𝑅 (induced region)
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LINEAR SVBLP - EXAMPLE 2

o The leader may take a high 
risk if he adopts an optimistic 
approach 
­ because there is a large 

difference in F between the 
optimistic and the deceiving
solutions
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F (max)
Optimistic
approach

Pessimistic
approach

optimistic / rewarding solutions FR = 14
deceiving / pessimistic solutions FD = 4 FP = 12

x



LINEAR SVBLP - EXAMPLE 2

­ the deceiving solution is 
significantly worse than the 
pessimistic one.

62

F (max)
Optimistic
approach

Pessimistic
approach

optimistic / rewarding solutions FO = 16 FR = 14
deceiving / pessimistic solutions FD = 4 FP = 12



LINEAR SVBLP - EXAMPLE 2

­ and the value of F in the 
rewarding solution is close 
to  the optimistic one
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F (max)
Optimistic
approach

Pessimistic
approach

optimistic / rewarding solutions FR = 14
deceiving / pessimistic solutions FD = 4 FP = 12



LINEAR SVBLP - EXAMPLE 2

o So, in this problem, a pessimistic 
approach could be more 
advisable than an optimistic one, 
since a high risk is associated with 
the optimistic approach.
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F (max)
Optimistic
approach

Pessimistic
approach

optimistic / rewarding solutions FR = 14
deceiving / pessimistic solutions FD = 4 FP = 12



OPTIMISTIC AND PESSIMISTIC FRONTIERS
- EXAMPLE 2
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META-HEURISTIC APPROACHES

In particular involving population-based meta-heuristics:

o Meta-heuristics (EA, PSO, DE, etc.) at both levels

o Hybrid algorithms with meta-heuristics at the upper level and 
NLP/MILP/etc. solver to solve the lower-level problem for each 
instantiation of the upper-level variables x.
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COMPUTING SOLUTIONS FOR A NONLINEAR BLP

o Approximating the 
4 extreme solutions 
and a moderate
solution using 
Differential 
Evolution 
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frontier
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p1=0.5

moderate solution: optimizes the expected value of the leader’s objective function, 
considering that p1 is the probability of the follower to choose the optimistic 
solution for a given x, and (1-p1) is the probability to choose the pessimistic 
solution.
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p1=0.5



FINAL REMARKS FOR SVBL

Multiple objective functions at the lower level pose additional 
difficulties for the leader to anticipate the follower’s reaction

è different types of solutions can provide broader information to the 
leader

è the optimistic, pessimistic, deceiving and rewarding solutions 
delimit ranges of possible values for the leader taking into account 
follower’s extreme decisions

è moderate solutions may provide further decision support to the 
leader: optimize the expected value for the leader’s objective 
function considering different probabilities of the follower’s 
decision being in favor or against the interests of the leader.

But these problems are very difficult to solve…
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FINAL REMARKS FOR SVBL

o Population-based meta-heuristics have been increasingly used to 
deal with SVBP/MOBLP

o It is very difficult to evaluate results from approximate algorithms, 
which may lead to misleading results: apparently better solutions 
may be false if they are not efficient to the lower level 

70

“better” than Fo*=0.5
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Part III

Bilevel Optimization:
An Application in the Energy Sector



DEMAND RESPONSE AS A BILEVEL OPTIMIZATION 
PROBLEM

o The electricity retailer (leader) determines dynamic time-of-use 
prices to maximize profit 

o The consumer (follower) reacts scheduling load operation to 
minimize the electricity bill (to profit from periods of low 
energy prices), subject to comfort requirements (quality of 
service, associated with appliance operation)
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BILEVEL MODEL FOR THE INTERACTION BETWEEN 
RETAILER AND CONSUMER

o The retailer (leader) determines the prices xi (i=1,…,I) to 
be charged to the consumer in each predefined sub-period 
Pi of the planning period T={1,…,T} à maximize profit

o Knowing the electricity prices, the consumer (follower) 
reacts by means of re-scheduling appliance operation à
minimize cost

o The consumer’s energy decisions affects the retailer’s profit

73



DEMAND RESPONSE
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BILEVEL MODEL
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CASE ANALYSIS: DATA
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Retailer’s (UL) problem
- 6 tariff periods Pi
- 6 continuous variables
- 13 constraints (lower/upper bounds + average price)

Consumer’s (LL) problem
- 3 shiftable appliances (J=3) – dish + laundry +dryer machines
- 2 interruptible loads (K = 2) – EV + EWH
- non-controllable base load

24 h planning horizon discretized in 15 min time intervals
For each instantiation of the UL variables, the LL MILP problem has 
559 binary variables, 691 continuous variables and 2389 constraints. 



ILLUSTRATIVE RESULTS
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Load diagram

Electricity prices



CONCLUSIONS
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o Main concepts on single-objective bilevel 
optimization 

o Semi-vectorial bilevel optimization – optimistic, 
pessimistic, deceiving, and rewarding solutions

o An overview of an application of bilevel 
optimization in the design of time-of-use tariffs


