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Introduction of Multiple Criteria Decision Making
(MCDM) perspective to simulation metamodeling

Complex system dynamics

* Very large discrete event

Simulation ‘ simulation model StlthIaf'tI??h
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Simulation metamodeling with MCDM

Complex system
dynamics

- Discrete event
simulation model
- Uncertainty

Objectives
Metamodel ‘ - Multiple criteria

- Uncertainty

Multi-Criteria

Influence Diagram

Metamodel allows easier analysis of
the complex decision problem
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Increasing complexity of models

Increases the need for metamodeling

« Metamodel helps
— Sensitivity and what-if analysis
— Optimization of a simulation output
— Model validation
« Several existing approaches, seminal book by Friedman 1996
— Regression models, neural networks, splines, kriging models, games,
dynamic Bayesian networks, ...

New features allowed by multi-criteria influence diagrams
— Inclusion of preferences of the decision maker (DM)
— Solving efficient decision alternatives
— Selection of the most preferred decision alternative
— Sensitivity with respect to preferences
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Multi-Criteria Influence Diagram (MCID)

Influence diagram (Howard and Matheson, 1984)
Modeling decision problems under uncertainty

Nodes:
Decision D, chance X, and utility U

Utility node: DM’s utility function

Preferences

Scores on the objectives

MCID (Diehl and Haimes, 2004)

Modeling multi-criteria decision problems
under uncertainty

Multiple utility nodes U;
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MCID in simulation metamodeling

Simulation inputs|described by:

Decision or chance nodes

Simulation state|described by:

Chance nodes

Simulation outputs|described by:

Chance nodes

Objectives and preferences| of DM:

Utility nodes and functions

Estimation of structure and probabilities?
From raw simulation data
Expert knowledge

Available software:
GeNle (free), Hugin, ...
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Use of MCID in metamodeling

« Generation of efficient decision alternatives
— Probability distributions of utilities for each decision alternative
— E.g. expected utilities of decision alternatives
— Identification of the most preferred solution

« Time evolution of probability distributions in simulation

 What-if analysis — the impact of evidence

— Probability distributions of chance nodes for fixed values (evidence) of
other nodes

— Efficient decision alternatives for fixed values (evidence) of other nodes
« Sensitivity analysis

— Effect of the changes in the probability distributions on the set of efficient
decision alternatives
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Air combat example

— Target to defend (blue target) or
» Target Aortarget B
— Air combat tactics (blue tactics)
« Tactic 1 or tactic 2
« Uncertain strategy of Red DM
— Target to attack (red target) *

* Target A or target B
— Air combat tactics (red tactics)
« Tactic 1 or tactic 2

 Bad situation for blue if decides

to defend wrong target Good situation Bad situation
for blue for blue
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Generation of data by stochastic simulation

Multiple simulation runs

IEl GRMAIN GRAPHICS (=1t3

Aircraft, weapons,

/ and hardware models \ Simulation output

Blue tactics * Number of blue
Blue target f | \ aircraft killed
Red tactics “ : po— "*» *  Number of red
Red target Né aircraft killed

; \ « TargetA

survives?
/ Decision making logic \ « TargetB
1 — survives?
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Introducing objectives to the MCID

Simulation inputs

Simulation outputs Blue | | Blue

tactic
Objectives of DM

« Maximize probability
that target A survives
(Tgt. A)

« Maximize probability
that target B survives
(Tgt. B)

e Maximize kills-losses
(Kill diff.)
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Simulation inputs in the MCID: decisions

Blue target

Red Red

target tactic
‘/

—— Blue .| Blue

tactic

Target A Target B

Decision nodes contain
DM'’s decision alternatives
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Simulation inputs In the MCID: chance nodes

Blue | Blue

tactic Red target
Target A 0.7
Target B 0.3
survives Red tactic
Red target A B
Tactic 1 0.2 0.8
Tactic 2 0.8 0.2

Uncertain strategy of red DM
represented by probability distributions
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Simulation outputs in the MCID

Num. blue killed
Blue A
Blue | Blue Red Red target
| tactic target I tactic Red
A
target
»/ Blue
/ tactic 1 2
Red 1 2 1 2
tactic
0 0.075 0.471 0.329 | 0.773
1 0.157 0.231 0.215 | 0.148
2 0.127 0.153 0.155 | 0.041
3 0.238 0.095 0.108 | 0.033
4 0.403 0.05 0.193 | 0.005

Simulation output probability distributions
estimated from generated data
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Utility functions in the MCID

Red Red

target tactic
}/

Blue | Blue
tactic

A

Kill diff.
Num.
blue 0
killed
Num.
red 0 1 2 3 4
killed

Utility 0.500 0.625 0.750 0.875 1.000

Utilities of outcomes elicited from DM
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Efficient decision alternatives
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P(Target B Survives)

What-if analysis: red uses tactic 1

No evidence
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Sensitivity analysis: probability of red
attacking target A decreases from 0.7 to 0.3
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Conclusion: Simulation metamodeling
benefits from new tools - MCDM and MCID

« MCDM provides
— DM'’s preferences with respect to multiple criteria

 MCID provides

— New analysis capabilities
— Flexible and transparent modeling

 Efficient calculation: Easy-to-use software available
e Qur case: Simulation analysis of air combat

» Future work
— Dynamic decision making
— Multiple DMs
— Input modeling — the impact of correlated inputs
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