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1. Three Broad Research Areas

2. Mathematical Modeling Focus

3. Highlighted Research Area 1: Demand Response in Power 
Markets using Monte Carlo Simulation and Dynamic 
Programming

4. Highlighted Research Area 2: Worldwide Natural Gas 
Markets and Liquefied Natural Gas (LNG) using a Large-
Scale, Nash-Cournot Market Equilibrium Model

5. Highlighted Research Area 3: Power Market Investments 
and Operations using Two-Level Optimization/Equilibrium 
Modeling

Outline
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Three Broad Research Areas
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Three Broad Research Areas
Energy System Modeling-
Business Case Modeling 
(Private Sector)

Energy markets/systems (power, gas),fossil 
fuels vs. renewables, emissions, demand 
response,  investments, geo-politics of gas, 
risk analysis non-convex pricing for day-
ahead, real-time power markets,

Optimization and 
Equilibrium (Game 
Theory)- Operations 
Research Math Focus

Energy, the Environment and 
Policy: Public Sector-Based

Nash-Cournot engineering-
economic  modeling; one- and two-
level equilibrium models and 
algorithm design, stochastic, robust 
and deterministic approaches

Effects of CO2 on gas supply chains,
Regional Greenhouse Gas Initiative, 
redistribution of RGGI funds, energy 
conservation
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Mathematical Modeling Focus
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LP

Non-Convex 
Opt.

Convex Opt.

QP

ILP

convex non-
convex

Optimization and Equilibrium Modeling:
Engineering-Economic System Focus
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General Form of an Optimization Problem

• Many engineering problems have either f a non-convex function 
of S a non-convex usually making the problem much harder to 
solve, examples:

• Unit commitment in power (binary-constrained problem)

• Alternating current optimal power flow in power 

• Weymouth equation (pressure-flow) in natural gas

 

min f(x)
s.t. 

gi (x) ≤ 0,i = 1,2,…,m
hj (x) = 0, j = 1,2,…, p

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= S

Feasible Region

Objective Function
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Optimization and Equilibrium Modeling:
Engineering-Economic System Focus

NLP
KKT conditions

QP

convex
LP

• Two or more optimization 
problems taken together

• Energy market equilibria
(Nash-Cournot, etc.)

• Wardrop traffic equilibria

• Lubrication, contact, and 
many other problems in 
engineering

Mixed 
Complementarity 
problems (MCPs)

LP=linear programming
QP= quadratic programming
NLP=nonlinear programming 7



Highlighted Area #1:
Dynamic Programming and Monte Carlo Simulation 

for Demand Response in Power Markets

State of Maryland/Whisker Labs
Maryland Industrial Partnership Program
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Demand Response
• Sustainability and economic motivation for demand 

response programs in the power sector 
• The demand response residential load-shifting problem
• Two approaches from the retail electric power provider 

(REP)  perspective with selected results
• 1. Monte Carlo Simulation 

(uncertain market settlement prices, customer 
loads)

• 2. Deterministic & stochastic dynamic 
programming (optimization methodology based 
on Bellman’s Principle of Optimality)
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Economic Motivation for DR (Texas)

• Volatile market: power 
prices can increase by two 
orders of magnitude in 30 
minutes

• Customers pay a constant 
rate, so the electric 
providers are fully exposed 
to these spikes

• Price spikes in 2011 put 
several retail electric power 
providers (REPs) out of 
business

• A few hours can be pivotal 
from a profit perspective

Houston, TX
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Energy Prices in Texas

But the 
electricity 
grid is not 
designed for 
extremes!

2011

2016
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1. Monte Carlo Simulation Study (2016)

• J.R. Schaperow, S.A. Gabriel, M. Siemann, J. Crawford, 
2019. "A Simulation-Based Model for Optimal Demand 
Response Load Shifting: Case Study for the Texas Power 
Market," accepted, Journal of Energy Markets, March 
2019.
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Overview of DR Modeling and Results from 
2016 Monte Carlo Simulation Study

• Central Question: How much of 
each customer group’s load (2 
shown here) should be shifted 
from a current hour(s) to a 
contiguous hour?  The shifted load 
will be reduced by a certain factor 
(thermostat setpoints, etc.)  

• Benefits: If the load is shifted to a 
less expensive hour, then retail 
electric providers (REPs) will be 
able to procure the needed power 
for less money.  Even though less 
load, the overall effect may be 
beneficial in terms of expected 
profit and financial risk, less need 
for peaking machines for the 
energy producer, less negative 
environmental impacts.
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Example of 2-Hour Load Shift
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• Original load by 
group

• Group 1’s load in 
hours ending 19 
and 20 is 35 MW

• Group 1’s load for 
hours 19 & 20 shifted 
to hour 21

• 35 MW reduced to 30  
MW
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23 Possible Shifts (for each customer class)
• 2-hour shifts:

• #9,   (14,15)->16
• #10, (15,16)->17
• #11, (16,17)->18
• #12, (17,18)->19
• #13, (18,19)->20
• #14, (19,20)->21

• 3-hour shifts:
#15, (14,15,16)->17
#16, (15,16,17)->18
#17, (16,17,18)->19
#18, (17,18,19)->20
#19, (18,19,20)->21

• 4-hour shifts:
#20, (14,15,16,17)->18
#21, (15,16,17,18)->19
#22, (16,17,18,19)->20
#23, (17,18,19,20)->21

• No shift
• #1

• 1-hour shifts:
• #2, 14->15
• #3, 15->16
• #4, 16->17
• #5, 17->18
• #6, 18->19
• #7, 19->20
• #8, 20->21
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Settlement Price Probability Distributions

16

• Lognormal distribution (tail to the 
right)

• Law of Proportionate Effect
• Relatively good numerical fit

• Different lognormal distributions for 
Month 

• June/September
• July, August
• Year (2014-2015)
• Hour (14-21)

Also different distributions for 
customer load statistically fit
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Bottom 20% of the dist.:  less than or = $1058

Top 20% of the dist. :greater than or =$4854

Worst 
#337, 
(14,15,16)-
>17 and 
(14,15,16)-
>17

Base
Case
No shift

Best 
#385,
(16, 17, 18)
->19 and 
(16, 17, 18)
->19

Bottom 20% of the dist.:  less than or = -$379.1

Top 20% of the dist. :greater than or =$4702

Bottom 20% of the dist.:  less than or = $1819

Top 20% of the dist. :greater than or =$5012

Sample Profit Distributions Profit Distribution 
from Simulation
• Better strategies to 

shift the load 
compress this 
distribution and 
move it to the right

• Bottom 20% of the 
distribution shifted 
(
improvement)

• Less risk for the 
REP
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2. Dynamic Programming Study (2018)

• R. L. Moglen, P. Chanpiwat, S.A. Gabriel, A. Blohm, 2018. “A 
Dynamic Programming Approach to Optimal Residential Demand 
Response Scheduling in Near Real-Time: Application for 
Electricity Retailers in ERCOT Power Markets,” under review, 
May 2018.

• A. Blohm, J. Crawford , S.A. Gabriel, 2019. “Demand Response as 
a Risk-Reduction Measure for Retail Electricity Providers: ERCOT 
Market Case Study,” under review, March, 2019.
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A Scheduling Problem

• Prices are volatile
• Plan optimal DR schedule 

by shifting load around high 
prices

• 17 possible schedules for 5 
time periods (no DR, 1-
hour, 2-hour, 3-hour, 4-hour 
load shifts)

• 5.9 million schedules for 24 
time periods

Time Period
1 2 3 4 5
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 1 0 0
1 0 0 1 0
0 1 0 1 0
2 0 0 0 0
2 0 1 0 0
2 0 0 1 0
0 2 0 0 0
0 0 2 0 0
1 0 2 0 0
3 0 0 0 0
0 3 0 0 0
4 0 0 0 0
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Dynamic 
Programming

• One gets a “roadmap” of optimal 
decisions (based on Bellman’s 
Principle of Optimality)

• Simplification from exponential 
solving time to linear solving time w.r.t 
number of stages

• Stages: hours or half-hours (time t)
• States: St which DR events running at 

time t
• Actions: At 0, 1, 2,3, 4-hour DR
• Reward function (at a given state St):

• Single-objective version: 
deterministic, maximize REP 
profit Ft(At)

• Bi-objective: stochastic, maximize 
REP profit Ft(St,At) 𝛃 is weight, 
minimize risk, Rt(St,At) (1-𝛃) is 
weight

• 𝛃 in [0,1]
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Conclusions for Dynamic Programming Study

• DP viable for real-time DR scheduling
• Savings of $10-$25/ customer/ year, or 10%- 25% 

additional savings possible on top of profit margins 
of $100/ customer annually

• Less risky to call 1-hour events in the evening
• Morning events are the riskiest
• Historically:
•1-hour events would have generated the most savings
•The shoulder season had the most potential savings
•Few events generated the vast majority of potential savings



Highlighted Area #2
Supply Security in International Natural Gas 

Markets and the Effects of Expanding the Panama 
Canal on Liquefied Natural Gas (LNG) Flow

Électricité de France (EDF) 
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• S. Moryadee, S.A. Gabriel, H.G. Avetisyan, 2014. “Investigating the Potential 
Effects of U.S. LNG Exports on Global Natural Gas Markets, 2(3-4),Energy 
Strategy Reviews, 273-288.

• S. Moryadee, S.A. Gabriel, F. Rehulka, 2014. “The Influence of the Panama 
Canal on Global Gas Trade Journal of Natural Gas Science and Engineering, 20, 
161-174.

• S. Moryadee and S.A. Gabriel, 2017. "Panama Canal Expansion: Will Panama 
Canal be a Game Changer for LNG Exports to Asia?, Journal of Energy 
Engineering, 143(1), February.



Key Issues:
• European energy security issues (vis-à-vis Russian 

gas problems)
• How to achieve supply diversity including U.S. 

exports of LNG to Europe and Asia
• How do U.S. LNG exports influence worldwide gas 

flows with an expanded Panama Canal?
• World Gas Model developed and used to answer 

these questions (it’s a large-scale, Nash-Cournot
equilibrium model)

Supply Security in International Natural 
Gas Markets

23



C3

T3

K1,2,3

C1
Producer

T1Trader

K1,2,3

Sectors M1

Marketer

L1

LNG 
Node

S3
S1

Storage R3
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Representation of Gas Market in World Gas Model to Analyze 
LNG Issues and Panama Canal’s Influence
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Natural gas supply chain

Country 2



The World Gas Model, A Large-Scale Nash-
Cournot Market Equilibrium Model

§ Production/Consumption Nodes: 41 (Groups
of countries, countries, regions)

• Covers over 95% of worldwide consumption  
• 10 periods: 2005-2050, calibration year 2010
• Typical decision variables

– Operating levels (e.g., production, storage injection)
– Investment levels (e.g., pipeline, liquefaction capacity) 

• Other
– Market power aspects (traders )
– LNG contracts database
– Seasonality of demand: low and high demand
– Environmental policy consideration: Carbon costs  for supply chains

• Computational aspects
– Large-scale complementarity  problem (KKT optimality conditions for all 

players + market-clearing conditions)
– ~78,000 vars. Solves in ~240 mins (8GB, 3.0 GHz)
– MCPs are examples of non-convex problems (via the complementarity 

constraints)
– Improved WGM, S. Moryadee Ph.D. thesis 2015 25



The World Gas Model
§ The World Gas Model has been used 

by a number of governments such as:
§ Norway

§ Research Council of Norway, 3-
year project with NTNU, 
University of Maryland, Tsinghua 
University, SINTEF, Joint Global 
Change Research Institute

§ Statistics Norway

§ France
§ Gaz de France (then GDF Suez, 

now Engie)
§ Electricité de France

§ United States
§ U.S. Department of Energy

INDUSTRIAL

City GATE STATION

COMMERCI
AL

RESIDENTIAL

DISTRIBUTION SySTEM

UNDERGROUND 
STORAGE

TRANSMISSION 
SySTEM

Cleaner

Compressor 
Station

GAS PROCESSING 
PLANT

GAS 
PRODUCTION

Gas Well

Associated Gas and Oil 
Well

Impurit
ies

Gaseous 
Products

Liquid
Products

ELECTRIC 
POWER

LNG VESSEL
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Natural gas supply chain



Current World Gas Model Configuration
(Moryadee, 2015)

   WGM  
Market players with separate optimization 
problems 

Producers                             
Traders                         
Pipeline operator              
Storage operator           
Marketers                   
Liquefier                          
Regasifiers                                  
LNG shipping operator                               
Canal operators 

LNG shipping cost Endogenous 
Investment for producers Endogenous 
Investment for LNG tanker Yes 
Limitation on LNG shipping  Constraint on LNG 

Shipping operator 
LNG routes Flexible up to 3 routes 
Number of variables ~ 110,000 vars 



Much Shorter Distances for U.S. Gulf of Mexico 
LNG Exports to Asia via the Panama Canal

• Massive time saving on voyages to Japan, South Korea, Taiwan and China
• Avoid Cape Horn during winter season for potential deliveries to western 

coast of North and Central America
• Panama Canal expansion to be able to handle more and larger ships

Origin 
Via 

Panama 
Via 
Suez 

Around Cap 
Horn  

Around Good 
Hope  Destination  

Gulf of Mexico 

3,733 21,637 9,783 19,713 Mexico West 
4,449 19,723 13,476 20,266 Chile 
9,756 14,449 17,060 15,697 Japan 
12,147 11,910 16,900 13,157 Singapore  

Trinidad 

3,331 20,272 7,643 17,573 Mexico West 
4,048 18,358 11,336 18,126 Chile 
9,355 13,054 14,920 13,557 Japan 
11,746 10,545 14,761 11,027 Singapore  

Norway'

7,471' 19,474' 10,801' 19,601' Mexico'West'
8,188' 17,559' 14,493' 20,155' Chile'
13,494' 12,285' 18,078' 15,585' Japan'
15,886' 9,746' 17,918' 13,046' Singapore''

 
Popils,2011
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EDF-WGM Sensitivity Analysis Scenarios
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Scenarios Assumptions
Zero_Toll "Zero Tariff" :tariff is $0/trip or $0.00/MMBtu

Regular_Toll "Regular Tariff" : Canal Tariff tariff = $/trip or $0.35 /MMBtu

Double_Toll “Double Tariff” :Canal tariff=Regular tariff X 2 = $0.70 /MMBtu

Triple_Toll “Triple Tariff” :Canal tariff=Regular tariff X 3 = $1.05 /MMBtu

Fivefold_Toll “Fivefold Tariff” :Canal tariff=Regular tariff X 5= $1.75 /MMBtu

Inf_Toll "Infinite Tariff” : Canal tariff= large number $9,999/kcm



Impacts of Canal Tolls on Flows from U.S. Gulf of 
Mexico (US7 Node)

12.69

23.61

46.27

53.35
58.40 58.4046.62

40.05

19.50

8.98

0.00 0.00
0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

I N F _ T O L L F I V E _ T O L L T R I P L E _ T O L L D O U B L E _ T O L L R E G U L A R _ T O L L Z E R O _ T O L L

FLOWS FROM US7 TO EUROPE/ ASIA IN BCM/Y FOR 
2035

Japan Europe

Increasing toll
30

Threshold point

$0.00/MMBtu$0.35/MMBtu$0.70/MMBtu$1.05/MMBtu$1.75/MMBtu
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Mid East
Africa

Dynamics of Flows: Regular Tariff Scenario, 
Flows in Bcm/y for 2035

346.49

• Russian flows= total flow out from RUW
• 68.05 is the total US flow not just U.S.7
• Middle East =(Qatar+ Yemen)
• Africa =(Nigeria+ Algeria)

30.88

73.8

37
.0

58.0

11.8

21.868
.05

0.69
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Dynamics of Flows: Double Tariff Scenario, 
Flows in Bcm/y for 2035
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28.28

80.6

33
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.0558
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Mid East
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• Russian flows= total flow out from RUW
• 68.05 is the total US flow not just U.S.7
• Middle East =(Qatar+ Yemen)
• Africa =(Nigeria+ Algeria)
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Mid East
Africa

Dynamics of Flows: Triple Tariff Scenario, Flows 
in Bcm/y for 2035

341.4

27.49

83.9

31
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15.2

9.3

47
.9

9.6720.18

• Russian flows= total flow out from RUW
• 68.05 is the total US flow not just U.S.7
• Middle East =(Qatar+ Yemen)
• Africa =(Nigeria+ Algeria)



34

Dynamics of Flows: Five-fold Tariff Scenario, 
Flows in Bcm/y for 2035
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• Russian flows= total flow out from RUW
• 68.05 is the total US flow not just U.S.7
• Middle East =(Qatar+ Yemen)
• Africa =(Nigeria+ Algeria)
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Dynamics of Flows: Infinite Tariff Scenario, 
Flows in Bcm/y for 2035

335.3

27.49

95.0

31
.6

75.2

15.6

Africa
Mid East

22
.3

3

47.31

• Russian flows= total flow out from RUW
• 68.05 is the total US flow not just U.S.7
• Middle East =(Qatar+ Yemen)
• Africa =(Nigeria+ Algeria)



#1. DC Water and Sewer Authority, Wastewater-to-Energy 
(S.A. Gabriel, C. U-tapao, S. Moryadee)

#2. Agency-level Energy Conservation with Shared Savings
(B. Champion, S.A. Gabriel)

#3. Power Market Investments with Endogenous Prices, 
Capacities and Quantities

(H. Bylling, S.A. Gabriel, T. Boomsma)
#4. Power Market Investments with Rolling-Horizon, 
Endogenous Probabilities

(T. Kallabis, S.A. Gabriel, C. Weber, in preparation)
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Four Energy Projects Using a Bilevel
Optimization/Mathematical Program with 
Equilibrium Constraints (MPEC) Approach



MPEC Formulation

min f (x, y)
s.t. (x, y)∈Ω                                       
y∈S(x)
where
Ω set of constraints for (x, y)
x ∈Rnx  upper-level variables

y∈Rny  lower-level variables
f (x, y) upper-level objective function
S(x)  solution set of lower-level problem (opt. or game)

Note: Stochasticity can enter in three places:
1. Top-level objective
2. Top-level feasible region
3. Bottom-level problem
-Could be chance constraints, recourse 
problem, conditional value-at-risk, etc.

37



•Many problems in engineering and economics can be put 
into this format; some salient examples:
•Stackelberg leader-follower problems
•Upper-level problem:leader
•Lower-level problem: followers

•Other problems are of the form:
•Upper-level problem: investments
•Lower-level problem: operations/markets

•Equilibrium network design
•Origin-destination demand adjustment problem (model 
calibration + MCP/VI)

MPEC Formulation



#1, Wastewater-to-Energy, A Two-Level 
Optimization Key Issues:

• How best to use wastewater to 
produce:, renewable electric power, 
Compressed natural gas (for 
Washington, DC buses, fleets), high-
end fertilizer for farms, Class B 
biosolids, residential natural gas 
sector

• Developed a stochastic, two-level 
optimization model to answer the 
above questions, recourse problem 
at the top level, stochasticity due to 
scenario tree for energy prices, 
amount  of wastewater, etc.

• Hard non-convex problems to solve, 
especially when they are large-scale 
as in this application 39

• C. U-tapao, S.A. Gabriel, C. Peot, and M. 
Ramirez, 2015. “A Stochastic, 
Multiobjective, Mixed-Integer Optimization 
Model for Management of Wastewater-
Derived Energy,” J. of Energy Engineering, 
141(1).

• C. U-tapao, S. Moryadee, S.A. Gabriel, C. 
Peot and M. Ramirez, 2016. "A Stochastic, 
Two-Level Optimization Model for 
Compressed Natural Gas Infrastructure 
Investments in Wastewater Management, 
" Journal of Natural Gas Science & 
Engineering 28, 226–24 .



Overall Stochastic MPEC Formulation
DC Water and Sewer Authority

Land application
Retail 
outlet

Lower-level 
power 
generation

Lower level: 
compressed natural 
gas (CNG) for buses

Top level: Stochastic optimization problem with recourse for 
wastewater treatment plant

Wastewater Solids end-product

40

Key:
q=quantities
p=prices

q

q
q

q

p

p
p

p



Triangular

Triangular

Lognormal

Triangular

Lognormal

Lognormal

Triangular

Triangular

Weibull

Process Diagram of the Stochastic MPEC
Wastewater

AWTP 
operation

Solids
Digester

Class B Class A Methane Electricity

Land application

Fuel

Agricultural 
market

CNG 
transportation Sell to spot 

market

NG 
market

Used at 
AWTP

Electricity 
power grid/ 
market

Investment 

Carbon dioxide credits or renewable energy credits

Solid from other 
organizations

Incinerator

Solar
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DC Water’s Bio-CNG and Electricity in 
Relevant Markets

• CNG and Power
• Bio_CNG production from DC 

Water is enough for DC Bus 
consumption.

• DC Water CNG station may be an 
option to support CNG vehicle 
(DC has 0 public, 2 private, MD 
has 3 public, 2 private CNG 
station).

• Electricity generated from DC 
Water can supply renewable-
based electricity to the retail 
sale company (Pepco).

• Electric power from DC Water is 
10 MW, Pepco doesn’t want to 
lose it. 

42



#2, Agency-Level Energy Conservation

43

• B. R. Champion and S.A. Gabriel, 2015. " An improved strategic 
decision-making model for energy conservation 
measures," Energy Strategy Reviews 6, 92-108. 

• B.R. Champion and S.A. Gabriel, 2017. "A Multistage Stochastic 
Energy Model with Endogenous Probabilities and a Rolling 
Horizon, Energy and Buildings, 135, 338-349.B. R. 

• Champion and S.A. Gabriel, Risk-based Multistage Stochastic 
Energy Conservation Project Selection, October 2016 (in 
review).



Agency-Level Energy Conservation

44

• An energy conservation program is required to meet the deadlines of 
federal regulation

• 48 projects have been identified and are required to meet the 
savings goal of the federal regulation

• Each project has an investment and a annual savings (energy saved * 
energy rate)

• Energy project budget is fixed
• Agency (top-level player) to determine which projects to do by itself, 

which ones to contract out to ESCOs (bottom-level players)
• Problem:  What is the minimum cost to complete all projects?
• What is the smallest capital request that can be made to complete 

all projects?  
• How can savings be used to fund future projects with savings, 

understanding that energy rates will change?
• How can it get supplemental help executing projects when these 

costs are too high?



Agency-Level Energy Conservation
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#3, Power Market Investments with 
Endogenous Prices, Capacities and Quantities

46

• H. Bylling, S.A. Gabriel, T.K. Boomsma, 2019. “A Parametric 
Programming Approach to Bilevel Optimisation with Lower-
Level Variables in the Upper Level,” Journal of the Operational 
Research Society, May, 2019.

• H.C. Bylling, Trine K. Boomsma, S.A. Gabriel, "A Parametric 
Programming Approach to Bilevel Electricity Transmission 
Investment Problems," Chapter 6 in Transmission Network 
Investment in Liberalized Power Markets, Springer (Lecture 
Notes in Energy),Editors: M. R. Hesamzadeh (KTH, Swden), J. 
Rosellon (CIDE, Mexico and DIW, Germany), I. Vogelsang
(Boston University, US), accepted June, 2019.



Power Market Investments with Endogenous 
Prices, Capacities and Quantities
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Power Market Investments with Endogenous 
Prices, Capacities and Quantities
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Power Market Investments with Endogenous 
Prices, Capacities and Quantities
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#4, Power Market Investments with Rolling-
Horizon, Endogenous Probabilities

50

• Goal: improve existing investment MPEC modeling 
• Implement dynamic multi-period structure and a rolling planning horizon
• Capture value of rolling horizon, tradeoff between computation time and 

solution quality
• Allows creating more realistic model configurations
• Capture optionality value of multi-stage investment process
• Contribution to strategic generation investment literature through rolling 

horizon and link to real option valuation of power plant investments
• Stochastic demand



Power Market Investments with Rolling-
Horizon, Endogenous Probabilities
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Power Market Investments with Rolling-
Horizon, Endogenous Probabilities

52

• All model configuration still show similar average profits
– Negative effect of rolling horizon planning horizon not as pronounced

• Computation time increased massively
– Fully stochastic RA configuration does not terminate at 0% MIP gap
– Variations of MIP gap show tradeoff between computation time and 

MIP gap



Thank you and any questions?
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