

Utilization of Multi-Criteria Influence Diagrams in Simulation Metamodeling

Jouni Pousi, Jirka Poropudas, Dr. Tech. Kai Virtanen and Prof. Raimo P. Hämäläinen

Introduction of Multiple Criteria Decision Making (MCDM) perspective to simulation metamodeling

Simulation metamodeling with MCDM

Increasing complexity of models increases the need for metamodeling

- Metamodel helps
 - Sensitivity and what-if analysis
 - Optimization of a simulation output
 - Model validation
- Several existing approaches, seminal book by Friedman 1996
 - Regression models, neural networks, splines, kriging models, games, dynamic Bayesian networks, ...

New features allowed by multi-criteria influence diagrams

- Inclusion of preferences of the decision maker (DM)
- Solving efficient decision alternatives
- Selection of the most preferred decision alternative
- Sensitivity with respect to preferences

Multi-Criteria Influence Diagram (MCID)

MCID in simulation metamodeling

Simulation inputs described by:

Decision or chance nodes

Simulation state described by:

Chance nodes

Simulation outputs described by:

Chance nodes

Objectives and preferences of DM:

Utility nodes and functions Estimation of structure and probabilities? From raw simulation data

Expert knowledge Available software: GeNIe (free), Hugin, ...

Use of MCID in metamodeling

- Generation of efficient decision alternatives
 - Probability distributions of utilities for each decision alternative
 - E.g. expected utilities of decision alternatives
 - Identification of the most preferred solution
- Time evolution of probability distributions in simulation
- What-if analysis the impact of evidence
 - Probability distributions of chance nodes for fixed values (evidence) of other nodes
 - Efficient decision alternatives for fixed values (evidence) of other nodes
- Sensitivity analysis
 - Effect of the changes in the probability distributions on the set of efficient decision alternatives

Air combat example

Blue DM decides on

- Target to defend (blue target)
 - Target A or target B
- Air combat tactics (blue tactics)
 - Tactic 1 or tactic 2

Uncertain strategy of Red DM

- Target to attack (red target)
 - Target A or target B
- Air combat tactics (red tactics)
 - Tactic 1 or tactic 2
- Bad situation for blue if decides to defend wrong target

Generation of data by stochastic simulation

Multiple simulation runs

Simulation output

- Number of blue aircraft killed
- Number of red aircraft killed
- Target A survives?
- Target B survives?

Blue tactics

Blue target

Red tactics

Red target

۲

Introducing objectives to the MCID

Simulation inputs

Simulation outputs

Objectives of DM

- Maximize probability that target A survives (Tgt. A)
- Maximize probability that target B survives (Tgt. B)
- Maximize kills-losses (Kill diff.)

Simulation inputs in the MCID: decisions

Simulation inputs in the MCID: chance nodes

Simulation outputs in the MCID

	Num. blue killed					
Blue Red Red	Blue target	A				
target tactic target tactic	Red target	Α				
	Blue tactic	1 2		2		
	Red tactic	1	2	1	2	
Target A Target B Num. Num.	0	0.075	0.471	0.329	0.773	
survives survives killed	1	0.157	0.231	0.215	0.148	
	2	0.127	0.153	0.155	0.041	
	3	0.238	0.095	0.108	0.033	
	4	0.403	0.05	0.193	0.005	
Tgt. A Tgt. B Kill diff. Sim	ulation estima	output ated fro	: proba om gei	bility d	listribu d data	tions

Utility functions in the MCID

Efficient decision alternatives

What-if analysis: red uses tactic 1

Probability of red attacking target A decreases from 0.7 to 0.37

Sensitivity analysis: probability of red attacking target A decreases from 0.7 to 0.3

Conclusion: Simulation metamodeling benefits from new tools - MCDM and MCID

- MCDM provides
 - DM's preferences with respect to multiple criteria
- MCID provides
 - New analysis capabilities
 - Flexible and transparent modeling
- Efficient calculation: Easy-to-use software available
- Our case: Simulation analysis of air combat
- Future work
 - Dynamic decision making
 - Multiple DMs
 - Input modeling the impact of correlated inputs

References

- Diehl M. and Haimes. Y.Y. 2004. *Influence Diagrams with Multiple Objectives and Tradeoff Analysis.* IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 34 (3): 293-304.
- Friedman, L.V. 1996. *The Simulation Metamodel*. Norwell, MA, USA: Kluwer Academic Publishers.
- Howard, R.A. and J.E. Matheson. 2005. *Influence Diagrams*. Decision Analysis 2 (3):127-143.
- Jensen, F.V. 2001. *Bayesian Networks and Decision Graphs (Information Science and Statistics).* Secaucus, NJ, USA: Springer-Verlag New York, Inc.
- Law, A.M. and W.D. Kelton. 2000. Simulation Modelling and Analysis. New York, NY, USA: McGraw-Hill Higher Education.
- Poropudas, J. and Virtanen, K. 2010. Game Theoretic Validation and Analysis of Air Combat Simulation Models. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 40(5):1057-1070.
- Poropudas, J. and Virtanen, K. 2011 *Simulation Metamodeling with Dynamic Bayesian Networks*. European Journal of Operational Research, To Appear.

